一十种概率密度函数

合集下载

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。

正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。

1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。

其 中,.0为尺度参数。

指数分布的无记忆性:Plx s t|X = P{X t}。

f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用概率分布是统计学中一个重要的概念,用于描述随机变量在各个取值上的概率分布情况。

常见的概率分布有16种,它们分别是均匀分布、伯努利分布、二项分布、几何分布、泊松分布、正态分布、指数分布、负二项分布、超几何分布、Gumbel分布、Weibull分布、伽马分布、Beta分布、对数正态分布、卡方分布和三角分布。

以下将逐一介绍这些概率分布的概率密度函数、意义及其应用。

1. 均匀分布(Uniform Distribution):概率密度函数为f(x)=1/(b-a),意义是在一个区间内所有的取值具有相同的概率,应用有随机数生成、模拟实验等。

2. 伯努利分布(Bernoulli Distribution):概率密度函数为P(x)=p^x*(1-p)^(1-x),意义是在两种可能结果中,成功或失败的概率分布,应用有二分类问题的建模。

3. 二项分布(Binomial Distribution):概率密度函数为P(x)=C(n,x)*p^x*(1-p)^(n-x),意义是在n次独立重复试验中,成功次数为x的概率分布,应用有二分类问题中的n次重复试验。

4. 几何分布(Geometric Distribution):概率密度函数为P(x)=p*(1-p)^(x-1),意义是独立重复试验中,第x次成功所需的试验次数的概率分布,应用有描述一连串同样试验中第一次获得成功之前所需的试验次数。

5. 泊松分布(Poisson Distribution):概率密度函数为P(x)=(e^(-λ)*λ^x)/x!,意义是在给定时间或空间内事件发生的次数的概率分布,应用有描述单位时间或单位空间内的事件计数问题。

6. 正态分布(Normal Distribution):概率密度函数为P(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),意义是描述连续变量的概率分布,应用广泛,例如测量误差、人口身高等。

今天在网上找到了一些概率密度函数的总结.docx

今天在网上找到了一些概率密度函数的总结.docx

今天在网上找到了一些概率密度函数的总结今天在网上找到了一些概率密度函数的总结,怕以后找不到就先转到这里,呵呵统计工具箱函数Ⅰ-1 概率密度函数函数名对应分布的概率密度函数betapdf 贝塔分布的概率密度函数binopdf 二项分布的概率密度函数chi2pdf 卡方分布的概率密度函数exppdf 指数分布的概率密度函数fpdf f分布的概率密度函数gampdf 伽玛分布的概率密度函数geopdf 几何分布的概率密度函数hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数raylpdf 雷利分布的概率密度函数tpdf 学生氏t分布的概率密度函数unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数Ⅰ-2 累加分布函数函数名对应分布的累加函数betacdf 贝塔分布的累加函数binocdf 二项分布的累加函数chi2cdf 卡方分布的累加函数expcdf 指数分布的累加函数fcdf f分布的累加函数gamcdf 伽玛分布的累加函数geocdf 几何分布的累加函数hygecdf 超几何分布的累加函数logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数ncfcdf 非中心f分布的累加函数nctcdf 非中心t分布的累加函数ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数raylcdf 雷利分布的累加函数tcdf 学生氏t分布的累加函数unidcdf 离散均匀分布的累加函数unifcdf 连续均匀分布的累加函数weibcdf 威布尔分布的累加函数Ⅰ-3 累加分布函数的逆函数函数名对应分布的累加分布函数逆函数betainv 贝塔分布的累加分布函数逆函数binoinv 二项分布的累加分布函数逆函数chi2inv 卡方分布的累加分布函数逆函数expinv 指数分布的累加分布函数逆函数finv f分布的累加分布函数逆函数gaminv 伽玛分布的累加分布函数逆函数geoinv 几何分布的累加分布函数逆函数hygeinv 超几何分布的累加分布函数逆函数logninv 对数正态分布的累加分布函数逆函数nbininv 负二项分布的累加分布函数逆函数ncfinv 非中心f分布的累加分布函数逆函数nctinv 非中心t分布的累加分布函数逆函数ncx2inv 非中心卡方分布的累加分布函数逆函数icdfnorminv 正态(高斯)分布的累加分布函数逆函数poissinv 泊松分布的累加分布函数逆函数raylinv 雷利分布的累加分布函数逆函数tinv 学生氏t分布的累加分布函数逆函数unidinv 离散均匀分布的累加分布函数逆函数unifinv 连续均匀分布的累加分布函数逆函数weibinv 威布尔分布的累加分布函数逆函数Ⅰ-4 随机数生成器函数函数对应分布的随机数生成器betarnd 贝塔分布的随机数生成器binornd 二项分布的随机数生成器chi2rnd 卡方分布的随机数生成器exprnd 指数分布的随机数生成器frnd f分布的随机数生成器gamrnd 伽玛分布的随机数生成器geornd 几何分布的随机数生成器hygernd 超几何分布的随机数生成器lognrnd 对数正态分布的随机数生成器nbinrnd 负二项分布的随机数生成器ncfrnd 非中心f分布的随机数生成器nctrnd 非中心t分布的随机数生成器ncx2rnd 非中心卡方分布的随机数生成器normrnd 正态(高斯)分布的随机数生成器poissrnd 泊松分布的随机数生成器raylrnd 瑞利分布的随机数生成器trnd 学生氏t分布的随机数生成器unidrnd 离散均匀分布的随机数生成器unifrnd 连续均匀分布的随机数生成器weibrnd 威布尔分布的随机数生成器Ⅰ-5 分布函数的统计量函数函数名对应分布的统计量betastat 贝塔分布函数的统计量binostat 二项分布函数的统计量chi2stat 卡方分布函数的统计量expstat 指数分布函数的统计量fstat f分布函数的统计量gamstat 伽玛分布函数的统计量geostat 几何分布函数的统计量hygestat 超几何分布函数的统计量lognstat 对数正态分布函数的统计量nbinstat 负二项分布函数的统计量ncfstat 非中心f分布函数的统计量nctstat 非中心t分布函数的统计量ncx2stat 非中心卡方分布函数的统计量normstat 正态(高斯)分布函数的统计量poisstat 泊松分布函数的统计量raylstat 瑞利分布函数的统计量tstat 学生氏t分布函数的统计量unidstat 离散均匀分布函数的统计量unifstat 连续均匀分布函数的统计量weibstat 威布尔分布函数的统计量Ⅰ-6 参数估计函数函数名对应分布的参数估计betafit 贝塔分布的参数估计betalike 贝塔对数似然函数的参数估计binofit 二项分布的参数估计expfit 指数分布的参数估计gamfit 伽玛分布的参数估计gamlike 伽玛似然函数的参数估计mle 极大似然估计的参数估计normlike 正态对数似然函数的参数估计normfit 正态分布的参数估计poissfit 泊松分布的参数估计unifit 均匀分布的参数估计weibfit 威布尔分布的参数估计weiblike 威布尔对数似然函数的参数估计Ⅰ-7 统计量描述函数函数描述bootstrap 任何函数的自助统计量corrcoef 相关系数cov 协方差crosstab 列联表geomean 几何均值grpstats 分组统计量harmmean 调和均值iqr 内四分极值kurtosis 峰度mad 中值绝对差mean 均值median 中值moment 样本模量nanmax 包含缺失值的样本的最大值Nanmean 包含缺失值的样本的均值nanmedian 包含缺失值的样本的中值nanmin 包含缺失值的样本的最小值nanstd 包含缺失值的样本的标准差nansum 包含缺失值的样本的和prctile 百分位数range 极值skewness 偏度std 标准差tabulate 频数表trimmean 截尾均值var 方差Ⅰ-8 统计图形函数函数描述boxplot 箱形图cdfplot 指数累加分布函数图errorbar 误差条图fsurfht 函数的交互等值线图gline 画线gname 交互标注图中的点gplotmatrix 散点图矩阵gscatter 由第三个变量分组的两个变量的散点图lsline 在散点图中添加最小二乘拟合线normplot 正态概率图pareto 帕累托图qqplot Q-Q图rcoplot 残差个案次序图refcurve 参考多项式曲线refline 参考线surfht 数据网格的交互等值线图weibplot 威布尔图Ⅰ-9 统计过程控制函数函数描述capable 性能指标capaplot 性能图ewmaplot 指数加权移动平均图histfit 添加正态曲线的直方图normspec 在指定的区间上绘正态密度schart S图xbarplot x条图Ⅰ-10 聚类分析函数函数描述cluster 根据linkage函数的输出创建聚类clusterdata 根据给定数据创建聚类cophenet Cophenet相关系数dendrogram 创建冰柱图inconsistent 聚类树的不连续linkage 系统聚类信息pdist 观测量之间的配对距离squareform 距离平方矩阵zscore Z分数Ⅰ-11 线性模型函数函数描述anova1 单因子方差分析anova2 双因子方差分析anovan 多因子方差分析aoctool 协方差分析交互工具dummyvar 拟变量编码friedman Friedman检验glmfit 一般线性模型拟合kruskalwallis Kruskalwallis 检验leverage 中心化杠杆值lscov 已知协方差矩阵的最小二乘估计manova1 单因素多元方差分析manovacluster 多元聚类并用冰柱图表示multcompare 多元比较多项式评价及误差区间估计polyfit 最小二乘多项式拟合polyval 多项式函数的预测值polyconf 残差个案次序图regress 多元线性回归regstats 回归统计量诊断Ridge 岭回归rstool 多维响应面可视化robustfit 稳健回归模型拟合stepwise 逐步回归x2fx 用于设计矩阵的因子设置矩阵Ⅰ-12 非线性回归函数函数描述nlinfit 非线性最小二乘数据拟合(牛顿法)nlintool 非线性模型拟合的交互式图形工具nlparci 参数的置信区间nlpredci 预测值的置信区间nnls 非负最小二乘Ⅰ-13 试验设计函数函数描述cordexch D-优化设计(列交换算法)daugment 递增D-优化设计dcovary 固定协方差的D-优化设计ff2n 二水平完全析因设计fracfact 二水平部分析因设计fullfact 混合水平的完全析因设计hadamard Hadamard矩阵(正交数组)rowexch D-优化设计(行交换算法)表Ⅰ-14 主成分分析函数函数描述barttest Barttest检验pcacov 源于协方差矩阵的主成分pcares 源于主成分的方差princomp 根据原始数据进行主成分分析表Ⅰ-15 多元统计函数函数描述classify 聚类分析mahal 马氏距离manova1 单因素多元方差分析manovacluster 多元聚类分析表-16 假设检述ranksum 秩和检验signrank 符号秩检验signtest 符号检验ttest 单样本t检验ttest2 双样本t检验ztest z检验表-17 分布检验函数函数描述jbtest 正态性的Jarque-Bera 检验kstest 单样本Kolmogorov-Smirnov检验kstest2 双样本Kolmogorov-Smirnov检验lillietest 正态性的Lilliefors检验表-18 非参数函数函数描述friedman Friedman检验kruskalwallis Kruskalwallis 检验ranksum 秩和检验signrank 符号秩检验signtest 符号检验表-19 文件输入输出函数函数描述caseread 读取个案名casewrite 写个案名到文件tblread 以表格形式读数据tblwrite 以表格形式写数据到文件tdfread 从表格间隔形式的文件中读取文本或数值数据Ⅰ-20 演示函数函数描述aoctool 协方差分析的交互式图形工具disttool 探察概率分布函数的GUI工具glmdemo 一般线性模型演示randtool 随机数生成工具polytool 多项式拟合工具rsmdemo 响应拟合工具robustdemo 稳健回归拟合工具。

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。

_卡方_概率密度的十种推导

_卡方_概率密度的十种推导

Β ∃Χ 二 ∃ 一 , Χ 7 ,
ΧΚ 含
∃Ε
比 较 ∃! , ∃Ε 两式 , ∃Ε 式 是 ∃! Θ 式 当 入: ∗ 7 , Φ : Θ 7 的特 例 , 从 而 ∃ 式 正 确 。
注 ∀ 这 里 的矩母 函数 实质 上是 / 0 1 的 ∴ Φ η ;Φ Ρ 。 变换 , 一 般教 材 极 少 用 此 法 Λ 详 见
令 。7 :
为 ∋ Φ Ω ;8 # Τ Ξ 分 布 当
时的特 例

宾 绝 % ∃.

(究
为 Ψ Φ . Ζ 8 ;;分 布 当 Φ , : # Θ % 时 的特 例 。
、 , 8 一 一%7 +
+5 6
本 法 的详 细推 导 见 王 梓坤 〔7 [ , 第 Δ Ε 页 , 或 ? 3 8 江 8 Α ς 3 〔% 〕, 第 !
,
ϕ ς
一;8 一
,


,δς δ ς 卜 ,ϕ 一
,ϕ 一 +,
Ο.,
一一 8
.5 6
∃7

,δ , δ 3 ϕ 一 ; ,ϕ 一
δς ϕ Η ς ,ϕ 一
℃ :
ς ϕ十&
故由 ∃ 7 式知对Β : ϕ ) , ∃ 式还 成立 。
总 之, 对一 切∗ , ∃ 式 恒 成立 。
?“
Μ ? ” 一 ’ ?
本文 Δ Ε 年Ε 月7 6 日收到
两 边 对. 求导 数 , 即 得 ∃ Λ 显 然 , 当 . 《 3 时, 1 ∃. 二 3 , 于 是9 。 ∃. : 3 ∃为 省写 , 这 种 平
凡 情 形不 一 一 指 出 ∃ Λ 式 全部 得 到 。 注 7 由于 ∗ 5 % 时 , 本法 涉及 ∗ 重积 分及 ∗ 维球 坐标 变换 ∃包 括 ΟΦΡ 3Σ # 行 列 式 ,

概率密度函数

概率密度函数

概率密度函数概率密度函数(Probability Density Function,简称PDF)是统计学中描述随机变量的概率分布的函数。

PDF可以用来描述连续型随机变量各个取值的概率分布情况。

1. 概念和定义概率密度函数是用来描述随机变量的取值在某个范围内的概率分布情况。

对于连续型随机变量X,其概率密度函数f(x)满足以下条件:1.对于任意的x,f(x) ≥ 0,即概率密度函数的值为非负数。

2.在整个取值范围内,概率密度函数的面积等于1,即∫f(x)dx = 1。

3.对于任意的a ≤ b,随机变量X落在区间[a, b]上的概率可以表示为P(a ≤ X ≤ b) = ∫[a, b]f(x)dx。

2. 特性和性质概率密度函数具有一些重要的特性和性质,我们在这里列举一些常见的:•概率密度函数是非负的。

对于任意的x,概率密度函数f(x) ≥ 0。

•概率密度函数的面积等于1。

即∫f(x)dx = 1。

•概率密度函数可以用来计算随机变量落在某个区间内的概率。

例如,P(a ≤ X ≤ b) = ∫[a, b]f(x)dx。

•概率密度函数的积分可以计算累积分布函数。

累积分布函数(Cumulative Distribution Function,简称CDF)是描述随机变量X落在一个给定值以下的概率。

•概率密度函数可以用来计算随机变量的期望值和方差。

•概率密度函数可以用来比较不同随机变量的概率分布情况。

3. 常见的概率密度函数在统计学和概率论中,有一些常见的概率密度函数被广泛应用于实际问题的建模和分析中。

以下是一些常见的概率密度函数:1.均匀分布:均匀分布是最简单的概率密度函数,表示在一个给定的区间内,各个取值都是等概率的。

例如,在区间[a, b]上的均匀分布的概率密度函数为f(x) = 1 / (b-a)。

2.正态分布:正态分布(也被称为高斯分布)是最常见的概率密度函数之一,在自然界中经常出现。

正态分布的概率密度函数是一个钟形曲线,具有均值μ和方差σ^2。

常见分布的概率密度函数

常见分布的概率密度函数

常见分布的概率密度函数概率密度函数是描述随机变量概率分布的数学函数,表示了随机变量取某个值的概率密度。

常见的概率密度函数包括正态分布、均匀分布、指数分布、伽马分布等。

正态分布是最为常见的分布,其概率密度函数为:$$f(x) =frac{1}{sqrt{2pi}sigma}e^{-frac{(x-mu)^2}{2sigma^2}}$$ 其中,$mu$ 和 $sigma$ 分别表示均值和标准差。

正态分布的图像呈钟形曲线,具有以下特点:对称性、均值、中位数和众数相等、标准差越小峰越尖等。

均匀分布是另一种常见的分布,其概率密度函数为:$$f(x) = begin{cases} frac{1}{b-a}, & aleq xleq b 0, & text{otherwise} end{cases}$$其中,$a$ 和 $b$ 分别表示区间的起始值和终止值。

均匀分布的图像呈矩形,特点是各点概率密度相等。

指数分布是描述等待时间的分布,其概率密度函数为:$$f(x) = begin{cases} lambda e^{-lambda x}, & xgeq 0 0, & text{otherwise} end{cases}$$其中,$lambda$ 表示事件发生的速率。

指数分布的图像呈指数下降曲线,特点是随着时间的增加,事件发生的概率逐渐减小。

伽马分布是描述正随机变量的分布,其概率密度函数为:$$f(x) = begin{cases}frac{1}{Gamma(k)theta^k}x^{k-1}e^{-frac{x}{theta}}, & xgeq 0 0, & text{otherwise} end{cases}$$其中,$k$ 和 $theta$ 分别表示形状参数和尺度参数。

伽马分布的图像呈现出右偏斜的形态,具有长尾性质。

常见分布的概率密度函数

常见分布的概率密度函数

常见分布的概率密度函数在概率统计学中,常见分布的概率密度函数是非常重要的一部分。

它们被广泛地应用于各种领域,如工程、医学和金融学等。

在本文中,我们将讨论几个常见的概率密度函数以及它们的特点。

一、正态分布正态分布是一种非常重要的分布,因为它在自然界和社会科学中出现的频率非常高。

正态分布的概率密度函数可以用以下公式表示:$f(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$其中,$\mu$是正态分布的平均值,$\sigma$是标准差。

正态分布具有对称性,即左右两侧的概率密度相等。

此外,它的均值、中位数和众数均相等。

二、指数分布指数分布是描述等待时间的分布,它的概率密度函数可以用以下公式表示:$f(x)=\lambda e^{-\lambda x}$其中,$\lambda$是指数分布的参数,表示等待时间的平均值。

指数分布具有无记忆性,即它的概率密度不受过去等待时间的影响。

三、t分布t分布是应用到小样本情况下的一种分布,它较正态分布更为宽平,有更多的尾部。

t分布的概率密度函数可以用以下公式表示:$f(x)=\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})}(1+\frac{x^2}{\nu})^{-\frac{\nu+1}{2}}$其中,$\nu$是t分布的自由度,它决定了t分布的形状。

当自由度越大时,t分布趋向于正态分布。

四、卡方分布卡方分布是应用到两个或多个正态分布之和的分布,它也是一种重要的分布。

卡方分布的概率密度函数可以用以下公式表示:$f(x)=\frac{1}{\Gamma(\frac{\nu}{2})2^{\frac{\nu}{2}}}\c dot x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}}$其中,$\nu$是卡方分布的自由度,它决定了卡方分布的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一十种概率密度函数function zhifangtu(x,m)%画数据的直方图,x表示要画的随机数,m表示所要画的条数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%a=min(x);b=max(x);l=length(x);h=(b-a)/m;%量化xx=x/h;x=ceil(x);w=zeros(1,m);for i=1:lfor j=1:mif (x(i)==j)%x(i)落在j的区间上,则w(j)加1w(j)=w(j)+1;elsecontinueendendendw=w/(h*l);z=a:h:(b-h);bar(z,w);title('直方图')function y=junyun(n)%0-1的均匀分布,n代表数据量,一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%y=ones(1,n);x=ones(1,n);m=100000;x0=mod(ceil(m*rand(1,1)),m);x0=floor(x0/2);x0=2*x0+1;u=11;x(1)=x0;for i=1:n-1x(i+1)=u*x(i)+0;x(i+1)=mod(x(i+1),m);x(i)=x(i)/m;end%x(n)单位化x(n)=x(n)/m;y=x;function y=zhishu(m,n)%指数分布,m表示指数分布的参数,m不能为0.n表示数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x=junyun(n);for i=1;nif (x(i)==0)x(i)=0.0001;elsecontinue;endendu=log(x);y=-(1/m)*u;function y=ruili(m,n)%瑞利分布,m是瑞利分布的参数,n代表数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x=junyun(n);for i=1:nif (x(i)==0)x(i)=0.0001;elsecontinue;endendu=(-2)*log(x);y=m*sqrt(u);function y=weibuer(a,b,n)%韦布尔分布,a,b表示参数,b不能为0.n表示数据量,一般要大于1024%a=1时,是指数分布%a=2时,是瑞利分布%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x=junyun(n);for i=1:nif (x(i)==0)x(i)=0.0001;elsecontinue;endendu=-log(x);y=b*u.^(1/a);function y=swerling(n)%swelingII分布%%%%%%%%%%%%%%%%%%%%%%r=ones(1,n);u=junyun(n);v=junyun(n);for i=1:nif (u(i)==0)u(i)=0.0001;elsecontinueendendfor i=1:nif (u(i)==v(i))u(i)=u(i)+0.0001else continueendendt=-2*log(u);h=2*pi*v;x=sqrt(t).*cos(h);z=sqrt(t).*sin(h);y=(r/2).*(x.^2+z.^2);function y=bernoulli(p,n)%产生数据量为n的贝努利分布,其中p属于(0-1)之间。

%-----------------------%u=junyun(n);y=zeros(1,n);for i=1:nif(u(i)<=p)y(i)=1;elsey(i)=0;endendfunction y=duishuzhengtai(a,b,n)%产生对数正态分布,a,b为随机分布的参数,n为数据量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=gaussian(n);u=sqrt(b)*x+a;y=exp(u);function y=kaifeng(m,n)%产生开丰分布,其中m代表开丰分布的自由度,n表示产生的点数量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y=zeros(1,n);if(floor(m/2)==m/2)for i=1:m/2[x1,x2]=gaussian(n);for j=1:ny(j)=x1(j)^2+x2(j)^2+y(j);endendelsefor i=1:floor(m/2)[x1,x2]=gaussian(n);for j=1:ny(j)=x1(j)^2+x2(j)^2+y(j);endendx=gaussian(n);for j=1:ny(j)=y(j)+x(j)^2;endendfunction y=dajiama(a,b,n)%产生伽马随机分布的数据,a、b为随机分布的参数,数据量为n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%k=1;if(a<1)while(k<=n)x1=junyun(1);x2=junyun(1);y2=(exp(1)+a)/exp(1)*x2;if(y2>1)p=-log(((exp(1)+a)/exp(1)-y2)/a);if(x1<p^(a-1))y(k)=p;k=k+1;elsecontinue;endelsep=y2^(1/a);if(x1<exp(-p))y(k)=p;k=k+1;elsecontinue;endendendelseif(a>=1)while(k<=n)x1=junyun(1);x2=junyun(1);v=(2*a-1)^(-0.5)*log(x1/(1-x2));x=a*exp(v);z=x1^2*x2;w=a-log(4)+(a+sqrt(2*a-1))*v-x;if(w>=log(z))y(k)=x;k=k+1;elsecontinue;endendendy=b*y;function y=beitafenbu(a1,a2,n)%产生贝他分布的随机数,其中a1、a2是贝他分布的参数,n代表数据量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x1=dajiama(a1,1,n);x2=dajiama(a2,1,n);y=x1./(x1+x2);function [y1,y2]=gaussian(n)%产生数据量为n的两个相互独立高斯分布y1、y2 %---------------------------------------%k=1;y1=zeros(1,n);y2=zeros(1,n);while(k<=n)u1=junyun(1);u2=junyun(1);v1=2*u1-1;v2=2*u2-1;s=v1^2+v2^2;if(s>=1)continue;elseif(s==0)k=k+1;elsey1(k)=v1*sqrt(-2*log(s)/s);y2(k)=v2*sqrt(-2*log(s)/s);k=k+1;endendfunction y=canshu(x);y=ones(1,2);n=length(x);y(1)=sum(x)/n;z=x-y(1);z=z.^2;y(2)=sum(z)/(n-1);function y=correlation(x)%计算x的自相关函数%%%%%%%%%%%%%%%%%%%%%%%%%n=length(x);for i=1:nx1(i)=x(n+1-i);endy=conv(x,x1);二.三种相关杂波function y=gaussianpu(x)%由数据量为n的高斯白噪声产生向量为n,功率谱为高斯型的高斯随机向量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%N=0:20;f=20;T=1/256;c=2*f*T*sqrt(pi)*exp(-4*f^2*pi^2*T^2*N.^2);n=length(x);y=zeros(1,n);for k=1:nfor i=20:-1:0if ((k-i)<=0)continue;elsey(k)=y(k)+c(21-i)*x(k-i);endendfor i=20:40if ((k-i)<=0)continue;elsey(k)=y(k)+c(i-19)*x(k-i);endendendy=0.5*y;function y=weibuerpu(a,b,n)%由数据量为n的高斯白噪声产生向量为n,功率谱为高斯型的韦布尔分布的随机向量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%[z1,z2]=gaussian(n);z1=5*z1;z2=5*z2;y1=sqrt(b^a/2)*z1;y2=sqrt(b^a/2)*z2;x1=gaussianpu(y1);x2=gaussianpu(y2);x1=sqrt(b^a/2)*x1;x2=sqrt(b^a/2)*x2;y=x1.^2+x2.^2;b=canshu(y);y=y-b(1);function y=duishuzhengtaipu(a,b,n)%由数据量为n的高斯白噪声产生向量为n,功率谱为高斯型的对数正态随机向量%a表示标准方差,b表示均值%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%z1=gaussian(n);x=gaussianpu(z1);y=a*x;y=exp(y);y=b*y;b=canshu(y);y=y-b(1); %去掉直流分量function y=swerling2pu(n)%由数据量为n的高斯白噪声产生向量为n,功率谱为高斯型的斯维凌II型随机向量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%r=6;[z1,z2]=gaussian(n);x1=gaussianpu(z1);x2=gaussianpu(z2);y=x1.^2+x2.^2;y=r*y;b=canshu(y);y=y-b(1); %去掉直流分量function y=kexipu(m,n)%由数据量为n的高斯白噪声产生向量为n,功率谱为柯西谱的高斯随机向量wc=2*pi*256;T0=1/(256*m);x=gaussian(n);y=zeros(1,n);y(1)=wc*T0*x(1);for i=2:ny(i)=wc*T0*x(i)+exp(-wc*T0)*y(i-1);endb=canshu(y);%y=y-b(1); %去掉直流分量y=conv(y,y);y=fft(y);y=abs(y);i=1:2*n-1;plot(i,y)function plotpu(x)%绘出随机数的功率谱密度函数频域的图形。

相关文档
最新文档