透明耐磨薄膜材料的研究进展

合集下载

透明导电薄膜的制备方法及性能研究

透明导电薄膜的制备方法及性能研究

透明导电薄膜的制备方法及性能研究引言透明导电薄膜作为一种具有重要应用前景的材料,在电子器件、光伏领域等方面具有广泛的应用。

因此,对透明导电薄膜的制备方法及性能进行研究具有重要意义。

本文将围绕透明导电薄膜的制备方法和性能进行详细探讨,旨在提供相关研究的最新进展和未来发展方向。

一、透明导电薄膜的制备方法1. 喷雾法喷雾法是制备透明导电薄膜的一种常用方法。

通过将导电材料以溶胶或乳液形式喷雾于基底表面,随后利用高温烧结、烘干或光照处理等方法制备薄膜。

这种方法具有操作简单、成本较低的优势,能够制备大面积的透明导电薄膜。

2. 溅射法溅射法是一种物理气相沉积技术,可通过在真空环境下将固态导电材料溅射于基底上制备薄膜。

该方法具有高控制性和高纯度的优点,能够制备出优异的透明导电薄膜。

然而,溅射法制备薄膜过程中的高温或离子轰击可能对基底材料造成损伤,需要进一步改进。

3. 热原子层沉积法热原子层沉积法是采用化学反应来制备透明导电薄膜的一种方法。

该方法利用原子层沉积技术,通过将导电材料的前体物质分子在基底上进行表面反应沉积,形成均匀的薄膜。

这种方法具有较高的晶格质量和较好的导电性能,并且对基底的伤害较小。

二、透明导电薄膜的性能研究1. 透明性能透明导电薄膜的透明性能是其重要的性能指标之一。

透明性能主要取决于薄膜的可见光透过率和红外透过率。

高透过率可以提高光伏器件的光电转换效率,因此,提高透明性能是制备高效透明导电薄膜的关键。

2. 导电性能透明导电薄膜的导电性能与其电阻率直接相关。

低电阻率意味着更好的导电性能。

导电性能的好坏取决于导电薄膜的化学成分、晶体结构以及杂质含量等因素。

提高导电性能可以使透明导电薄膜在电子器件等领域具有更广泛的应用。

3. 机械性能透明导电薄膜的机械性能直接影响其在实际应用中的稳定性和可靠性。

优异的机械性能可以提供薄膜的耐磨、耐划伤和抗拉伸等特性。

因此,针对透明导电薄膜的机械性能进行研究,对于材料的实际应用具有重要意义。

透明导电薄膜材料的制备及其应用研究

透明导电薄膜材料的制备及其应用研究

透明导电薄膜材料的制备及其应用研究透明导电薄膜材料是具有优异的透明性和导电性的材料,主要用于触摸屏、智能手机、液晶显示屏、太阳能电池等领域。

在近年来,随着新一代智能物联网和智能制造的发展,透明导电薄膜材料的应用需求不断增加,迫切需要开展相关研究。

本文旨在介绍透明导电薄膜材料的制备及其应用研究最新进展。

一、透明导电薄膜材料的制备方法目前,透明导电薄膜材料的制备主要有四种方法,分别为物理方法、化学方法、生物法以及复合方法。

1. 物理方法物理方法是通过物理作用从材料中去除杂质、提高电子迁移速率等方式来制备透明导电薄膜材料,主要包括蒸发法、溅射法、离子束法等。

其中,蒸发法是以高温下将材料加热至蒸发状态,通过气相沉积的方式进行材料沉积;溅射法是利用惰性气体离子轰击靶材,使靶材表面产生材料离子,然后通过扩散源向基底材料进行沉积;离子束法则是利用离子束束流轰击材料表面,使表面发生置换反应,从而形成透明导电薄膜。

2. 化学方法化学方法是通过化学反应从溶液中控制自组装,形成透明导电薄膜材料,主要包括溶剂热法、水热法、溶胶-凝胶法等。

其中,溶剂热法利用溶剂在高温或高压下的变化,形成自组装现象,从而得到透明导电薄膜。

水热法则是通过溶剂中的水形成水合物,进行自组装,从而形成透明导电薄膜。

溶胶-凝胶法则是通过在溶胶体系中形成凝胶粒子,进行自组装,形成透明导电薄膜。

3. 生物法生物法是通过生物技术手段制备透明导电薄膜,主要包括生物小分子材料、生物体内外骨架、生物合成纳米材料等。

其中,生物小分子材料是自然生物体中能够随机配位,形成透明导电材料的小分子材料;生物体内外骨架是基于蛋白质、细胞等形成的骨架结构进行制备;生物合成纳米材料则是采用生物合成方法得到的纳米材料,具有生物特性与透明导电材料性质相结合的优点。

4. 复合方法复合方法是将两种或以上的材料通过物理或化学反应结合,形成透明导电薄膜材料,主要包括汽相沉积-电沉积、共沉淀-电沉积、化学气相沉积-氟离子注入等。

ITO透明导电薄膜的研究现状及应用

ITO透明导电薄膜的研究现状及应用

ITO透明導電薄膜的研究現狀及應用透明導電薄膜的研究現狀及應用2004-2-18透明導電薄膜的研究現狀及應用李世濤喬學亮陳建國(武漢華中科技大學模具技術國家重點實驗室)摘要:綜述了當前透明導電薄膜的最新研究和應用狀況,重點討論了ITO膜的光電性能和當前的研究焦點。

指出了目前需要進一步從材料選擇、工藝參數制定、多層膜光學設計等方面來提高透明導電膜的綜合性能,使其可見光平均透光率達到92%以上,從而滿足高尖端技術的需要。

關鍵字:透明導電,薄膜,平均透光率,ITO,電導率1前言透明導電薄膜的種類有很多,但氧化物膜占主導地位(例如ITO和AZO膜)。

氧化銦錫(IndiumTinOxide簡稱爲ITO)薄膜、氧化鋅鋁(Al-dopedZnO,簡稱AZO)膜都是重摻雜、高簡並n型半導體。

就電學和光學性能而言,它是具有實際應用價值的透明導電薄膜。

金屬氧化物透明導電薄膜(TCO:Tr[nsp[rent[ndConductiveOxide的縮寫)的研究比較早,B[kdeker於1907年第一個報道了CdO透明導電薄膜。

從此人們就對透明導電薄膜産生了濃厚的興趣,因爲從物理學角度看,透明導電薄膜把物質的透明性和導電性這一矛盾兩面統一起來了。

1950年前後出現了硬度高、化學穩定的SnO2基和綜合光電性能優良的In2O3基薄膜,並製備出最早有應用價值的透明導電膜NESA(商品名)-SnO2薄膜。

ZnO基薄膜在20世紀80年代開始研究得火熱。

TCO薄膜爲晶粒尺寸數百納米的多晶;晶粒取向單一,目前研究較多的是ITO、FTO(Sn2O:F)。

1985年,T[ke[OjioSizoMiy[t[首次用汽相聚合方法合成了導電的PPY-PVA複合膜,從而開創了導電高分子的光電領域,更重要的是他們使透明導電膜由傳統的無機材料向加工性能較好的有機材料方面發展。

透明導電膜以其接近金屬的導電率、可見光範圍內的高透射比、紅外高反射比以及其半導體特性,廣泛地應用於太陽能電池、顯示器、氣敏元件、抗靜電塗層以及半導體/絕緣體/半導體(SIS)異質結、現代戰機和巡航導彈的窗口等。

透明导电薄膜材料的制备及其性能研究

透明导电薄膜材料的制备及其性能研究

透明导电薄膜材料的制备及其性能研究近年来,随着电子工业的不断发展,透明导电薄膜材料在各种电子器件中扮演着越来越重要的角色。

透明导电薄膜材料具有良好的导电性和透明性,可以应用于太阳能电池板、液晶显示器、触摸屏、电热器、电器剪、电子纸、智能玻璃等多个领域。

本文将介绍透明导电薄膜材料的制备方法和性能研究进展。

一、透明导电薄膜材料的制备方法1. 溅射法溅射法是制备透明导电薄膜的主要方法之一。

该方法的原理是将两种或多种金属制成薄膜,使它们在热点上扰动或冲击,使金属离子得到激发,进而形成等离子体。

随着副反应的发生,等离子体离子可以被加速至高速,直到它们撞击底部的晶体衬底。

这样,金属薄膜就被沉积在衬底上,并形成透明导电薄膜。

溅射法制备的透明导电薄膜具有良好的光学性能和电学性能,但成本较高。

因此,目前工业上生产透明导电膜的主要方法还是化学气相沉积法和溶液法。

2. 化学气相沉积法化学气相沉积法(CVD)是利用气相反应制备薄膜的一种方法。

它基于气态前体在固体表面发生化学反应的原理制备薄膜。

通过CVD方法制备透明导电薄膜可以在常温下进行,并且可以制备大面积的薄膜。

但CVD方法也有一些局限性,如在反应过程中如果选择不适当的前体,可能会导致副产物的生成,影响薄膜的生长质量,同时CVD方法的成本也较高。

3. 溶液法溶液法是一种利用透明导电涂料来制备透明导电薄膜的方法。

透明导电涂料是由透明导电材料和粘结剂等成分组成的溶液。

通过涂覆透明导电涂料到基板上,然后在一定的条件下制备透明导电薄膜。

该方法制备透明导电薄膜的过程简单易行,成本较低,是目前应用最广泛的制备透明导电薄膜的方法。

但是由于涂料的制备过程和涂覆的条件会对薄膜的质量产生影响,所以目前该方法的应用仍存在一定的局限性。

二、透明导电薄膜的性能研究进展1. 电学性能透明导电薄膜材料的电学性能是制备透明导电薄膜时需要考虑的最重要因素之一。

常用的评价指标包括电阻率和透过率等。

为了提高透明导电薄膜的电阻率,研究者通常采用掺杂法和合金化等方法来改善电学性能。

ITO透明导电薄膜的制备方法及研究进展

ITO透明导电薄膜的制备方法及研究进展

ITO透明导电薄膜的制备方法及研究进展ITO(Indium Tin Oxide)透明导电薄膜是一种具有高透明性和导电性能的功能材料,广泛应用于平板显示器、太阳能电池、触摸屏等领域。

本文将从方法和研究进展两个方面介绍ITO透明导电薄膜的制备方法及其研究进展。

首先,ITO透明导电薄膜的制备方法主要包括物理蒸发法、溅射法、溶胶凝胶法、电化学法等。

物理蒸发法是将ITO材料以高温蒸发形成薄膜,常用的物理蒸发方式有电子束蒸发、溅射蒸发等。

优点是制备的薄膜具有较高的导电性能和传输率,但其成本较高,且设备复杂。

溅射法是最常用的ITO透明导电薄膜制备方法,利用高能量的离子轰击靶材,将靶材粒子气化并沉积在基底上形成薄膜。

溅射法制备的ITO薄膜具有良好的光电性能和机械稳定性,适用于大面积薄膜的制备。

溶胶凝胶法是将金属盐溶液加入胶体溶剂中,通过溶胶的胶凝和固化过程形成ITO薄膜。

溶胶凝胶法具有简单、可控性强等优点,适用于大面积薄膜的制备。

然而,溶胶凝胶法制备的ITO薄膜在导电性能和透明性方面相对较差。

电化学法是将ITO前驱体溶液通过电解沉积的方式制备薄膜。

电化学法制备的ITO薄膜具有均匀性好、成本低等优点,但其导电性能和机械性能仍需进一步提高。

目前,有许多研究注重改善ITO薄膜的导电性能和光学透明性。

一方面,研究人员通过掺杂、纳米颗粒掺杂、多层薄膜等手段提高ITO薄膜的导电性能。

例如,掺杂氮使得ITO薄膜的电导率提高了许多倍。

另外,通过掺杂稀土元素或金属纳米颗粒,可以进一步改善薄膜的导电性能。

另一方面,人们还在研究如何提高ITO薄膜的透明性。

一种方法是通过控制薄膜的厚度和晶粒的尺寸来改善光学透明性。

研究表明,薄膜的晶粒尺寸减小可以有效减少散射光,从而提高薄膜的透明性。

除此之外,还有一些研究关注ITO薄膜的机械性能和稳定性。

例如,研究人员通过控制薄膜表面的形貌和厚度来提高其抗刮擦性能和耐久性。

另外,利用纳米材料改善薄膜的耐氧化性也是一个研究热点。

透明导电薄膜最新进展

透明导电薄膜最新进展

透明导电薄膜最新进展透明导电薄膜最新进展透明导电薄膜是一种具有广泛应用前景的材料,它可以在保持透明度的同时,具备良好的导电性能。

近年来,透明导电薄膜领域取得了一系列令人瞩目的进展,为其在电子设备、光电器件、触摸屏、太阳能电池等领域的应用打开了新的可能性。

首先,新型透明导电薄膜材料的研究取得了重要突破。

过去常用的透明导电薄膜材料如氧化锡、氧化铟锡等具有一定的导电性能,但其透明度较低,限制了它们在高端领域的应用。

近年来,研究人员开发出了许多新型材料,如氧化铟锌、氧化铟锌锡等,这些材料在保持较高透明度的同时,具备优异的导电性能,为透明导电薄膜的应用提供了更多选择。

其次,透明导电薄膜的制备技术也得到了显著改进。

传统的制备方法如物理气相沉积、溅射法等存在成本高、生产效率低的问题,限制了透明导电薄膜的大规模应用。

近年来,研究人员开发出了一系列新的制备技术,如溶液法、喷雾法、激光印刷等,这些技术具有低成本、高效率的特点,能够大规模制备高质量的透明导电薄膜,进一步推动了其应用的发展。

此外,透明导电薄膜在电子设备领域的应用也有了长足的进展。

触摸屏、柔性显示器、有机发光二极管等设备对高透明度和良好导电性能的要求很高,透明导电薄膜的出现满足了这些需求。

同时,透明导电薄膜还被应用于太阳能电池领域,用于提高电池的光吸收效率和电子传输能力,进一步提高太阳能电池的转换效率。

综上所述,透明导电薄膜的最新进展为其在电子设备、光电器件、太阳能电池等领域的应用提供了更多可能性。

随着材料研究、制备技术的不断发展,透明导电薄膜有望在更多领域展现出其巨大的潜力。

相信未来会有更多创新的突破,推动透明导电薄膜的应用进一步发展。

薄膜材料的制备和应用研究进展

薄膜材料的制备和应用研究进展

薄膜材料的制备和应用研究进展薄膜材料是一种在日常生活中用途广泛的材料。

它的应用范围涉及光学、电子、生物医学,甚至涂层等很多领域。

制备和应用研究方面也有很多成果,本文将从几个方面介绍薄膜材料的制备方法以及应用研究进展。

一、制备方法1、物理气相沉积法物理气相沉积法是指利用热能或者电子束激励的方式使材料蒸发并沉积在基底上形成薄膜。

这种方法可以制备高质量、高结晶度的薄膜材料。

其中分子束蒸发技术和反蒸发方法属于物理气相沉积法的一种,依靠非常高的真空和完整的分子束,可以制备出高质量的薄膜材料,但是设备成本也非常高。

2、化学气相沉积法化学气相沉积法是指在较低的气压环境下,将材料前驱体分子通过热解、裂解或者还原等化学反应,制备出薄膜材料。

这种方法成本较低,操作简单,可以制备大面积、高质量的薄膜,因此尤其适合大规模生产。

3、物理涂敷法物理涂敷法是指利用物理过程,将材料沉积在基底上形成薄膜。

常见的物理涂敷法有磁控溅射、电子束蒸发、激光蒸发等。

这种方法可以制备出膜层均匀、结构紧密的薄膜,但是缺点是沉积速度较慢,不能用于大面积生产。

4、化学涂敷法化学涂敷法是指利用化学反应将材料前驱体分子沉积在基底上形成薄膜。

常见的化学涂敷法有溶胶凝胶法、自组装法等。

这种方法可以制备出薄膜材料的更多形式,如多孔薄膜、纳米结构薄膜等。

但是化学反应的复杂度和化学材料的不稳定性也增加了制备过程的难度。

二、应用研究进展1、光电材料在光电领域,薄膜材料的应用非常广泛。

其中,一些透明导电薄膜材料如氧化铟锡、氧化镓锌、氧化铟和氧化钙、锡等材料已成为制作 OLED 光电器件的重要材料。

此外,半导体材料如氧化物和硫化物薄膜也被广泛应用于光电器件中,如可见光光伏器件、光传感器等。

因此,随着该领域的发展,薄膜材料在光电设备中的应用前景不断向好。

2、生物医学薄膜材料在生物医学领域的应用也越来越广泛。

其中,一种叫做生物基薄膜的材料能够在各种生物医学应用中发挥重要作用。

透明耐磨薄膜材料的研究进展

透明耐磨薄膜材料的研究进展

透明耐磨薄膜材料的研究进展摘要:透明耐磨薄膜材料性能优良,应用广泛。

本文简述了透明耐磨薄膜的性能,种类和制备方法及研究重点和发展方向。

关键词:耐磨薄膜杂化材料有机-无机复合薄膜一、透明耐磨薄膜材料的性能介绍透明塑料具有很多优良的性能,如加工性能、耐候性、电绝缘性好,光学性能优异,且质轻性韧,广泛应用各个领域。

不足之处就是使用温度低、耐热性差、吸水率高、耐磨及耐有机溶剂性差。

人类为扩大透明塑料的应用范围,对透明塑料进行改性处理,使薄膜即就有以上优点,又能克服上述不足之处。

二、透明耐磨薄膜的种类和制备方法能作为透明耐磨薄膜改善透明塑料耐磨性的材料很多,根据组成和结构,透明耐磨薄膜分成三类:无机薄膜、有机薄膜和有机-无机复合薄膜。

第一类薄膜主要有无机氧化物和非氧化物两大类材料。

这两大类材料以晶态和非晶态形式存在,主要通过PVD和CVD技术沉积在塑料基板上。

目前虽然在塑料基板上有多种无机薄膜在应用,但还是存在一些不足之处:设备所能生产的材料的尺寸和形状有限制,沉积塑料板温度过高引起塑料变形或软化,无机薄膜和塑料板之间易剥落。

第二类是有机薄膜,与透明塑料结合性能良好,不会对塑料基板产生不良影响,但抗划伤、耐磨性能较差,其中聚甲醛(POM)、全芳族聚酯(PET,PBT)、(PA)、聚四氟乙烯(FTFE)耐磨性较好,同时具有低摩擦系数,自润滑等摩擦学性能,在涂料中应用较为常见。

第三类是有机-无机复合薄膜。

目前大多数抗划伤透明有机-无机薄膜材料都是基于聚合有机硅或别的无机多聚体等具有网状结构的物质作为骨架,同时掺入有机组成以提高与有机基板的附着力,它综合拥有上述两类薄膜的优点,同时又抗划伤、耐磨性强,是目前研究的重点。

三、当前研究的重点和发展方向随着技术的进步,研究的深入,复合材料的性能越来越强。

下面就成膜材料、耐磨增强材料和添加剂、溶剂、薄膜制备与固化工艺等方面进行介绍1.成膜材料为获得具有所需性能的薄膜材料,科研人员对薄膜中相互贯穿的有机-无机网状结构方面作了深入研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

透明耐磨薄膜材料的研究进展
摘要:透明耐磨薄膜材料性能优良,应用广泛。

本文简述了透明耐磨薄膜的性能,种类和制备方法及研究重点和发展方向。

关键词:耐磨薄膜杂化材料有机-无机复合薄膜
一、透明耐磨薄膜材料的性能介绍
透明塑料具有很多优良的性能,如加工性能、耐候性、电绝缘性好,光学性能优异,且质轻性韧,广泛应用各个领域。

不足之处就是使用温度低、耐热性差、吸水率高、耐磨及耐有机溶剂性差。

人类为扩大透明塑料的应用范围,对透明塑料进行改性处理,使薄膜即就有以上优点,又能克服上述不足之处。

二、透明耐磨薄膜的种类和制备方法
能作为透明耐磨薄膜改善透明塑料耐磨性的材料很多,根据组成和结构,透明耐磨薄膜分成三类:无机薄膜、有机薄膜和有机-无机复合薄膜。

第一类薄膜主要有无机氧化物和非氧化物两大类材料。

这两大类材料以晶态和非晶态形式存在,主要通过pvd和cvd技术沉积在塑料基板上。

目前虽然在塑料基板上有多种无机薄膜在应用,但还是存在一些不足之处:设备所能生产的材料的尺寸和形状有限制,沉积塑料板温度过高引起塑料变形或软化,无机薄膜和塑料板之间易剥落。

第二类是有机薄膜,与透明塑料结合性能良好,不会对塑料基板产生不良影响,但抗划伤、耐磨性能较差,其中聚甲醛(pom)、全
芳族聚酯(pet,pbt)、(pa)、聚四氟乙烯(ftfe)耐磨性较好,同时具有低摩擦系数,自润滑等摩擦学性能,在涂料中应用较为常见。

第三类是有机-无机复合薄膜。

目前大多数抗划伤透明有机-无机薄膜材料都是基于聚合有机硅或别的无机多聚体等具有网状结构
的物质作为骨架,同时掺入有机组成以提高与有机基板的附着力,它综合拥有上述两类薄膜的优点,同时又抗划伤、耐磨性强,是目前研究的重点。

三、当前研究的重点和发展方向
随着技术的进步,研究的深入,复合材料的性能越来越强。

下面就成膜材料、耐磨增强材料和添加剂、溶剂、薄膜制备与固化工艺等方面进行介绍
1.成膜材料
为获得具有所需性能的薄膜材料,科研人员对薄膜中相互贯穿的有机-无机网状结构方面作了深入研究。

目前能形成无机高分子的长链的元素很多,主要有全硅主链、磷和氮主链、硅氧及硅碳主链、全镓和全锡主链,硫磷氮和硫碳主链、含硼主链、以及含过渡金属主链的无机高分子。

硅树脂出现对耐磨薄膜材料的发展起了巨大的作用。

由于硅是地球上储量最丰富的元素,又因为聚硅烷既可用作结构材料又可用作功能材料。

其中主链全部是硅原子且具有有机侧链的聚硅烷仍是透明耐磨薄膜的一个研究重点,研究主要集中在通过改变侧链组成达到改性的目的,包括薄膜涂层的耐磨性能、结合
性能和固化性能。

侧链的选用跟薄膜材料的体系和基板有关,常用的侧链有r-氨丙基、乙烯基、r-甲基丙烯酰氧基等。

为进一步改善无机多聚体的脆性,常引入mma 、羟基丙烯酸酯、双酚a 等多种官能团可聚合单体,实现分子水平的杂化,提高薄膜材料的柔韧性及与基板的结合性能。

目前透明塑料用薄膜材料的研究取得了一些成果,主要研究工作集中在对有机硅水解形成的无机骨架的控制,有机-无机的杂化研究的深化,侧链各种功能性基团的引入等方面。

2.耐磨增强材料和添加剂
改进有机材料耐磨性最有效的办法是在机材料中引入无机微粒子,常用的有sio2, zro2,tio2 等。

其中sio2价格便宜,工业上应用较为广泛:二氧化硅的引入分为二类,一类是通过采用硅溶胶的方法引入,另一类是通过烷氧硅烷水解、缩聚形成二氧化硅微粒子的方法引入。

而zro2,tio2等在薄膜中的应用都是通过金属有机醇盐和无机盐的水解缩聚形成无机微粒子的方法引入。

由于薄膜的耐磨性与无机粒子的含量有关,因此无机增强体颗粒含量和尺寸匹配及无机增强体颗粒的引入方法仍是当前的研究重点。

随着生活水平和技术的提高,人们对薄膜提出了抗紫外线、自洁和抗静电等多功能化的要求,而多能化主要通过掺入各种功能添加剂实现,因此多功能添加剂的研究也是一个重点方向。

3. 溶剂
人们往往不重视溶剂在薄膜制备中的作用,认为它是挥发组份,
最后总是挥发掉而不留在薄膜中,对薄膜质量不会有很大影响。

其实,各种溶剂的溶解力及挥发率等因素对于薄膜制备、与基板结合力、表面状态、透明性等多方面件能都有极大影响。

溶剂一般为混合溶剂,由真溶剂、助溶剂和稀释剂三大部分组成。

溶剂的选用一般是根据相似相溶原则,溶剂的组成配方应根据涂料粘度、溶剂挥发率及挥发平衡原则来考虑。

随着多种不同性能的成膜材料和增强材料的变换,溶剂也要相应地加以变化以达到生产良好耐磨透明涂层的目的。

4.薄膜制备与固化工艺
薄膜制备中基板的表面处理是一个重要的过程,原因在于高分子聚合材料具有较低的表面能,表面呈现惰性和疏水性,为达到牢固结合的闷的,一些涂层需要对基板进行预处理。

常用的薄膜制备方法有三种:浸涂、旋涂和喷涂,三种方法各有其优缺点。

喷涂一般用于工业化大面积透明薄膜的制作过程中。

在透明塑料表面涂层上涂一层薄膜并不意味着耐磨涂层制备完毕,还有一个固化过程,由于采用溶胶-凝胶和化学共缩聚技术,涂层中含有大量的溶剂、水和羟基,另外基板由于是透明塑料,一般承受能力低于180~c,因此在干燥的过程中需采取特别的措施才能制备出致密的耐磨透明
薄膜。

研究发现,薄膜在氦气中固化能有效提高薄膜与基板的附着力及耐磨性,样品很容易地通过附着力和耐磨性测试,并发现薄膜厚度有20%的减少。

人们为降低薄膜涂层固化温度和缩短固化时间,在薄膜组成中添加二甲基胺乙酸盐、乙醇胺乙酸盐、苯甲酸四乙基
铵等催化剂,可使薄膜涂层在75~150°c短时间按内固化。

在制备有机-无机杂化材料过程中,光辐射固化和微波加热固化也是常用的办法。

四、结束语
透明耐磨薄膜改变了人们的生活,给人类带来很大的便利。

但是基础工艺数据、原料品种、生产成本等距大规模工业性应用还有相当距离,耐磨透明薄膜多功能化的发展还有很长的路要走。

参考文献
[1]王晶,高宏材料科学与工程 2010年.
[2]余锡宾,王华林高分子材料科学与工程 2009年.
[3]王公善高分子材料学同济大学出版社 2007年.。

相关文档
最新文档