(完整版)流体力学工作页第二章

合集下载

化工流体力学第二章习题解答精选全文

化工流体力学第二章习题解答精选全文

可编辑修改精选全文完整版习题2-2 一元流动用拉格朗日变数表示x =x (a,t ),p =p(a,t ),试证明:拉格朗日变数表示压力p 的当地变化率为:(,)(,)(,)(,)/p a t p a t x a t x a t t t a t ∂∂∂∂⎡⎤-⎢⎥∂∂∂∂⎣⎦证明:压力的导数为Dp p u p Dt t∂=+•∇∂ p 的当地变化率为p Dp u p t Dt ∂=-•∇∂ 式中:Dp Dt 用拉氏变数表示为(,)p a t t ∂∂ u 用拉氏变数表示为(,)x a t t∂∂ p ∇用拉氏变数表示为(,)p a t a a t ∂∂•∂∂ 所以有:(,)(,)(,)(,)/p p a t p a t x a t x a t t t t a t ∂∂∂∂∂⎡⎤=-⎢⎥∂∂∂∂∂⎣⎦习题2-3已知速度分布,t t x y u y u x e e -==++,求迹线方程。

解:x dx u y dt== 又t t y dy u x e e t -==++∂ 22t t d x dy x e e dt dt-∴==++ 积分可得:()()12121212t t t t t t t t x C e C e te te y C e C e te te ----=++-=+++如果t=0时,质点位置(,)a b ,则可得:12,22a b a bC C +-==2-4解:流线x ydxdyu u dx dy A Bt C∴==+可得:'Cy x C A Bt ∴=++上式为一直线轨线:()223'331(1)2(2)dxA Btdt x At Bt C dyCdt y Ct C y C y t C C C ∴=+=++==+-==+ 式2代入式(1)可得:()()2''3321(3)2y y x A C B C C C C =++++可见轨线为抛物线。

2-5解:Q AU =(1)等截面A=const , Q=const 所以:0x duuua u dt t x ∂∂==+=∂∂(2)变截面 A=A(x), ()x Qu A x ='22'3()()()()()x x u du u a u dt t xQ Q A x A x A x Q A x A x ∂∂==+∂∂⎛⎫=- ⎪⎝⎭=- 2-6解:22222211220.03750.0375d x d y d z a i j k dt dt dtt i t k=++=+ x=8时,t=12.9则加速度为0.1350.135a i k =+2-7解: 双曲正切函数()21tanh tanh 'cosh x xx x e e x x e e x ---==+2=tanh 1cosh UtlU t l θθθ∂=∂令 x x u u a u t x ∂∂=+∂∂其中:222222211cosh 2cosh 11cosh 2cosh u U x U U U t l l l U x U l l θθθθ∂=-∂=- tanh tanh tanh 22x x u U U u U x x l l θθθ∂⎡⎤==•-⎢⎥∂⎣⎦可得加速度计算:2222222211tanh tanh tanh cosh 2cosh 22111(1)22cosh tanh x x u u U x U U U a u U x t x l l l l U x Ut Ut l l l l θθθθθ∂∂⎡⎤=+==--•-⎢⎥∂∂⎣⎦⎡⎤⎢⎥⎢⎥=--⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)当x=L 时,其加速度为 222112cosh 2tanh U a Ut Ut l l l ⎡⎤⎢⎥⎢⎥=-⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当a=0时,222222222110cosh 2tanh cosh 2tanh cosh cosh 2tanh 2sinh sinh 2Ut Ut l l Ut Ut l l θθθθθ-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭===或 其中:22sinh 2e e θθθ-⎛⎫-= ⎪⎝⎭(222100=52Ut ln 5e e e l θθθ-+-=±=±解得:所对应时间:(ln 52l t U =± 2-9流体质点的速度与质点到OX 轴的距离成正比,并且与OX 轴平行。

(完整版)工程流体力学习题及答案

(完整版)工程流体力学习题及答案

(完整版)工程流体力学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。

(d )【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。

解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故d d t γτμ=。

(b )【1.3】流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。

解:流体的运动黏度υ的国际单位是/s m 2。

(a )【1.4】理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。

解:不考虑黏性的流体称为理想流体。

(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。

解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。

(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。

解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。

华中科技大学 流体力学第二章_1

华中科技大学 流体力学第二章_1
当 , A点相对压强为 p pa gh2 .
'
形管测压计 例 如图所示,h = 2 m时,求封闭容器中的真空压强。 解 设封闭容器内的绝对压强为 p, 真空压强为pv ,大气压为pa。
空气(略)
则: p =pa – g h
根据真空压强的定义: p = pa – p= pa – (pa – g h ) = g h =1000 × 9.8 ×2 = 19.6 kPa 水
dp = (f x dx+ f y dy + f z dz )
dp gdz
p gz C
p z C g
p1 p2 z1 z2 g g
静力学基本方程
p z C g
在高度 z = z0 水平液面上压强为 p0 , z A 基准面
p0
z0 h z o

绝对真空
标准大气压强为101325 Pa,工程中一般采用101 kPa。
真空压强(真空度) -- 以大气压强为基准的压强。
真空压强 = 大气压强 - 绝对压强 p 大气压强
绝对压强
绝对真空
例 绝对压强 117.7 kPa ,相对压强 117.7 101 = 16.7 kPa 例 绝对压强 68.5 kPa ,真空压强 101 68.5 = 32.5 kPa
0.223 p a
z 11000 m
(2) 同温层中的压强分布 在同稳层中温度是常数
T 216.5 K
p p RT 216.5R
z=z1: p=p1
dp gdz
p g ( z1 z ) exp p1 RT
dp gdz p 216.5 R

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

(完整版)流体力学

(完整版)流体力学

(完整版)流体力学第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。

分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。

质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。

第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。

流体力学__第二章习题解答

流体力学__第二章习题解答

第2章 流体静力学2.1 大气压计的读数为100。

66kPa (755mmHg),水面以下7.6m 深处的绝对压力为多少?知:a a KP P 66.100= 3/1000m kg =水ρ m h 6.7= 求:水下h 处绝对压力 P解:aa KP ghP P 1756.71000807.96.100=⨯⨯+=+=ρ 2.2 烟囱高H=20m ,烟气温度t s =300℃,压力为p s ,确定引起火炉中烟气自动流通的压力差。

烟气的密度可按下式计算:p=(1。

25-0.0027t s )kg/m 3,空气ρ=1。

29kg/m 3。

解:把t 300s C =︒代入3s (1.250.0027)/s t kg m ρ=-得3s (1.250.0027)/s t kg m ρ=-33(1.250.0027300)/0.44/kg m kg m=-⨯=压力差s =-p ρρ∆a ()gH ,把31.29/a kg m ρ=,30.44/s kg m ρ=,9.8/g N kg =,20H m =分别代入上式可得s =-20p Pa ρρ∆⨯⨯a ()gH=(1.29-0.44)9.8166.6Pa =2.3 已知大气压力为98.1kN/m 2。

求以水柱高度表示时:(1)绝对压力为117.2kN/m2时的相对压力;(2)绝对压力为68。

5kN/m 2时的真空值各为多少? 解:(1)相对压力:p a =p-p 大气=117.72-98.1=19.62KN/2m以水柱高度来表示:h= p a/ g ρ=19。

62* 310 /(9.807* 310)=2.0m (2)真空值:2v a p =p p=98.168.5=29.6/m KN --以水柱高度来表示:h= p a/ g ρ=29。

6* 310 /(9.807* 310)=3。

0m2。

4 如图所示的密封容器中盛有水和水银,若A 点的绝对压力为300kPa ,表面的空气压力为180kPa,则水高度为多少?压力表B 的读数是多少?解:水的密度1000 kg/m 3,水银密度13600 kg/m 3A 点的绝对压力为:)8.0(20g gh p p H g o h A ρρ++=300⨯310=180⨯310+1000⨯9。

流体力学第二章参考答案

第二章 流体静力学2-1 将盛有液体的U 形小玻璃管装在作水平加速运动的汽车上(如图示),已知L =30 cm ,h =5cm ,试求汽车的加速度a 。

解:将坐标原点放在U 形玻璃管底部的中心。

Z 轴垂直向上,x 轴与加速度的方向一致,则玻璃管装在作水平运动的汽车上时,单位质量液体的质量力和液体的加速度分量分别为0,0,,0,0x y z x y z g g g ga a a a ===-===代入压力全微分公式得d (d d )p a x g z ρ=-+因为自由液面是等压面,即d 0p =,所以自由液面的微分式为d d a x g z =- 积分的:a z x c g=-+,斜率为a g -,即a g h L = 解得21.63m/s 6g a g h L ===2-2 一封闭水箱如图示,金属测压计测得的压强值为p =4.9kPa(相对压强),测压计中心比A 点高z =0.5m ,而A 点在液面以下h =1.5m 。

求液面的绝对压强和相对压强。

解:由0p gh p gz ρρ+=+得相对压强为30() 4.91010009.81 4.9kPa p p g z h ρ=+-=⨯-⨯⨯=-绝对压强0( 4.998)kPa=93.1kPa abs a p p p =+=-+2-3 在装满水的锥台形容器盖上,加一力F =4kN 。

容器的尺寸如图示,D =2m ,d =l m ,h =2m 。

试求(1)A 、B 、A ’、B ’各点的相对压强;(2)容器底面上的总压力。

解:(1)02 5.06kPa 4F F p D A π===,由0p p gh ρ=+得:0 5.06kPa A B p p p ===''0 5.06kPa+10009.82Pa 24.7kPa A B p p p gh ρ==+=⨯⨯=(2) 容器底面上的总压力为2'24.7kPa 77.6kN 4A D P p A π==⨯= 2-4 一封闭容器水面的绝对压强p 0=85kPa ,中间玻璃管两端开口,当既无空气通过玻璃管进入容器、又无水进人玻璃管时,试求玻璃管应该伸入水面下的深度h 。

流体力学第二章(20151017)

浮体的稳定:具体分析,如浮体的重心在浮心上方,也可 能稳定
2.8 可压缩气体中的静压强分布规律
压缩气体温度
1、国际标准大气:海平面z=0处的大气参数为 温度������0 = 288������ 密度������0 = 1.225������������/������3 压强������ = 1.013 × 105������������ 2、不同高度的T 当z=0~11km的高度范围称为对流层 T = ������0 − ������(������ − ������0) ������0为海平 面高度。 当z=11~50km的高度范围称平流层。其中z=11~20km为同温层;在 20~50km,随高度增T增,50km时270K;z>50km,随高度下降
������)
������
=பைடு நூலகம்
������0ex������
������(������0 − ������������0
������)
谢谢!

������ ������
������������ ������������
=
������

������������

������ ������
������������ ������������
=
������
欧拉平衡微分方程表明 了处于平衡状态的流体 中压强的变化率与单位 质量力之间的关系,即 对于单位质量来讲,质 量力分量和表面力分量 是对应相等的
2、方向:垂直于平面并指向平面
3、作用点:压力中心点D
������������
=
������������
+
������������ ������������ ������

流体力学第二章ppt课件

o
P ghC A 225kN
yC
4 sin 60
11
6.6m
IC
b 12
h3
4 3
1.33m4
4m
C D
60° y
yD
yC
IC yC A
6.6
1.33 6.6 4
6.6
0.05
6.65m
yC
图解法(求解矩形平面)
1 水静压强分布图 用一定比例的线段表示压强的大小。 与作用面垂直的箭头表示压强的方向。
(H 13.6103 kg/m 3, 1103 kg/m 3 )
解题步骤
解:
已知断面1上作用着大气压, 因此可以从点1开始,通过等 , 压面,并应用流体静力学基 本方程式,逐点推算,最后 便可求得A点压强。
, 因2-2、3-3、4-4为等压面,根据静压强公式可得
p2 H g(1 2 )
p3 p2 g(3 2 )
根据力的作用方式不同
质量力:指某种力场作用在流体的每一个质点上,大小 与受作用的流体质量成正比的力。
lim X
FBX
V M m
单位质量力轴向分力
lim Y
FBY
V M m
lim Z
FBZ
V M m
单位:N/kg
表面力:是指作用于流体表面上,大小与作用表面积成 正比的力。
P
法向分力
p lim A A A
➢与两流层间的速度差du及流层的接触面积A成正比,和流层间距dy成反比。 ➢与流体种类有关。 ➢与流体的压力大小无关。
T A du dy
T A du 或 du
dy
dy
牛顿内摩擦定律
§1.3 流体的力学模型

土木工程-流体力学-完整版- 相似原理与量纲分析

2.1 相似原理原型/模型流动相似:几何、运动、动力相似相似准则:雷诺、弗雷德、欧拉准则2.2 模型实验模型律的选择及模型设计2.3 量纲分析基本量纲、导出量纲、无量纲量量纲分析法:Π 定理(Theorum )、瑞利法(Rayleigh )2.4 2.4 基本方程的无量纲化基本方程的无量纲化第 2 章 相似原理和量纲分析( Similarity and Dimensional Analysis)2.2 模型实验2.2.1 模型律的选择为使模型与原型流动相似,除几何相似外,还要动力相似,即同时满足各独立准则。

事实上,很难达到独立准则同时满足。

一般情况下,只能按照近似相似进行模型实验,即满足主要作用力相似即可。

通常,不可压缩液体流动的独立准则为雷诺准则和弗汝准则。

因此,主要作用力则是黏滞力或重力。

若主要作用力是黏滞力,模型按雷诺模型律设计,即模型与原型之间只满足雷诺准则。

例如有压管流。

若主要作用力是重力,模型按弗汝德模型律设计,即模型与原型之间只满足弗汝德准则。

例如明渠流。

【例2】求水泵输出功率的表达式。

【解】水泵输出功率指单位时间水泵输出的能量。

(1)找出与水泵输出功率N有关的物理量,包括单位体积水的重量γ=ρg、流量Q、扬程H,于是有f(N, γ , Q, H)= 0(2)指数积关系式N= Kγa Q b H c(3)量纲式dim N = dim(γa Q b H c)(4)用基本量纲表示各物理量量纲ML2T-3 = (ML-2T-2)a(L3T-1)b(L)c (5)根据量纲和谐原理求量纲指数M: 1 = aL: 2 = -2a+3b+cT:-3 = -2a-b解方程得,a = 1,b = 1,c = 1。

(6)整理方程得N = KγQHK 为由实验确定的常数。

问题:由于基本量纲只有3个,故只能建立3 个方程求解量纲指数。

因此,用瑞利法求力学方程,相关的物理量不能超过4个,否则将会出现待定系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 习 题
一、 选择题
1、 相对压强的起算基准是:( )
(A)绝对真空; (B )1个标准大气压; (C )当地大气压;(D )液面压强
2、 压力表的读值是:( )
(A )绝对压强;(B )相对压强;(C )绝对压强加当地大气压;(D )相对压强加当地大气压
3、某点的真空度为65000Pa ,当地大气压为0.1MPa,该点的绝对压强为:( )
(A )65000Pa ; (B )55000Pa ; (C )35000Pa ; (D )165000Pa
4、 压强
abs p 与相对压强p 、真空度V p 、当地大气压a p 之间的关系是:( ) (A )abs p =p +V p ;(B )p =abs p +a p ;(C )V p =a p -abs p ;(D )p =V p +V p 。

5、闭容器上装有U 形水银测压计,其中1、2、3点位于同一水平面上,其压强关系为:( )
(A)1p >2p >3p ;(B )1p =2p =3p ;(C )1p <2p <3p ;(D )2p <1p <3p 。

6、形水银压差计测量水管内A 、B 两点的压强差,水银面高差h p =10cm,A p -B p 为:( )
(A)13.33kPa ; (B )12.35kPa ; (C )9.8kPa ; (D )6.4kPa 。

7、水池,水深5 m 处的相对压强为:( )
(A )5kPa ; (B )49kPa ; (C )147kPa ; (D )205kPa 。

8、静水压强的特性,静止液体中同一点各方向的压强 ( )
(A) 数值相等; (B) 数值不等;(C) 仅水平方向数值相等;(D) 铅直方向数值最大 。

9、中某点的绝对压强为100kN/m2,则该点的相对压强为()
(A)1 kN/m2(B)2 kN/m2(C)5 kN/m2(D)10 kN/m2
10、某点的绝对压强为108kN/m2,则该点的相对压强为()
(A)1 kN/m2(B)2 kN/m2(C)8 kN/m2(D)10 kN/m2
11、器中有两种液体,密度ρ2 > ρ1,则 A、B 两测压管中的液面必为 ( )
(A) B 管高于A 管; (B) A 管高于B 管; (C) AB 两管同高。

11题图 12题图 13题图
12、器a 和b 的测压管水面位置如图 (a)、(b) 所示,其底部压强分别为p a和p b。

若两容器内水深相等,则p a和p b的关系为()( A) p a > p b (B) p a < p b (C) p a = p b (4) 无法确定13、如图所示,,下述静力学方程哪个正确?( )
二、填空题
1、三种液体盛有容器中,如图所示的四条水平面,其中为等压面的是 ;
2、1工程大气压等于千帕,等于水柱高,等于毫米汞柱高。

3、液体中某点的绝对压强为100kN/m 2,则该点的相对压强为
⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽kN/m 2,真空度为 。

4、液体静压强分布规律只适用于 。

二、 判断题 1、 流体的静压是指流体的点静压。

( )
2、 静止水体中,某点的真空压强为50kPa ,则该点相对压强为-50 kPa 。

( )
3、 水深相同的静止水面一定是等压面。

( )
4、 流体静止或相对静止状态的等压面一定是水平面。

( )
5、 静水压强的大小与受压面的方位无关。

( )
6、 一个工程大气压等于98kPa,相当于10m 水柱的压强。

( )
7、 静止液体的自由表面是一个水平面,也是等压面。

( )
8、 当相对压强为零时,称为绝对真空。

( )
9、 某点的绝对压强小于一个大气压强时即称该点产生真空。

( )
10、 绝对压强可正可负。

而相对压强和真空压强则恒为正值。

( )
三、 计算题
1、密闭容器,测压管液面高于容器内液面h =1.8m ,液体的密度为850kg/m 3
,求液面压强。

p 0h
图1 图2
2、图2为多管式压强计,已知:a m p p 41045.2⨯=,h=150mm,1200h mm =,2250h mm =,
3150h mm =,
水银的密度为313600/kg m ,酒精的密度为3843/kg m 。

求容器B 内的压强值。

五、简答题
1、什么是绝对压强?相对压强?表压强?真空度?写出公式,并用图表示。

(6分)
2、静压力特性有哪些?
3、解释水静力学基本方程式的物理意义与几何意义?
4、连通器平衡原理在工程实际中有哪些应用?。

相关文档
最新文档