垂线的概念与性质
平行线与垂直线

平行线与垂直线平行线和垂直线是几何学中的两种特殊线段关系。
它们在数学和日常生活中都有重要的应用。
本文将详细介绍平行线和垂直线的概念、性质以及它们在几何学中的应用。
一、平行线平行线是指位于同一个平面内且不相交的两条直线。
它们之间的距离始终保持相等,永远不会相交或交叉。
平行线的符号表示为“∥”。
1. 平行线的定义两条直线如果在同一个平面内且不相交,那么它们就是平行线。
2. 平行线的性质(1)平行线之间的距离始终相等,任意延长都不会相交。
(2)平行线的斜率相等,即具有相同的倾斜度。
(3)平行线的角度和内角相等,外角互补。
3. 平行线的应用平行线在现实生活中有各种应用。
例如,在建筑设计中,平行线用于确保建筑物的结构稳定;在地图绘制中,平行线用于标记纬度线,帮助导航和地理定位。
二、垂直线垂直线是指与另一条线段相交成直角的线段。
两条垂直线段之间的夹角为90度,称为“直角”。
垂直线的符号表示为“⊥”。
1. 垂直线的定义两条线段如果相交成直角,则它们是垂直线。
2. 垂直线的性质(1)垂直线之间的夹角为90度。
(2)垂直线的斜率互为相反数,即一个为正斜率,另一个为负斜率。
(3)垂直线上任意两点连线的斜率为-1。
3. 垂直线的应用垂直线在几何学和物理学中起着重要作用。
在建筑设计中,垂直线用于确保建筑物的垂直和水平度;在电路设计中,垂直线用于表示电子元件之间的正交关系。
总结:平行线和垂直线是几何学中重要的概念。
平行线位于同一个平面内且永不相交,而垂直线则与另一条线段相交成直角。
它们各自具有特定的性质和应用。
了解这些概念对于解决几何问题以及应用于实际生活中的设计和测量都是非常重要的。
通过对平行线和垂直线的学习,我们可以更好地理解空间关系,增强我们的几何思维能力,并运用它们解决实际问题。
因此,对于学生来说,掌握平行线和垂直线的概念和性质是数学学习中的基础知识,也是迈向高级数学和应用数学的第一步。
无论是在日常生活还是在其他学科中,平行线和垂直线都具有广泛的应用,我们应当加强对它们的理解和运用。
初一数学(人教版)-垂线的概念与性质-教案

教案的,也就是当∠α=90°时.同学们可以想一想,为什么我们说此时是一个特殊位置? 一方面,当∠α=90°时,其他三个角也都等于90°,也就是这时四个角是相等的;另一方面,这种情况会出现几次呢?我们可以看出,木条b 在0到180度的旋转过程中,这种情况只出现一次.而其他情况,比如四个角中有一个角是35°的情况,都会出现两次,如图所示.所以,我们把这种特殊情况称为a 与b 互相垂直,也就是当∠α =90°时,a 与b 互相垂直.记作a ⊥b .即垂直是相交的一种特殊情形.追问:(1)对于两条直线互相垂直,你认为应研究哪些内容?按怎样的路径展开研究?(2) 在两条直线相交的基础上,你认为应如何定义垂直?2.垂直的定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 如图1,直线a ,b 互相垂直,点O 叫做垂足.直线a 叫做直线b 的垂线,直线b 也叫做直线a 的垂线.如图2,直线AB 、CD 互相垂直, 垂足为O .就是AB ⊥CD 或CD ⊥AB ,垂足为O .读作:AB 垂直于CD ,垂足为O .如图2,直线AB 与CD 相交于点O .如果∠AOC =90°,那么AB ⊥CD . 这个推理过程可以写成下面的形式:图2图1O D CBAoba因为∠AOC =90°,所以AB ⊥CD (垂直的定义). 反过来,若AB ⊥CD ,垂足为O ,那么∠AOC =90°. 推理过程就是: 因为AB ⊥CD ,所以∠AOC =90° (垂直的定义). 二、垂线的性质探究 探究1:(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画几条?(2)经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?(3)经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条?结论:经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线.即在同一平面内,过一点有且只有一条直线与已知直线垂直.思考1:过一点画线段、射线的垂线,应如何画呢?如图,请你过点P 画出线段AB 或射线AB 的垂线过一点作线段的垂线,垂足可以在线段上,也可以在线段的延长线上.所以大家在画图时要注意:画一条线段或射线的垂线,就是画它们所在直线的垂线.(2)(1)PPABBA(4)(3)P PABBA思考2:如图,在灌溉时,要把河中的水引到农田P 处,如何挖渠能使渠道最短?此问题就是“直线外一点与已知直线上各点所连的线段中,哪条线段最短?”探究2:如图,连接直线l外一点P与直线l上各点O,A1,A2,A3,…,其中,PO⊥l,这里PO为点P到直线l的垂线段.比较线段PO,P A1,P A2,P A3,…的长短,这些线段中,哪一条最短?结论:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如图,PO⊥l于点O,垂线段PO的长度叫做点P到直线l的距离.这里距离是指线段的长度,是一个数量概念.问题解决:现在你知道水渠该怎么挖了吗?过点P作河道所在直线的垂线段PQ,则沿着线段PQ挖出的水渠道最短.举例应用:体育课上测量跳远成绩.梳理本节课所研究的内容.。
小学数学中的平行线和垂直线

小学数学中的平行线和垂直线在小学数学课程中,平行线和垂直线是非常基础的概念。
理解并能够准确识别平行线和垂直线,对于学生建立起几何形状的准确概念和进行几何运算都非常重要。
本文将详细介绍小学数学中的平行线和垂直线的概念、性质以及相关应用。
一、平行线的概念与性质1.1 平行线的定义在平面上,如果两条直线不相交,并且在同一个平面上不存在其他直线与这两条直线相交,那么这两条直线就是平行线。
1.2 平行线的判定在小学数学中,我们通常使用以下三种方法来判定两条直线是否平行:(1)同位角相等法:如果两条直线被一条横截线所截,那么同位角相等的话,这两条直线就是平行线;(2)转角法:如果两条直线被一条截线所截,而转角相等的话,则这两条直线是平行线;(3)平行线的性质:如果两条直线分别与第三条直线平行,那么这两条直线也是平行线。
二、垂直线的概念与性质2.1 垂直线的定义在平面上,如果两条直线相交,并且相交的角度为90度,那么这两条直线就是垂直线。
2.2 垂直线的判定在小学数学中,我们通常使用以下两种方法来判定两条直线是否垂直:(1)两条互相垂直的直线上的线段互成直角;(2)如果两条直线的斜率乘积等于-1,那么这两条直线是垂直的。
三、平行线与垂直线的应用平行线和垂直线在几何学中有广泛的应用,下面我们介绍几个常见的应用例子。
3.1 矩形的性质矩形是一种特殊的四边形,其中每条边都是两两平行且相等的。
所以在矩形中,每条边上的线段都互相平行,并且对角线互相垂直。
3.2 平行线分割线段如果一条直线与两条平行线相交,那么它将会把这两条平行线分割成多段线段,这些线段的长度比例是相等的。
这个性质在我们进行几何运算和问题求解时非常有用。
3.3 垂直平分线在数学中,如果一条直线与另一条直线相交,并且把另一条直线的中点划分成两个相等的部分,那么这条直线就是垂直平分线。
垂直平分线与被分割的线段互相垂直。
结语平行线和垂直线是小学数学中的基础概念,对于建立几何概念和进行几何运算非常重要。
2.1.2 垂线的定义与性质 课件 2021--2022学年北师大版七年级数学下册

知识点3:垂线的性质
【例3】如图,已知直线AB,CB,l在同一平面内,若AB⊥l,垂足
为B,CB⊥l,垂足也为B,则符合题意的图形可以是( C )
知识点3:垂线的性质
导引:根据题意可知,过点B有AB,CB都与直线l垂直,由垂线的性
质可知,在同一平面内,过一点有且只有一条直线与已知直线垂直,
所以A、B、C三点在一条直线上.
归纳:利用直线的性质解答题目,要注意直线性质满足的条件: 1. 在平面内; 2. 过一点,点的位置可以在直线上也可以在直线外; 3. 相交所成的角必须是直角,以上三条缺一不可.
1.在同一平面内,下列语句正确的是( C )
A.过一点有无数条直线与已知直线垂直 B.和一条直线垂直的直线有两条 C.过一点有且只有一条直线与已知直线垂直 D.若两直线相交,则它们一定垂直
bbb
b
b
α )α
a
知识要点
垂直定义: 两条直线相交成四个角,如果有一 个角是直角,那么称这两条直线互 相垂直.
注意:两条线段互相垂直是指 这两条线段所在的直线互相垂 直.
垂直的表示法 如果直线AB与直线CD垂直,那
么可记作:AB⊥CD(或CD⊥AB).
如果用l、m表示这两条直线, 那么直线l与直线m垂直,可记作: A l⊥m(或m ⊥ l).
2.如图,如果直线ON⊥直线a,直线OM⊥直线a,那么OM与ON重
合(即O,M,N三点共线),其理由是( )
C
A.两点确定一条直线
B.在同一平面内,过两点有且只有一
条直线与已知直线垂直
C.在同一平面内,过一点有且只有一
条直线与已知直线垂直
D.两点之间,线段最短
平行线与垂直线的认识知识点总结

平行线与垂直线的认识知识点总结平行线和垂直线是几何学中常见的两种线性关系,它们在我们的日常生活和数学研究中都起到重要的作用。
本文将对平行线和垂直线的概念、性质和应用进行总结,以帮助读者更好地理解和运用这两种线性关系。
一、平行线的概念和性质1. 平行线的定义:两条直线在平面内不相交,并且它们的所有点到另一直线的距离相等,则称这两条直线为平行线。
2. 平行线的判定:有以下几种方法可以判定两条直线是否平行:- 通过观察直线的方程是否满足平行线的定义;- 通过观察直线的斜率是否相等;- 通过观察直线的平行关系是否可以推导出等比例关系。
3. 平行线的性质:- 平行线之间不存在交点;- 平行线的斜率相等;- 平行线的夹角为180度;- 平行线之间的距离在平面上保持不变。
二、垂直线的概念和性质1. 垂直线的定义:两条直线相交,且相交的角度为90度,则称这两条直线为垂直线。
2. 垂直线的判定:有以下几种方法可以判定两条直线是否垂直:- 通过观察直线的方程是否满足垂直线的定义;- 通过观察直线的斜率之积是否为-1;- 通过观察直线之间的角度是否为90度。
3. 垂直线的性质:- 垂直线之间存在交点;- 垂直线的斜率之积为-1;- 垂直线之间的角度为90度;- 垂直线的斜率为正无穷和负无穷。
三、平行线和垂直线的应用1. 平行线的应用:- 在建筑设计中,平行线的概念被广泛运用于保持建筑物的平衡和稳定性;- 在地理测量中,通过观察地平线和水平线的关系,可以判断两条线是否平行;- 在艺术创作中,平行线的运用可以帮助构建透视效果。
2. 垂直线的应用:- 在建筑施工中,垂直线的运用可以保证建筑物的结构稳定;- 在地理测量中,通过使用测量仪器可以确定地表的垂直线;- 在数学和物理实验中,垂直线的概念被广泛运用于实验数据的分析和计算。
总结起来,平行线和垂直线是几何学中重要的概念,它们在日常生活和学术研究中都起到了至关重要的作用。
通过对平行线和垂直线的概念、性质和应用的总结,希望读者能够更好地理解和运用这两种线性关系,进一步提升数学和几何学方面的知识和能力。
初中数学 什么是平行线和垂直线

初中数学什么是平行线和垂直线平行线和垂直线是初中数学中重要的几何概念。
本文将详细介绍平行线和垂直线的定义、性质和常见应用。
一、平行线平行线是指在同一个平面上永远不会相交的直线。
简单来说,平行线是永远保持相同距离的直线。
平行线的定义:给定平面上的两条直线l和m,如果它们在平面上永远不会相交,那么我们称l 与m是平行线。
记作l || m。
平行线的性质:1. 平行线上的任意两个点与另一条平行线上的任意两个点之间的线段长度相等。
2. 平行线的斜率相等或者有一个不存在斜率。
平行线的应用:1. 在几何证明中,平行线常用于构造图形、定位和描述。
2. 平行线的性质被广泛应用于测量、计算和解决实际问题。
二、垂直线垂直线是指两条直线在相交点处形成的四个相邻角中,两个相邻角是直角的直线。
垂直线的定义:给定平面上的两条直线l和m,如果它们在相交点处形成的四个相邻角中,两个相邻角是直角,则我们称l与m是垂直线。
记作l ⊥ m。
垂直线的性质:1. 垂直线上的任意两个角是直角。
2. 垂直线与平行线的交角是直角。
垂直线的应用:1. 在几何证明中,垂直线常用于构造图形、定位和描述。
2. 垂直线的性质被广泛应用于测量、计算和解决实际问题。
总结:本文详细介绍了初中数学中的平行线和垂直线的定义、性质和常见应用。
平行线是指在同一个平面上永远不会相交的直线,垂直线是指两条直线在相交点处形成的四个相邻角中,两个相邻角是直角的直线。
平行线和垂直线在几何证明、测量和解决实际问题中都有重要的应用。
通过理解和应用这些概念,学生可以更好地理解几何学的基本概念和性质。
平行线与垂直线的关系

平行线与垂直线的关系在几何学中,平行线和垂直线是基本概念,它们之间存在着一定的关系。
本文将介绍平行线和垂直线的定义、性质以及它们之间的关系。
一、平行线的定义与性质平行线是指在同一个平面上,永远不会相交的两条直线。
它们的定义可以表述为:两条直线在同一平面上,如果它们的任意一对内部点与这两直线的距离之差都相等,那么这两条直线就是平行的。
平行线具有以下性质:1. 平行线的夹角相等:对于平行线上的两个相交线段,与这两个线段相交的另一条平行线上的两个相交线段与前两个线段的夹角一定相等。
2. 平行线之间的距离相等:平行线之间的任意两个线段之间的距离都是相等的。
3. 平行线的延长线也是平行的:平行线延长后仍然保持平行。
二、垂直线的定义与性质垂直线是指两条线段、直线或平面相互交于90度的关系。
两条直线垂直的定义可以表述为:直线L和直线M如果相交,且相交产生的两个相邻角度之和为90°,则称直线L和直线M互相垂直。
垂直线的性质如下:1. 垂直线上的两个相交线段的夹角为90°。
2. 垂直线与水平线的关系:水平线与垂直线互相垂直。
3. 垂直线与平行线的关系:如果两条平行线中的一条直线与第三条线垂直,那么第三条线也必与另外一条平行线垂直。
三、平行线与垂直线的关系平行线和垂直线之间存在一些重要的关系:1. 平行线的特殊情况:如果两条线段之间既不相交也不平行,那么它们一定是相交的,并且相交产生的夹角不是90度,则可以推断出这两条线段是倾斜于彼此的。
2. 平行线与垂直线的关系:如果两条直线中的一条直线与第三条线垂直,那么第三条线也一定与另外一条直线垂直。
反之亦然,如果两条直线中的一条直线与第三条线平行,那么第三条线也一定与另外一条直线平行。
3. 平行线与垂直线的组合:如果一条直线与另外一条直线同时平行于第三条直线,那么这两条直线一定相互平行。
同样地,如果一条直线与另外一条直线同时垂直于第三条直线,那么这两条直线一定相互垂直。
平行线和垂直线

平行线和垂直线在几何学中,平行线和垂直线是两个基本的概念。
它们在空间中起到了重要的作用,不仅在数学中有着广泛的应用,而且在日常生活中也经常遇到。
本文将探讨平行线和垂直线的定义、性质以及它们在几何和实际中的应用。
一、平行线的定义和性质1. 定义:平行线是指位于同一平面上但永不相交的两条直线。
简而言之,它们始终保持相同的间距。
2. 性质:a. 平行线具有相同的斜率。
斜率是一条直线的倾斜程度,斜率相同代表两条直线的倾斜程度相等。
b. 平行线之间的任意两条线与横线的夹角相等。
例如,若一对平行线与一条横线相交,它们与这条横线所形成的夹角都是相等的。
c. 平行线之间的任意两条线对角的夹角互补。
也就是说,两对平行线组成的四个角的和等于180度。
二、垂直线的定义和性质1. 定义:垂直线是指在同一平面上相交且互相垂直的直线。
简而言之,两条垂直线的夹角为90度。
2. 性质:a. 垂直线之间的夹角为90度。
b. 垂直线的斜率互为相反数。
c. 两条直线相互垂直,其斜率的乘积等于-1。
三、平行线和垂直线的应用1. 几何学应用:a. 平行线的应用:平行线在几何学中被广泛用于证明定理和解决问题。
例如,在证明两条线段平行时,我们可以通过证明两条直线的斜率相等来证明它们是平行的。
b. 垂直线的应用:垂直线在几何学中也有着重要的应用。
例如,在证明两条线段垂直时,我们可以通过证明两条直线的斜率是互为相反数来证明它们是垂直的。
2. 实际应用:a. 建筑和设计:在建筑和设计领域,平行线和垂直线被广泛应用于测量、布局和规划。
例如,建筑师在设计建筑物时需要确保墙体和地板是垂直或平行的,以保证建筑结构稳定且外观美观。
b. 地理和导航:地图上的经线和纬线是平行和垂直线的示例。
它们帮助我们确定地理位置和方向,并在导航中起着重要的作用。
c. 电子学和工程学:平行线和垂直线在电子线路设计和工程学中也有广泛的应用。
例如,电子元件的布局需要保证导线之间是平行的,以避免干扰和电信号的损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
149垂线的概念与性质
知识点:
垂线的定义:两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
垂直的表示:用“⊥”和直线字母表示垂直,a、b互相垂直, 垂足为O,则记为:a⊥b或b⊥a. 垂线的性质:1.经过直线或直线外一点,有且只有一条直线与已知直线垂直.
2.连接直线外一点与直线上各点的所在线段中,垂线段最短.
注:⑴两条直线垂直是两直线相交的特殊情况,特殊在它们所交的角是直角.
⑵线段与线段、射线与线段、射线与射线的垂直,都是指它们所在的直线互相垂直.
⑶垂线与垂线段的区别:垂线是一条直线,不可度量;垂线段是一条线段,可度量.
经典例题:
例题1.下列判断错误的是().
A.一条线段有无数条垂线;
B.过线段AB中点有且只有一条直线与线段AB垂直;
C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;
D.若两条直线相交,则它们互相垂直.
答案:D.
解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.
故选:D.
例题2 如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()
A. 30°B. 34°C. 45°D. 56°
答案:B.
解析:根据垂线的定义求出∠3,然后利用对顶角相等解答.
解:∵CO⊥AB,∠1=56°,
∴∠3=90°﹣∠1=90°﹣56°=34°,
∴∠2=∠3=34°.
故选B.
例题3 如图,∠PQR等于138°,SQ⊥QR,QT⊥PQ.则∠SQT等于()
A. 42°B. 64°C. 48°D. 24°
答案:A.
解析:利用垂直的概念和互余的性质计算.
解:∵∠PQR等于138°,QT⊥PQ,
∴∠PQS=138°﹣90°=48°,
又∵SQ⊥QR,
∴∠PQT=90°,
∴∠SQT=42°.
故选A.
例题4如图,△ABC中,∠C=90°,AC=3cm,点P是边BC上的动点,则AP长不可能是()
A. 2.5 cm B. 3 cm C. 4 cm D. 5 cm
答案:A.
解析:利用垂线段最短分析.
解:已知,在△ABC中,∠C=90°,AC=3,
根据垂线段最短,可知AP的长不可小于3,当P和C重合时,AP=3,
故选A.
例题5已知如图,AO⊥BC,DO⊥OE,若∠COE=35°,则∠AOD的度数是().
A.30° B.35° C.40°D. 45°
答案:B.
解析:已知AO⊥BC,DO⊥OE,就是已知∠DOE=∠AOB=∠AOC=90°,利用同角或等角的余角相等,从而得到相等的角.由(1)知,∠AOD=∠EOC,故可求解.
解:(1)∵AO⊥BC,DO⊥OE,
∴∠DOE=∠AOB=∠AOC=90°,∠BOD+∠AOD=90°,∠AOD+∠AOE=90°,∠AOE+∠COE=90°,∴∠DOA=∠EOC,∠DOB=∠AOE,∠AOB=∠AOC,∠AOB=DOE,∠AOC=∠DOE;
∠AOD=∠EOC=35°.
∴∠AOD的度数是35°.
故选:B.。