液晶高分子

合集下载

液晶高分子课件(带目录)

液晶高分子课件(带目录)

液晶高分子课件1.引言液晶高分子(LiquidCrystalPolymer,简称LCP)是一类具有液晶相态的高分子材料,因其独特的物理和化学性质,在众多领域得到广泛应用。

本文将对液晶高分子的基本概念、性质、制备方法及应用进行详细介绍。

2.液晶高分子的基本概念(1)分子链在液晶相中具有一定的取向有序性;(2)液晶高分子具有各向异性,即在不同方向上具有不同的物理和化学性质;(3)液晶高分子具有热塑性,可通过加热熔融进行加工;(4)液晶高分子具有良好的热稳定性和力学性能。

3.液晶高分子的性质3.1热稳定性3.2力学性能液晶高分子的力学性能优异,具有高强度、高模量等特点。

这主要得益于分子链的取向有序性以及分子链间的紧密排列。

3.3各向异性液晶高分子的各向异性表现为在不同方向上具有不同的物理和化学性质。

这种各向异性使得液晶高分子在特定应用领域具有独特优势。

4.液晶高分子的制备方法4.1溶液聚合溶液聚合是将液晶单体溶解在特定溶剂中,通过引发剂引发聚合反应,制备液晶高分子。

该方法操作简便,但需选用适宜的溶剂和引发剂。

4.2悬浮聚合悬浮聚合是将液晶单体分散在非溶剂介质中,通过引发剂引发聚合反应,制备液晶高分子。

该方法可实现较高分子量液晶高分子的制备,但聚合过程较复杂。

4.3乳液聚合乳液聚合是将液晶单体分散在水相中,通过乳化剂和引发剂引发聚合反应,制备液晶高分子。

该方法适用于制备具有特定形态的液晶高分子。

5.液晶高分子的应用液晶高分子在众多领域具有广泛的应用,主要包括:5.1电子电器液晶高分子具有良好的绝缘性能和热稳定性,适用于制备高性能电子元器件,如电路板、连接器等。

5.2高性能纤维液晶高分子纤维具有高强度、高模量等特点,可应用于航空航天、军工等领域。

5.3生物医学液晶高分子具有良好的生物相容性和降解性能,可用于制备药物载体、生物支架等。

6.结论液晶高分子作为一种具有独特性质的高分子材料,在众多领域具有广泛的应用前景。

第四章液晶高分子详解

第四章液晶高分子详解
10
3.根据形成液晶的条件

固体

液晶
固体
+溶剂 液晶
- 溶剂Biblioteka 热冷 +溶剂 - 溶剂
液体 液体
溶液型液晶(lyotropic liquid crystal)(溶致液晶)
液晶分子在溶解过程中在溶液中达到一定浓度 时形成有序排列,产生各向异性特征。
热熔型液晶(thermotropic liquid crystal)(热致液晶)
9
(3)胆甾醇型液晶(cholesteric liquid crystal)
构成液晶的分子基本是扁平型的, 依靠端基的相互作用,彼此平行 排列成层状结构。它们的长轴与 层面平行,而不是垂直。
分子的长轴取向在旋转360度以 后复原,两个取向度相同的最近 层间距离称为胆甾醇型液晶的螺 距。
这类液晶可使被其反射的白光发生色散,透射光发生偏 转,因而胆甾醇型液晶具有彩虹般的颜色和很高的旋光 本领等独特的光学性质,
刚性部分只保持着一维有序性, 液晶分子在沿其长轴方向可以相 对运动,而不影响晶相结构。因 此在外力作用下可以非常容易沿 此方向流动,是三种晶相中流动 性最好的一种液晶。
8
(2)近晶型晶相液晶(smectic liquid crystal) 通常用符号S表示。
在这类液晶中分子刚性部分互相 平行排列,并构成垂直于分子长 轴方向的层状结构。在层内分子 可以沿着层面相对运动,保持其 流动性;这类液晶具有二维有序 性。由于层与层之间允许有滑动 发生,因此这种液晶在其粘度性 质上仍存在着各向异性。
4
一、高分子液晶的分类与命名
1.根据液晶分子特征分类
柔性部分多由可以自 由旋转的σ键连接起 来的饱和链构成。

液晶高分子ppt课件

液晶高分子ppt课件

结论与展望
03
总结研究成果,指出研究局限性和未来研究方向,展望液晶高
分子领域的发展前景。
05
液晶高分子材料性能及应 用研究
材料性能评价
01
液晶性
液晶高分子具有独特的液晶性,即在一定温度范围内呈现出液晶态。这
种液晶态具有光学各向异性、高粘度、低流动性等特点,使得液晶高分
子在显示、光学、电子等领域具有广泛应用。
光学性质
具有优异的光学性能,如 高透明度、低双折射等。
液晶态特性
取向有序性
液晶分子在某一特定方向排列有序, 形成各向异性。
流动性
连续性与流动性
液晶分子的排列并不像晶体那样完美 ,而是存在一定的缺陷和位错,这些 缺陷和位错使得液晶具有流动性和连 续性。
与晶体不同,液晶具有流动性,其分 子排列不像晶体那样牢固。
01
02
03
主链型液晶高分子
分子主链具有刚性,能形 成液晶态的聚合物。
侧链型液晶高分子
液晶基元作为侧基连接在 柔性主链上,侧基具有足 够大或刚性。
组合型液晶高分子
主链和侧链上同时含有液 晶基元的聚合物。
物理性质
热学性质
具有较宽的液晶相温度范 围,较高的热稳定性和热 氧化稳定性。
力学性质
具有高强度、高模量、低 收缩等优异的力学性能。
电子领域
液晶高分子在电子领域的应用主要包括电子封装材料、电子绝缘材料等。利用液晶高分子 的耐高温、耐化学腐蚀等特性,可以提高电子产品的可靠性和稳定性。
挑战与机遇并存
挑战
液晶高分子的研究和发展面临着一些挑战,如合成难度大、成本高、应用领域受限等。此外,随着科技的不断发 展,新型显示技术不断涌现,对液晶高分子的需求也在不断变化,这对液晶高分子的研究和发展提出了更高的要 求。

第9章 液晶高分子

第9章  液晶高分子

第一节 概述
• 60年代以来,美国杜邦公司先后推出PBA、Kevler等酰胺类液 晶聚合物,其中Kevler于1972年生产,它是高强高模材料,被 称为“梦幻纤维”,以后又有自增强塑料Xydar(美国Dartco 公司, 1984 年), Vectra (美国 Celanese 公司, 1985 年), X7G (美国 Eastman 公司, 1986 年)和 Ekonol (日本住友, 1986年)等聚酯类液晶高分子生产。 • 70年代,Finkelmannno等将小分子液晶显示及存储等特性与聚 合物的良好加工特性相结合的努力使得具有各种功能特性的 侧链液晶高分子材料得到开发。 • 作为结构材料,由于液晶高分子是强度和模量最高的高分子。 • 作为功能材料它具有光、电、磁及分离等功能,可用于光电 显示、记录、存储、调制和气、液分离材料等。 • 从科学意义上看,液晶高分子兼有液晶态、晶态、非晶态、 稀溶液和浓溶液等各种凝聚态,对它的研究将有助于全面地 了解高分子凝聚态的科学奥秘。

• a-向列型液晶的纹影织构
第一节 概述

b-某近晶型液晶的扇形焦锥织构
第一节 概述
• 2.示差扫描量热法(DSC法)

图9-3 液晶高分子聚酯的DSC曲线 • A-升温,ቤተ መጻሕፍቲ ባይዱB-降温
第一节 概述
• 3.X射线衍射法

a-无规取向
b-有选择取向 c-较强择优取向 • 图9-4 向列型液晶的X射线衍射图
• 2.聚芳杂环 • PBO的合成
• PBT的合成
第三节 主链型液晶高分子材料
• 三.溶致型主链高分子液晶的相结构和特性 • 溶致型主链高分子液晶一般为向列型液晶,其临界浓度与温 度 、分子量、分子量分布、聚合物结构和所使用的溶剂有关。

第5章-液晶高分子材料

第5章-液晶高分子材料

3) 根据高分子液晶的形成过程分类
形成条件
热致液晶 溶致液晶
依靠温度的变化,在某一温度范围 形成的液晶态物质
依靠溶剂的溶解分散,在一定浓度 范围形成的液晶态物质
热致液晶

固体


液晶

液体
溶致液晶
固体 +溶剂
+溶剂
液晶
液体
- 溶剂
- 溶剂
第一节 高分子液晶概述 高分子液晶与小分子液晶相比特殊性
① 热稳定性大幅度提高; ② 热致性高分子液晶有较大的相区间温度; ③ 粘度大,流动行为与一般溶液明显不同。
CN , NO N(CH 3 )2
第一节 高分子液晶概述
1.5 高分子液晶的分子结构与性质
2) 影响聚合物液晶形态和性能的因素
内在因素:
结构, 分子组成, 分子间作用力。刚 性部分的形状,连接单元,
外部因素: 液晶形成过程中的条件主要包括: 形成
温度, 溶剂(组成、极性、量等),液晶 形成时间等。
4
第一节 高分子液晶概述
1.2 液晶的发展历史
在1888年,奥地利植物学家莱尼茨尔(F. Reinitzer)首次发现物质的液晶态。
胆甾醇苯甲酸酯
高分子化合物的液晶性能是在20世纪 50 年代发现。最 早发现的高分子液晶材料为聚(4-氨基苯甲酸)以及聚对苯 二甲酰对苯胺。 我国高分子研究是在1972年起步, 最近高分子液晶材 料已成为高分子研究领域的一个重要部分。
OR
Si CH2 m O
R
第二节 高分子液晶的性能分析和合成方法

高分子液晶的合成主要基于小分子液晶的高
分子化,即先合成小分子液晶(液晶单体),在

第四章液晶高分子详解PPT课件

第四章液晶高分子详解PPT课件

新型合成技术探讨
活性自由基聚合
01
利用活性自由基控制聚合过程,合成结构规整、分子量分布窄
的液晶高分子。
原子转移自由基聚合
02
通过原子转移反应实现自由基聚合,制备高性能液晶高分子材
料。
可控/活性阴离子聚合
03
利用阴离子聚合反应的可控性,合成具有特定结构和性能的液
晶高分子。
实验室制备实例分享
实例一
通过缩聚反应合成芳香族聚酯液 晶高分子,探讨反应条件对产物
DSC测试结果显示,该液晶高分子的熔 点为220℃,清亮点为280℃,热稳定性 良好。
XRD分析结果表明,该液晶高分子在液 晶态下具有层状结构,分子排列有序度 高。
05
液晶高分子在显示器件中 应用研究
显示器件原理简介
显示器件基本构造
包括背光模块、显示面板、驱动 电路等部分,其中显示面板是实 现图像显示的核心部分。
温度、压力、浓度等外部条件的变 化可以影响液晶高分子的液晶态行 为,如升温可导致液晶态向液态的 转变。
03
液晶高分子合成方法与技 术
传统合成方法回顾
缩聚反应
通过官能团之间的缩合反 应,逐步聚合生成高分子 液晶。
加聚反应
利用烯烃等单体的加成反 应,合成具有液晶性的高 分子链。
开环聚合
环状单体在引发剂作用下 开环并聚合成高分子液晶 。
第四章液晶高分子详解PPT 课件
contents
目录
• 液晶高分子概述 • 液晶高分子结构与性质 • 液晶高分子合成方法与技术 • 液晶高分子表征手段及评价标准 • 液晶高分子在显示器件中应用研究 • 液晶高分子在其他领域拓展应用探讨
01
液晶高分子概述

液晶高分子的性质及应用

液晶高分子的性质及应用

液晶高分子的性质及应用1.液晶相:液晶高分子在一定的温度范围内呈现出液晶相,即介于固体和液体之间的有序相。

液晶相可以分为各向同性和各向异性两种类型。

a.各向同性液晶相:分子的有序排列在空间中是无定向的,即没有特定的方向性。

液晶高分子在这种相态下表现出传统高分子的性质,如熔融流动性等。

b.各向异性液晶相:分子的有序排列在空间中是有定向的,即存在特定的方向性。

液晶高分子在这种相态下具有一些特殊的物理性质。

2.反射性质:液晶高分子的有序排列结构使其呈现出良好的光学性质。

其中最重要的性质是反射性质。

液晶高分子可以通过改变其结构和局部有序性来调节光的反射能力,从而实现可控反射。

这种性质可以应用于光学器件和显示技术中。

3.热学性质:液晶高分子具有较高的熔点和较低的熔体粘度。

这使得液晶高分子的加工过程相对容易,并且能够形成具有特殊形状和结构的产品。

1.液晶高分子在显示技术中的应用是最广泛的。

在液晶显示屏中,液晶高分子以液晶态存在,能够通过外加电场的调控来改变其透明度和形态。

这种特性使得液晶高分子被广泛应用于液晶电视、计算机显示器、手机屏幕等电子产品中。

2.液晶高分子还被用于光学器件的制备。

通过调节液晶高分子的结构和局部有序性,可以实现光的反射、折射、偏振等特性的可控调节,从而用于制造光学滤光片、偏振器、光学振荡器等光学器件。

3.液晶高分子还可以用于制备聚合物液晶材料。

聚合物液晶材料具有高分子的机械性能和液晶高分子的液晶性能的优点,可以在光电领域、能源储存领域等方面得到应用。

4.由于液晶高分子具有特殊的热学性质和可塑性,它们还被广泛应用于制造具有特殊形状和结构的产品。

例如,液晶高分子可以用于制造形状记忆聚合物,这些材料可以在受到外界刺激时恢复到其原始形状。

总结起来,液晶高分子具有独特的性质和广泛的应用领域。

通过调节液晶高分子的结构和局部有序性,可以实现对光学性质的控制和调节。

液晶高分子主要应用于液晶显示技术、光学器件制造、聚合物液晶材料制备以及制造形状记忆聚合物。

液晶高分子

液晶高分子

液晶的定义
物质的存在形式除人们熟悉的液态、晶态、和气态 以外,还有等离子态、无定形态、超导态、中子态、 液晶态等其他聚集态结构形式。
液晶态是物质的一种存在形态,它具有晶体的光 学各向异性性质,又具有液体的流动性质。它具有 晶体的光学各向异性性质,又具有液体的流动性质 。
如果一个物质已部分或全部的丧失了其结构上的 平移有序性而仍保留取向有序性,它即处于液晶态。 液晶态与晶态的区别在于它部分缺乏或完全没有平 移序,而与液态的区别在于它仍然存在一定的取向 有序性。
液晶高分子的分类
根据结构有序性的类型与程度,液晶有: 向列型晶相液晶、近晶型晶相液晶、胆甾醇 型液晶等。
液晶相依其生成条件,可分为:热致液晶 相、溶致液晶相以及因其他外场(压力、电 场、磁场、光照等)作用诱发产生的场致 液晶相等。
液晶高分子的应用
(一)高强度高模量材料 (二)在数字及图像显示方面的应用 (三)在信息储存方面的应用 (四)温度的显示 (五)气体的检测 (六)浅层肿瘤的诊断 (七)生物性液晶高分子
液晶高分子聚合物是80年代初期发 展起来的一种新型高性能工程塑 料,英文名为:Liquid Crystal Polyester 简称为LCP。聚合方法 以熔融缩聚为主,全芳香族LCP多 辅以固相缩聚以制得高分子量产 品。非全芳香族LCP常采用一步或 二步熔融聚合制取产品。近年连 续熔融制取高分子量LCP的技术得 到发展。
低温下它是晶体结构,高温时则变为液体,在中间 温度则以液晶形态存在。
热致
液晶高分子的发现
液晶现象是1888年奥地利植物学家莱尼茨尔(F. Reinitzer)在研究胆甾醇苯甲酯时首先观察到的现 象。他发现,当该化合物被加热时,在145℃和 179℃时有两个敏锐的“熔点”。在145℃时,晶体 转变为混浊的各向异性的液体,继续加热至179℃时, 体系又进一步转变为透明的各向同性的液体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档