滑移线理论_弹塑性力学讲稿共48页文档
弹塑性力学课件-塑性基本概念

ij yxx
xy y
xz yz
11 21
12 22
13
23
zx zy z 31 32 33
(4-1)
由于剪应力的互等性, yx xy zx xz zy yz
3.1应力—应变曲线的理想化模型
(1)理想弹性(perfectly elastic) (2)理想刚塑性(rigid-perfectly elastic) (3)刚—线性强化(rigid-linear strain-hardening) (4)理想弹塑性(elastic-perfectly plastic) (5)弹—线性强化(elastic-linear strain-hardening)
1.3静水压力实验
所谓静水压力就如同均匀流体从四面八方将压力作用于物体。 (1)体积变化 体积应变与压力的关系 (Bridgeman实验公式)
体积压缩模量 派生模量
铜:当p=1000MPa时,ap= 7.31×10-4,而bp2=2.7×10-6。 说明第二项远小于第一项,可以 略去不计。
Bridgeman的实验结果表明, 静水压力与材料的体积改变之 间近似地服从线性弹性规律。 若卸除压力,体积的变化可以 恢复,因而可以认为各向均压 时体积变化是弹性的,或者说 塑性变形不引起体积变化。试 验还表明,这种弹性的体积变 化是很小的,因此,对于金属 材料,当发生较大塑性变形时, 可以忽略弹性的体积变化,即 认为在塑性变形阶段材料是不 可压缩的。
s
n1
一般加载规律
( ) E[1 ( )]
A
其中
( )
弹塑性力学部分讲义(PDF)

弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。
为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。
在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。
要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。
对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。
这些都是固体力学的基本问题。
如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。
在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。
有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。
这些也是固体力学的基本问题。
此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。
如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。
正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。
工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。
而工程力学的发展则大大推动了许多工程技术的飞速发展。
因此,力学是许多工程部门设计研究人员的基本素质之一。
二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。
力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。
弹塑性力学(应变状态理论)讲稿

当体积不变时:
ij e ij
应变偏张量
三、应变参量及计算公式
1. 主切应变
2
x y
2 x y 2
x y
2
cos 2
xy
2
sin 2
sin 2
xy
2
cos 2
1 ( 2 3 ) 2 ( 3 1 ) 3 ( 1 2 )
1 2 3
2. 八面体切应变 与三个应变主轴方向具有相同倾角平面上的应变
m ax 1 3
1 8 (1 2 3 ) m 3 2 2 2 2 8 1 2 2 3 3 1
du u d x dt x x dv v d y dt y y dw w d z dt z z
d xy d yz d zx
u v dt dt y x v w dt dt z z w u dt dt x z
zx
u w z x
4. 应变张量与应变参量
一、应变张量
引入符号:
xy
yz
zx
1 1 v u xy x y 2 2 1 1 w v yz y z 2 2 1 1 u w zx 2 2 z x
v
dy B y
P
A B
u x x v y y
xy
v u x y
v v dy y
u u dy y
三维状态下的几何方程
x
y
几 何 方 程
弹塑性力学讲义 第一章绪论

3
每个分量用一个标量(具有两个下标)与两个并在一起基矢量(并矢) ,称为二阶 张量。矢量可称为一阶张量,标量为零阶张量。 5.2 求和约定 在张量表示说明中,看到张量分量表示是一组符号之和,很长,特别是高阶张量, 为了书写简捷,采用求和约定。 求和约定:当在同一项中,有一个下标字母出现两次时,则表示该项在该指标的取 值范围内遍历求和,且称此种在同一项重复出现一次的下标为哑标。如:
e1 e2 a2 b2 e3
a b ai ei b j e j ai b j eijk ek ai b j ekij ek , 则
c c k eijk ai b j ekij ai b j , a b a1 b1
ij
自动消失。ij 也称为换标符号。
eijk ( i,j,k =1,2,3)
定义: eijk
共有 27 个元素。
1 若(i , j , k ) (1,2,3)或 ( 2,3,1)或 (3,1,2)时 正排列顺序 -1 若(i , j , k ) ( 2,1,3)或(1, 3, 2)或(3, 2, 1)时 逆排列顺序 0 若 i , j , k中任意两指标相同时
(i=1,2,3),用 ri 表示矢径;
同样位移矢量 u,用 ui 表示位移,ij 表示应力
张量。
xi aij y j
i
x1 a11 y1 a12 y2 a13 y3 x2 a21 y1 a22 y2 a23 y3 x a y a y a y 31 1 32 2 33 3 3
矢量场的拉普拉斯算子定义为矢量场的梯度的散度:是一个向量
工程弹塑性力学教学课件第十一章滑移线场理论

y S
0
p
2R
cos
x
sin
y
0
S
S
S
S
p* 2R C p* 2R C
(3)γ=0和φ=0代入(3.10)并积分可得:
(沿线) (沿线)
p* p cosx sin y R K (或 C)
S
(p
2R )
0
( p 2R ) 0
S
p 2R C (沿线) p 2R C (沿线)
4.滑移线基本性质
滑移线上的剪应力等于岩土的抗剪强度 两族滑移线间的夹角与屈服准则有关 对所有岩土材料,重力的存在不影响两族滑移线间 的夹角,但对其形状有影响。对c-φ型岩土材料,粘 聚力的存在不影响两族滑移线的形状和夹角。
4.滑移线基本性质…
(1)Henky第一定律:如果由一条滑移线 α1(或β1 )转到另一条滑移线α2 (或β2), 则沿任何一条β族 (或α族)的滑移线,α线 (或β线)的方向与x轴的夹角的变化值保持 常量。如图1,得:
RA )( p
A)
sin(
2 )( x p
x A
)
cos(
2 )(
yp
yA)
sin 2( pp pB ) (Rp RB )( p B ) sin( 2)(xp xB ) cos( 2)( yp yB )
yp
yA
tg
(
p
A 2
)( x p
xA )
yp
yB
tg
(
p
B 2
)( x p
自由表面上 n 0, n 0 。周界处处不 与滑移线方向相重合。自由表面附近的 应力场与自由表面的形状有关。如果自 由表面是平面,其影响区域将如图7-2.
弹塑性力学讲义9

k P
k
o x
规 定
1) 使变形体素顺时针转的 y 切应力方向为α线方向; 反之为β线方向。
2) 线各点的切线与所取 的x 轴的正向夹角为 , 逆时针转为正,顺时针 转为负 。
3), 构成右手坐标系,
1 在一、三象限。
o
k P
k
x
(2)平面变形时的应力和莫尔圆
3
汉基应力方程
x yx 0 x y
xy x y y 0
y p k sin 2 p k sin 2
x p k sin 2 p k sin 2
xy k cos2
(1) (2)
n = p =k 1 3 3
+k +
p /4
-
3
2
2 = p /2
1
0
-k
n = p
-
0.5 arccos
k 0 k
p n k sin 2 n 2
由莫尔圆
1 n k
3 n k
面的问题
(4)库仑摩擦的接触面
0
3 =-2 k
-
0.5 arccos
0 p k 4
舍去负的
p n k sin 2 0 k sin
p
2
k 2
由莫尔圆
1 0
3 2k
面的问题
(2)无摩擦的接触面
3 = 0
3
+k
+
p /4
-
1 = 0
p/4 p /4
塑性理论第九章滑移线法

摩擦切应力为 K的接触面
σn= σm
摩擦切应力为 K的接触面
α
0 β α α σm σ3 σ3 K β β
0
σm K σ1 α
σ1 K β σm
K
σm 0 K
σm
代数值最大的 σm 主应力σ1的作用线
σ1
0
K σm
K
σ3
σm
K
σ1
σ3
摩擦切应力为K的接触表面的滑移线
(4)摩擦力为某一中间值的接触表面 1 1 xy cos 0 xy K 2 K
1 ( 1 3 ) k 2 1 ( 1 3 ) m 2
z σz= σm= σ2
σm +K
σy
σ1 τyx -K
σ1作用线
τxy
σm σx σ3
0 σx x
σy τxyτyx
y
P
τ
σy (σm,+K) y τyxቤተ መጻሕፍቲ ባይዱ
4
1 m k 2 m 3 m k
xy
0
y
r
y
y
m
K
xy
m
K
3
2
1
xy
0
x
xy
K K
xy
x
x
a
m
x
m
m
y
xy
a)
b)
摩擦切应力为某一中间值的接触面处的滑移线
2、常见的滑移线场类型
直线滑移线场,两族直线 简单滑移线场,一直一曲 有心和无心扇形场 直线与简单滑移线场组合 正交曲线滑移线场
滑移线理论_弹塑性力学讲稿

R ` R R
R
"
S R S
B B`
S `
`
S
`
`
R `
A S
A`
R
`
证明:由于
1 R S 1 R S
(定义)
又可写为
R ` S R ` S
o
★ 屈服条件:(Mises)
(4-37)
化简后为
(4-38)
于是,在塑性区内主应力为
(4-39)
(4-40)
(4-41)
这就是说,在塑性区内任一点 的应力状态,可用静水压力 o 与
o
纯剪应力 两个分量来表示,
如图示。
o o
o o
o
★ 在不计体力的情况下,平衡方程为:
可解出
xm,m1 , ym,m1
(d) 重复计算可得出ABP范围内的塑性应力场。
(3) 第二边值问题(黎曼问题)
已知边界上某一点的两条正交的滑移线,其各点的、 已知,如图示: 求:区域AoBC内的塑性应力场。 步骤: (a) 分网,如图示 (b)求、,由汉基第 y B
(0,n) (o,2) (0,1) (m,0) (1,1) (m-1,n)
沿这两组滑移线分别有一一相
等的值和一一相等的值。而所有
也必相等,应力是均匀分布的,即称为均匀应力场。
例:图示直线边界上 n const, n 0 则
n k sin 2( ) 常数 p n k cos 2( ) 0
n
即
将上式代入(4-51(a)式得:
n k sin 2( ) n k cos 2( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联Leabharlann 滑移线理论_弹塑性力学讲稿
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹