《弹塑性力学》第十章 弹性力学的能量原理
《弹塑性力学》第十章 弹性力学的能量原理

种状态可能应变上作的虚变形功。
——虚功原理
27.06.2021
编辑ppt
21
§10-2 虚功方程
W e V fiu i ( k 2 ) d V S X iu i ( k 2 ) d S Vi ( k 1 j )i ( k 2 j ) d W V i
2.2虚功方程的证明:
SX i(k 1 )u i(k 2)d SSn j i(jk 1 )u i(k 2)d S
ij
W
ij
——弹性关系
如果将几何关系引入应变能, U、W 为位
移的函数。
应变余能(类似应变能)定义
Uc VWcdV
27.06.2021
编辑ppt
5
§10-1 几个基本概念和术语
应变余能密度
Wc
i
0
jijij
dij ij
——单位体积的应变余能
Wc 与积分路径无关,只与 终止状态和初始状态有关。
P
第一状态:一对力P 作用在
直杆的垂直方向,局部效应,
b
在杆两端点伸长 ?
P
27.06.2021
编辑ppt
29
§10-3 功的互等定理
第二状态:让一对力Q 作用同一杆两端点,很
易求得一对力Q引起杆横向缩短 。
Q
Qx
对两种状态应用功的互等定理 P = Q Q第二状态引起的 易求:
27.06.2021
Vfi u id V S X i u id SV i j id jV
▪虚位移原理举例
图示受均布荷载q作用
q
的等跨连续梁,EI为常数, A
x CB
中间支座为弹性支座。试用 z l
l
虚位移原理写出梁的挠曲线
弹塑性力学第十章共131页文档

15.11.2019
23
§10-2 虚功方程
代入虚功方程左端,得
W e V fiu i (k 2 )d V Vi(k ,1 jj )u i (k 2 )d V Vi(k 1 j )i(k 2 j)d
并注意
(
V
i(k ,j1 j)fi)ui(k2)d
V 0
则
We=Wi
虚功方程未涉及本构关系,所有在各种材料性
质虚功方程成立。
15.11.2019
24
§10-2 虚功方程
虚功方程虽然对两种不相干的可能状态成立, 但一般应用是一种为真实状态,另一种为虚 设可能状态(虚设状态)。
q P=1
15.11.2019
25
§10-3 功的互等定理
将虚功方程用于线弹性体可导出功的互 等定理。同一弹性体处于两种真实状态。
30
§10-3 功的互等定理
x Q A
y z 0
x
Q EA
Q
Qx
y z x Q EA
yb
Q b
EA
P Pb
Q
EA
15.11.2019
31
§10-4 虚位移原理和最小势能原理 4.1虚位移原理
运用虚功原理,但一种状态为与真实外力平衡
的 变状 形态 状,态,ij、为f真i、实X状i 、态u 位i ; 移而的第变二分状:态为可能
第十章 弹性力学的能量原理
§10-1 几个基本概念和术语 §10-2 虚功方程 §10-3 功的互等定理 §10-4 虚位移原理和最小势能原理 §10-5 虚应力原理和最小余能原理 §10-6 基于能量原理的近似解法
15.11.2019
弹塑性力学部分习题

第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类
§6-2平面问题的基本方程和边界条件
§6-3平面问题的基本解法
§6-4多项式应力函数运用举例
2018/10/7
8
第七章弹性力学平面问题的极坐 标系解答
§7-1平面极坐标下的基本公式 §7-2轴对称问题 §7-3轴对称应力问题——曲梁 的纯弯曲 §7-4圆孔的孔边应力集中问题 §7-5曲梁的一般弯曲 §7-6楔形体在楔顶或楔面受力
弹塑性力学
第 六 章 弹性力学平面问题的直角坐标系解答 第 七 章 弹性力学平面问题的极坐标系解答 第 八 章 等截面直杆的扭转 第 九 章 空间轴对称问题 第 十 章 弹性力学问题的能量原理 第 十一 章 塑性力学基础知识
2018/10/7
1
参考书目
1.徐芝纶, 弹性力学:上册 .第三版,高等教育
w k x, y
其中 k 为待定常数,(x‚y)为待定函数, 试写出应力分量的表达式和位移法方程。
2018/10/7
18
题1-6 半空间体在自重 g 和表面均布压力 q 作用下的位移解为 u = v = 0,
1 g 2 2 w q h z h z 2G 2
2018/10/7
在 V上
16
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
z l y
Fbz g
x
x
2018/10/7
17
题1-5 等截面直杆(无体力作用),杆轴 方向为 z 轴,已知直杆的位移解为
u kyz
v kxz
(完整word版)弹塑性力学总结

弹塑性力学总结弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
通过一学期的弹塑性力学的学习,对其内容总结如下:一、弹性力学1、弹性力学的基本假定求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量.求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。
在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解.因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。
(1)假设物体是连续的.就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示.(2)假设物体是线弹性的。
就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形.而且,材料服从虎克定律,应力与应变成正比。
(3)假设物体是均匀的.就是说整个物体是由同一种质地均匀的材料组成的。
这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变.(4)假设物体是各向同性的。
也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的.(5)假设物体的变形是微小的。
即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。
《弹塑性力学》第十章弹性力学的能量原理

弹性力学能量原理在材料力学 中有着广泛的应用,它为材料 在受力状态下的行为提供了重 要的理论依据。
在结构力学中的应用
在结构力学中,弹性力学能量 原理被广泛应用于各种结构的 分析、设计和优化。
通过应用该原理,可以分析结 构的整体和局部稳定性、振动 特性、屈曲行为等,确保结构 在各种载荷下的安全性和稳定 性。
弹性力学能量原理在其他领域的应用
工程结构分析
利用弹性力学能量原理对桥梁 、建筑等工程结构进行静力和 动力分析,优化设计。
生物医学工程
将弹性力学能量原理应用于人 体组织和器官的力学行为研究 ,为医学诊断和治疗提供依据 。
地球科学
将弹性力学能量原理应用于地 质构造、地震工程等领域,研 究地球物理现象。
该原理基于能量守恒和最小势能原理,通过分析系统的能量分布 和转化,推导出弹性系统的平衡方程和本构关系。
弹性力学能量原理的重要性
弹性力学能量原理是解决弹性力学问 题的重要工具之一,它可以用于求解 各种弹性力学问题,如应力分析、应 变分析、弹性稳定性等。
该原理提供了一种系统的方法来研究 弹性系统的行为,有助于深入理解弹 性材料的性质和行为,为工程设计和 应用提供理论支持。
02
弹性力学能量原理的基本概念
势能原理
总结词
势能原理是弹性力学中一个重要的基本原理,它表明一个弹性系 统的总势能达到极值。
详细描述
势能原理指出,对于一个处于平衡状态的弹性系统,其总势能( 包括应变能和外力势能)在平衡状态下达到极值,即在受到微小 扰动后,系统会恢复到原来的平衡状态。
最小势能原理
03
弹性力学能量原理的应用
在材料力学中的应用
01
02
03
04
《弹塑性力学》课件

材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
弹塑性力学总结
弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。
它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。
它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。
本文将对弹塑性力学进行总结。
一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。
它们各自关注的是物体在受力后不同的反应。
(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。
简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。
弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。
(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。
简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。
塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。
二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。
应力有三种类型:拉应力、压应力和剪应力。
(2)应变应变是材料的形变量,通常表示为ε。
应变有三种类型:拉伸应变、压缩应变和剪切应变。
(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。
(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。
弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。
材料的弹性模量越大,其刚度就越高。
(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。
材料开始发生塑性变形的应力点称为屈服点。
三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。
弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。
弹塑性力学(浙大通用课件)通用课件
塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。
弹塑性力学第09章弹性力学的能量原理
弹塑性力学第09章弹性力学的能量原理弹性力学的能量原理是通过对变形体系的能量进行分析,来描述和研
究材料的力学行为。
根据能量守恒定律,能量在各种形式之间的转换是相
互平衡的,因此可以通过能量原理来推导出材料的力学性质。
弹性力学的
能量原理主要包括两个方面:弹性能量原理和稳定性能量原理。
弹性能量原理是指在弹性变形的情况下,变形体系的总能量保持不变。
变形体系的总能量包括弹性应变能和应力对变形体系所做的功。
具体来说,在弹性变形情况下,变形体系的总应变能等于外力所做的功,而不会发生
能量的损失。
这一原理反映了材料在弹性变形情况下能量的守恒性质。
稳定性能量原理是指在塑性变形的情况下,材料的变形体系的总能量
沿着最稳定方向变化。
塑性变形是指当材料受到较大应力时,会发生永久
性变形的情况。
稳定性能量原理通过分析塑性变形对变形体系的总能量的
影响,来得出变形体系的稳定性和塑性变形的机制。
在弹塑性力学中,能量原理被广泛应用于力学问题的求解和工程实践中。
通过能量原理,可以解释材料的弹性和塑性特性,研究和设计材料的
力学性能。
同时,能量原理也为工程实践中的结构设计和材料选择提供了
理论依据。
总之,弹塑性力学的能量原理是研究材料力学行为的重要原理之一、
弹性能量原理和稳定性能量原理通过分析变形体系的能量转换来描述材料
的弹性和塑性变形特性。
能量原理的应用可以解释材料的力学性质,为工
程实践中的结构设计和材料选择提供理论支持。
弹塑性力学PPT课件精选全文
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在给定的体力 fi和面力 可能应力状态ij(k1)
X
,已知(找到)
i
在V内:
ij(k1)+fi =0 ;
在s =s :
Xi nji(jk1)
02.11.2020
ppt课件
20
§10-2 虚功方程
第二种状态:
弹性体处于可能变形状态 ui(k2) 、ij(k2)
在s =su:
ui(k2) ui
则第一种状态外力在第二种状态可能位移作
1
T=U ( E 2d)dV o 0
P x
23 E32dxdy23 E d0lz32Adx
2EAl
3 2
2EA l 32
3
3l
2EAl 3
3
E
2P 3l 3E 2A2
02.11.2020
ppt课件
13
§10-1 几个基本概念和术语
Uc =P l –U =P l -U
P 2l U E
l o
P
T = U =Uc= P l/2
x
P = N = lEA/l,
l= Pl/(EA)
U = l 2EA/(2l), Uc = P 2 l/(2EA), (2) =E 1/2
1
T = U = WdV(d)dV(E 2d)dV
02.11.2020
ppt课件
12
§10-1 几个基本概念和术语
l
l
P
o
x
U
2P3l 3E2 A2
P 3l 3E 2A2
02.11.2020
ppt课件
14
§10-1 几个基本概念和术语
作业:图示结构各杆等截
面杆,截面面积为A,结点 A
C承受荷载P作用,材料应
力—应变关系分别为(1) l
y
=E ,(2) =E 1/2 。
试计算结构的应变能U 和 B
应变余能Uc。
10
§10-1 几个基本概念和术语
应变能、应变余能的计算举例
l
P
o
x
解:
(1) =E
图示等截面杆,承受轴 向荷载 P 作用。杆截 面面积为 A,材料应 力—应变关系分别为
(1) =E ,(2)
=E 1/2. 试计算外力功T 、应变
能U 和应变余能Uc。
02.11.2020
ppt课件
11
§10-1 几个基本概念和术语
ij
W
ij
——弹性关系
如果将几何关系引入应变能, U、W 为位
移的函数。
应变余能(类似应变能)定义
Uc VWcdV
02.11.2020
ppt课件
5
§10-1 几个基本概念和术语
应变余能密度
Wc
ij
0
ijij
dij ij
——单位体积的应变余能
Wc 与积分路径无关,只与 终止状态和初始状态有关。
02.11.2020
ppt课件
16
§10-1 几个基本概念和术语
1.3可能应力 ij(k): 可能应力 ij(k):在V内满足
ij,j(k)+fi =0
(a)
在s上满足
Xi
nj
(k) ij
(b)
满足式(a)、(b) —— 满足静力方程
02.11.2020
ppt课件
17
§10-1 几个基本概念和术语
§10-1 几个基本概念和术语
1.5 虚应力 ij :
ij = ij(k1)-ij(k2)
在V内:
ij,j = 0
在s 上:
njij = 0;
满足齐次静力方程。
02.11.2020
ppt课件
19
§10-2 虚功方程
2.1虚功方程
在给定体力、面力和约束情 况下,如果找到两种状态:
S
第一种状态:
Su
在介绍能量原理以前,先介绍几个基本概 念和术语。
02.11.2020
ppt课件
3
§10-1 几个基本概念和术语
1.1应变能U和应变余能Uc:
应变能 U 在第四章中
已定义过:
ij
UVWdVU(ij)
ij dij
应变能密度
Wij 0
ij
ijW( ij)
02.11.2020
ppt课件
4
§10-1 几个基本概念和术语
念和术语
材料为线弹性时
WWc 12ijij
但
UUc
1 2
VijijdV
WW(ij) Wc Wc(ij)
02.11.2020
ppt课件
8
§10-1 几个基本概念和术语
各向同性线性材料的应力应变关系
ij1 Eij12kkij
U 1 2
VijijdV
U2(1E )V ij21 2 kkll dV
在前面各章中就围绕平面问题、扭转问题 和空间轴对称问题进行了具体分析和研究。
02.11.2020
ppt课件
2
第十章 弹性力学的能量原理
弹性力学问题的解法还有另一种解 法:以能量形来建立弹性力学求解方 程——能量法(从数学意义上说也可认 为变分法)。
本章主要介绍几个基本能量原理以及基于能量 原理的近似解法。
1.4虚位移 ui和虚应变 ij :
两种可能位移ui(k1)和ui(k2)之差称为虚位移
ui,而由两种可能位移状态对应的可能应 变 ij(k1) 、ij(k2)之差称为虚应变ij 。
ij =(ui,j +uj,i )/2 在V内 ui =0 在su上齐次位移边界条件。
02.11.2020
ppt课件
18
第十章 弹性力学的能量原理
§10-1 几个基本概念和术语 §10-2 虚功方程 §10-3 功的互等定理 §10-4 虚位移原理和最小势能原理 §10-5 虚应力原理和最小余能原理 §10-6 基于能量原理的近似解法
02.11.2020
ppt课件
1
第十章 弹性力学的能量原理
弹性力学的解法之一为弹性力学边值问题 求解体系——静力法。
P
Cx
C’
l
02.11.2020
ppt课件
15
§10-1 几个基本概念和术语
1.2可能位移 ui(k) 和可能应变 ij(k):
可能位移ui(k):在V内连续且可微,在
su上 满足 : ui(k) ui
可能应变ij(k):由ui(k)通过几何方程导出的
(k) ij
12(ui(,kj)
u(jk,i))
的外力虚功等于第一种状态可能应力在第二
将几何关系引入上式
U=U( ui ) 应变能是位移的函数
02.11.2020
ppt课件
9
§10-1 几个基本概念和术语
各向同性线性材料的应力应变关系
ijE 1(1)ijk kij
代入Uc表达式
Uc
1 2
VijijdV
1
U c2EV
(1)i2 j
kklldV
02.11.2020
ppt课件
ij dij
Wc=ijij 为全微分
02.11.2020
ppt课件
6
§10-1 几个基本概念和术语
ij
W c
ij
——逆弹性关系
dij
且
W+Wc= ijij
ij
W ij 0
d ij ij
ij dij
d ij ij ij 0 ij ij
ij
ij Wc
02.11.2020