十进制4位加法计数器设计
同步和异步十进制加法计数器的设计

同步和异步十进制加法计数器的设计全文共四篇示例,供读者参考第一篇示例:同步和异步是计算机系统中常用的两种通信机制,它们在十进制加法计数器设计中起到了至关重要的作用。
在这篇文章中,我们将深入探讨同步和异步十进制加法计数器的设计原理及应用。
让我们来了解一下十进制加法计数器的基本概念。
十进制加法计数器是一种用于执行十进制数字相加的数字电路。
它通常包含多个十进制加法器单元,每个单元用于对应一个十进制数位的运算。
在进行加法操作时,每个数位上的数字相加后,可能会产生进位,这就需要进位传递的机制来满足计数器的正确操作。
在同步十进制加法计数器中,每个十进制加法器单元都与一个时钟信号同步,所有的操作都按照时钟信号的节拍来进行。
具体来说,当一个数位的加法计算完成后,会将结果通过进位端口传递给下一个数位的加法器单元,这样就能确保每个数位的计算都是按照特定的顺序来进行的。
同步十进制加法计数器的设计较为简单,在时序控制方面有很好的可控性,但由于需要受限于时钟信号的频率,其速度受到了一定的限制。
在实际应用中,根据不同的需求可以选择同步或异步十进制加法计数器。
如果对计数器的速度要求较高,并且能够承受一定的设计复杂度,那么可以选择异步设计。
如果对计数器的稳定性和可控性要求较高,而速度不是首要考虑因素,那么同步设计可能更为适合。
无论是同步还是异步,十进制加法计数器的设计都需要考虑诸多因素,如延迟、数据传输、进位控制等。
通过合理的设计和优化,可以实现一个高性能和稳定的十进制加法计数器,在数字电路、计算机硬件等领域中有着广泛的应用。
同步和异步十进制加法计数器的设计都有其各自的优势和劣势,需要根据具体的需求来选择合适的设计方案。
通过不断的研究和实践,我们可以进一步完善十进制加法计数器的设计,为计算机系统的性能提升和应用拓展做出贡献。
希望这篇文章能够为大家提供一些启发和帮助,让我们共同探索数字电路设计的奥秘,开拓计算机科学的新境界。
第二篇示例:同步和异步计数器都是数字电路中常见的设计,用于实现特定的计数功能。
同步和异步十进制加法计数器的设计

同步和异步十进制加法计数器的设计1. 引言1.1 引言在计算机科学领域,同步和异步十进制加法计数器是常见的设计。
它们可用于对数字进行加法运算,是数字逻辑电路中的重要组成部分。
同步计数器和异步计数器的设计原理和工作方式有所不同,各有优劣势。
同步十进制加法计数器是一种通过时钟信号同步运行的计数器,采用同步电路设计。
它的设计目的是确保每一位数字在同一时刻进行加法运算,以保证正确性和稳定性。
同步计数器具有较高的精确度和可靠性,但需要更多的电路元件和较复杂的控制逻辑。
与之相反,异步十进制加法计数器采用异步电路设计,每一位数字都根据前一位数字的状态自主运行。
这种设计方式减少了电路复杂度和功耗,但可能会造成计算不稳定或出错的情况。
在选择计数器设计时需要根据实际需求和应用场景进行权衡。
通过对同步和异步十进制加法计数器的设计进行比较分析,可以更好地理解它们的优劣势和适用范围。
结合实际的应用案例,可以更好地理解它们在数字逻辑电路中的作用和价值。
2. 正文2.1 设计目的在设计同步和异步十进制加法计数器时,我们的主要目的是实现一个能够对十进制数字进行加法运算的电路。
具体来说,我们希望设计一个可以接受两个十进制数字作为输入,并输出它们的和的计数器。
设计的目的是为了实现数字的加法计算,并且保证计数器的正确性、稳定性和效率。
在设计过程中,我们需要考虑到各种可能的输入情况,例如进位、溢出等,并确保计数器能够正确处理这些情况。
我们也希望设计出一个简洁、高效的电路,以确保在实际应用中能够满足性能要求。
我们也需要考虑到电路的功耗和面积,以确保设计的成本和资源利用是否合理。
设计同步和异步十进制加法计数器的目的是为了实现对十进制数字的加法运算,保证计数器的正确性和性能,并在满足需求的前提下尽可能地降低成本和资源消耗。
2.2 同步十进制加法计数器的设计同步十进制加法计数器是一种利用时钟脉冲同步输入和输出的数字电路,用于实现十进制加法运算。
实验三 4位十进制频率计设计

实验三4位十进制频率计设计一、实验目的1.掌握数字频率计的Verilog描述方法;2.学习设计仿真工具的使用方法3.学习层次化设计方法;二、实验原理根据频率的定义和频率测量的基本原理,测定信号的频率必须有一个脉宽位1秒的输入信号脉冲计数允许信号;1秒计数结束后,计数值锁入锁存器的锁存信号和为下一次测频计数周期做准备的计数器清零信号。
这3个信号由测频控制信号发生器产生,它的设计要求是,测频控制信号发生器的计数使能信号输出CNT_EN 能产生一个1秒脉宽的周期信号,并对频率计的每一计数器CNT10的ENA使能端进行同步控制。
当CNT_EN 高电平时,允许计数;当CNT_EN低电平时停止计数,并保持所计的脉冲数。
在停止计数期间,首先需要一个锁存信号LOAD的上跳沿将计数器在前1秒钟的计数值锁存进各个锁存器REG4B中,并由外部的七段译码器译出,显示计数值。
设置锁存器的好处是,显示数据稳定,不会由于周期性的清零信号而不断闪烁。
信号锁存之后,还必须用清零信号RST_CNT对计数器进行清零,为下1秒钟的计数操作做准备。
三、实验内容1、用4位十进制计数器对用户输入时钟进行计数,计数间隔为1秒,计数满1秒后将计数值(即频率值)锁存到4位寄存器中显示,并将计数器清0,再进行下一次计数。
2、为上述设计建立元件符号3、设计仿真文件,进行验证。
4、编程下载并在实验箱上进行验证四、实验步骤程序源代码module FREG (clk1HZ,uclk,led0,led1,led2,led3,rst,en,load);input clk1HZ, uclk;output [3:0]led0,led1,led2,led3;output load,rst,en;wire in_load,in_rst,in_en,c0,c1,c2;wire [3:0]dout0,dout1,dout2,dout3;assign load=in_load;assign rst=in_rst;assign en=in_en;CNTL u1(.CLK(clk1HZ),.CNL_EN(in_en),.RST_CNL(in_rst),.LOAD(in_load));CNT10 u2 (.CLK(uclk),.EN(in_en),.RST(in_rst),.COUT(c0),.DOUT(dout0));CNT10 u3 (.CLK(c0),.EN(in_en),.RST(in_rst),.COUT(c1),.DOUT(dout1));CNT10 u4 (.CLK(c1),.EN(in_en),.RST(in_rst),.COUT(c2),.DOUT(dout2));CNT10 u5 (.CLK(c2),.EN(in_en),.RST(in_rst),.DOUT(dout3));RGB4 u6 (.DIN(dout0),.LOAD(in_load),.DOUT(led0));RGB4 u7 (.DIN(dout1),.LOAD(in_load),.DOUT(led1));RGB4 u8 (.DIN(dout2),.LOAD(in_load),.DOUT(led2));RGB4 u9 (.DIN(dout3),.LOAD(in_load),.DOUT(led3));endmodulemodule CNT10(CLK,RST,EN,COUT,DOUT); //4位计数器input CLK,RST,EN;output COUT;output[3:0] DOUT;reg[3:0] Q; reg COUT;always @ (posedge CLK or posedge RST)beginif(RST) Q=0;else if(EN) beginif(Q<9) Q=Q+1;else Q=0;endendalways @ (Q)if(Q==4'b1001) COUT=1;else COUT=0;assign DOUT=Q;endmodulemodule RGB4(DIN,LOAD,DOUT); //数据缓存器input LOAD;input[3:0] DIN;output[3:0] DOUT;reg[3:0] DOUT;always @ (posedge LOAD)DOUT=DIN;endmodulemodule CNTL(CLK,CNL_EN,RST_CNL,LOAD);//控制部分input CLK;output CNL_EN,RST_CNL,LOAD;reg CLKDIV,CNL_EN,LOAD,RST_CNL;always @ (posedge CLK)CLKDIV=~CLKDIV;always @ (posedge CLK) beginCNL_EN=CLKDIV;LOAD=~CLKDIV;endalways @ (CLK) beginif(CLK==1'b0&&CNL_EN==1'b0)RST_CNL=1;elseRST_CNL=0; endendmoduleRTL视图仿真结果功能分析:在波形中,CLK1HZ的频率为1HZ,以CLK1HZ为输入,产生en,rst,load的输出波形。
实验四 多位十进制计数器的设计与实现

实验四多位十进制计数器的设计与实现(4 课时)实验目的1.熟练掌握设计电路下载到芯片的关键设置与基本步骤和利用实验箱上的输入信号和输出显示器件在线测试设计电路的方法。
2.学习使用VHDL 语言设计多位计数器和7 段译码电路的方法。
3.学习多位数码管的动态显示原理,掌握数码管驱动电路灵活设计方法。
实验原理1.米字形数码管(共阴)笔画接口:A1、A2、B、C、D1、D2、E、F、G、H、J、K、M、N、O、P、DP位选接口:sel0,sel1,sel2,sel3.sel0 Sel1 Sel2 Sel3 选中的数码管0 1 1 1 第4 位1 0 1 1 第3 位1 1 0 1 第2 位1 1 1 0 第1 位(右)2. 8 位7 段数码管(共阴)笔画接口:a、b、c、d、e、f、g、dp位选接口:sel0,sel1,sel2,sel3(可不用).Sel2 Sel1 Sel0 选中点亮的数码管1 1 1 第1 位(最右)1 1 0 第2 位1 0 1 第3 位1 0 0 第4 位0 1 1 第5 位0 1 0 第6 位0 0 1 第7 位0 0 0 第8 位实验内容与要求1.设计一个十进制计数器,具有显示位置随计数时钟在八个数码管中左右滚动的功能。
(6 分)2.设计一个符号显示电路,使其通过米字型数码管显示至少四页的自定义英文和数字符号。
(每页4 个字符)(3 分)3.设计一个4 位十进制计数器,具有加减计数功能和置数功能,并能通过数码管显示计数结果。
减数为零时发声报警。
(3 分)1:library IEEE;use IEEE.std_logic_1164.all;use IEEE.Std_logic_unsigned.all;entity cnt10 isport (clk : in std_logic;data_out : out std_logic_vector (7 downto 0);selout: out std_logic_vector (2 downto 0));end entity;architecture art1 of cnt10 isbeginprocess(clk)variable cnt1:integer range 0 to 9; beginif clk'event and clk='1' thencnt1:=cnt1+1;if cnt1>9 thencnt1:=0;end if;end if;case cnt1 iswhen 0 => data_out <= "11111100"; -- 0 when 1 => data_out <= "01100000"; -- 1 when 2 => data_out <= "11011010"; -- 2 when 3 => data_out <= "11110010"; -- 3 when 4 => data_out <= "01100110"; -- 4 when 5 => data_out <= "10110110"; -- 5 when 6 => data_out <= "10111110"; -- 6 when 7 => data_out <= "11100000"; -- 7 when 8 => data_out <= "11111100"; -- 8 when 9 => data_out <= "11101110"; -- 9 when others => NULL;end case;end process;process(clk)variable cntsel:integer range 0 to 13; beginif clk'event and clk='1' then cntsel:=cntsel+1;if cntsel>13 thencntsel:=0;end if;end if;case cntsel iswhen 0 => selout <= "111";when 1 => selout <= "110";when 2 => selout <= "101";when 3 => selout <= "100";when 4 => selout <= "011";when 5 => selout <= "010";when 6 => selout <= "001";when 7 => selout <= "000";when 8 => selout <= "001";when 9 => selout <= "010";when others => NULL;end case;end process;end art1;2:Library IEEE;Use ieee.std_logic_1164.all;Use ieee.std_logic_unsigned.all;Entity miguan isport( clk : in std_logic;WX : out std_logic_vector (3 downto 0);DX : out std_logic_vector (15 downto 0)); End entity miguan;Architecture bhv of miguan isType state is(st0,st1,st2,st3);Signal current_state:state :=st0;Signal next_state:state;Signal shu1 : integer range 0 to 3;Signal shu2 : std_logic_vector(13 downto 0); Signal A,B,C,D:std_logic_vector(15 DOWNTO 0); Beginprocess (clk) isBeginIf (clk'event and clk='1') thenshu2<=shu2+"00000000000001";If shu2="11111111111111"thencurrent_state<=NEXT_STATE;elsecurrent_state<=current_state;End if;End if;End process;Process (current_state)BeginCase current_state iswhenst0=>A<="0110101000000000";--xB<="0000000011110000";--lC<="1000010000011110";--dD<="0001000110111011";--sNEXT_STATE<=ST1;whenst1=>A<="0000000011111100";--UB<="1000010000000011";--TC<="0001000111110011";--ED<="0011000111000111";--RNEXT_STATE<=ST2;whenst2=>A<="0000000011111111";--0B<="0001000111111011";--6C<="0000000000001100";--1D<="0001000111111111";--8NEXT_STATE<=st3;whenst3=>A<="0001000111111011";--6B<="1001010110000000";--4C<="0001000110111011";--5D<="0000000000001100";--1NEXT_STATE<=ST0;End case;End process;Process (clk) isBeginif rising_edge(clk) thenif shu1>3 thenshu1<=0;elseshu1<=shu1+1;end if;case shu1 isWHEN 0 =>WX<="1110";DX<=A;WHEN 1 =>WX<="1101";DX<=B;WHEN 2 =>WX<="1011";DX<=C;WHEN 3 =>WX<="0111";DX<=D;End case;End if;End process;End architecture bhv;3:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity wybcount4 isport(count_clk,saopin_clk,en,load,reset,add_sub:in std_logic;data_in3:in std_logic_vector(3 downto 0);--Left1data_in2:in std_logic_vector(3 downto 0);data_in1:in std_logic_vector(3 downto 0);data_in0:in std_logic_vector(3 downto 0);--Right1duanxuan:out std_logic_vector(7 downto 0);--duan xuansel:out std_logic_vector(1 downto 0);--wei xuanbell:out std_logic);end entity wybcount4;architecture beh of wybcount4 isconstant num0:std_logic_vector:="01111110";constant num1:std_logic_vector:="00001100";constant num2:std_logic_vector:="10110110";constant num3:std_logic_vector:="10011110";constant num4:std_logic_vector:="11001100";constant num5:std_logic_vector:="11011010";constant num6:std_logic_vector:="11111010";constant num7:std_logic_vector:="00001110";constant num8:std_logic_vector:="11111110";constant num9:std_logic_vector:="11011110";function number(x:std_logic_vector) return std_logic_vector is begincase x iswhen "0000" => return num0;when "0001" => return num1;when "0010" => return num2;when "0011" => return num3;when "0100" => return num4;when "0101" => return num5;when "0110" => return num6;when "0111" => return num7;when "1000" => return num8;when "1001" => return num9;when others =>return "00000000";end case;end number;signal Q3:std_logic_vector(3 downto 0);--zhong jian zhisignal Q2:std_logic_vector(3 downto 0);signal Q1:std_logic_vector(3 downto 0);signal Q0:std_logic_vector(3 downto 0);beginprocess(count_clk,reset,en,load,add_sub) isbegin--counter10IF reset = '0' THENQ0<=(OTHERS => '0');Q1<=(OTHERS => '0');Q2<=(OTHERS => '0');Q3<=(OTHERS => '0');ELSIF rising_edge(count_clk) THENif en='0' thenif load='0' thenQ0<=data_in0;Q1<=data_in1;Q2<=data_in2;Q3<=data_in3;elsif add_sub='0' then--addQ0<=Q0+1;if Q0>=9 thenQ0<="0000";Q1<=Q1+1;if Q1>=9 thenQ1<="0000";Q2<=Q2+1;if Q2>=9 thenQ2<="0000";Q3<=Q3+1;if Q3>=9 thenQ3<="0000";end if;end if;end if;end if;else--subQ0<=Q0-1;if Q0<=0 thenQ0<="1001";Q1<=Q1-1;if Q1<=0 thenQ1<="1001";Q2<=Q2-1;if Q2<=0 thenQ2<="1001";Q3<=Q3-1;if Q3<=0 thenQ3<="1001";end if;end if;end if;end if;end if;end if;END IF;if (Q0="0000" and Q1="0000" and Q2="0000" and Q3="0000") then bell<='1';elsebell<='0';end if;end process;process(saopin_clk) is--sao pin xian shivariable qq:std_logic_vector(0 to 1);beginif (saopin_clk'event and saopin_clk='1') thenif qq<=3 then qq:=qq+1;else qq:="00";end if;end if;case qq iswhen "00" => sel<="00";duanxuan<=number(Q0);when "01" => sel<="01";duanxuan<=number(Q1);when "10" => sel<="10";duanxuan<=number(Q2);when "11" => sel<="11";duanxuan<=number(Q3);end case;end process;end architecture beh;。
四位全加器实验报告

武汉轻工大学数学与计算机学院《计算机组成原理》实验报告题目:4位二进制计数器实验专业:软件工程班级:130X班学号:XXX姓名:XX指导老师:郭峰林2015年11月3日【实验环境】1. Win 72. QuartusII9.1计算机组成原理教学实验系统一台。
【实验目的】1、熟悉VHDL 语言的编写。
2、验证计数器的计数功能。
【实验要求】本实验要求设计一个4位二进制计数器。
要求在时钟脉冲的作用下,完成计数功能,能在输出端看到0-9,A-F 的数据显示。
(其次要求下载到实验版实现显示)【实验原理】计数器是一种用来实现计数功能的时序部件,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时兼有分频功能。
计数器由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS 触发器、T 触发器、D 触发器及JK 触发器等。
计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。
计数器按计数进制不同,可分为二进制计数器、十进制计数器、其他进制计数器和可变进制计数器,若按计数单元中各触发器所接收计数脉冲和翻转顺序或计数功能来划分,则有异步计数器和同步计数器两大类,以及加法计数器、减法计数器、加/减计数器等,如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等差别,按权码来分,则有“8421”码,“5421”码、余“3”码等计数器,按集成度来分,有单、双位计数器等等,其最基本的分类如下:计数器的种类⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧进制计数器十进制计数器二进制计数器进制可逆计数器减法计数器加法计数器功能异步计数器同步计数器结构N 、、、321 下面对同步二进制加法计数器做一些介绍。
同步计数器中,所有触发器的CP 端是相连的,CP 的每一个触发沿都会使所有的触发器状态更新。
十进制加法计数器

十进制加法器设计1课程设计的任务与要求 课程设计的任务1、综合应用数字电路知识设计一个十进制加法器。
了解各种元器件的原理及其应用。
2、了解十进制加法器的工作原理。
3、掌握multisim 软件的操作并对设计进行仿真。
4、锻炼自己的动手能力和实际解决问题的能力。
5、通过本设计熟悉中规模集成电路进行时序电路和组合电路设计的方法,掌握十进制加法器的设计方法。
课程设计的要求1、设计一个十进制并运行加法运算的电路。
2、0-9十个字符用于数据输入。
3、要求在数码显示管上显示结果。
2十进制加法器设计方案制定 加法电路设计原理图1加法运算原理框图如图1所示第一步置入两个四位二进制数。
例如(1001)2,(0011)2和(0101)2,(1000),同时在两个七段译码显示器上显示出对应的十进制数9,3和5,8。
2第二步将置入的数运用加法电路进行加法运算。
第三步前面所得结果通过另外两个七段译码器显示。
即:加法运算方式,则(1000)2+(0110)2=(1110)2 十进制8+6=14 并在七段译码显示出14。
运算方案通过开关S1——S8接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U8和U9分别显示所置入的两个数。
数A直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。
四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S5——S8,通过开关S5——S8控制数B的输入,通过加法器74LS283完成两个数A和B的相加。
由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)2时加上3(0011)2,产生的进位信号送入译码器U10来显示结果的十位,U11显示结果的个位。
3十进制加法器电路设计加法电路的实现用两片4位全加器74LS283和门电路设计一位8421BCD码加法器。
十进制加法计数器

在数字系统中,常需要对时钟脉冲的个数进行计数,以实现测量、运算和控制等功能。
具有计数功能的电路,称为计数器。
计数器是一种非常典型、应用很广的时序电路,计数器不仅能统计输入时钟脉冲的个数,还能用于分频、定时、产生节拍脉冲等。
计数器的类型很多,按计数器时钟脉冲引入方式和触发器翻转时序的异同,可分为同步计数器和异步计数器;按计数体制的异同,可分为二进制计数器、二—十进制计数器和任意进制计数器;按计数器中的变化规律的异同,可分为加法计数器、减法计数器和可逆计数器。
二进制加法计数器运用起来比较简洁方便,结构图和原理图也比其它进制的简单明了,但二进制表示一个数时,位数一般比较长。
十进制是我们日常生活中经常用到的,不用转换,所以设计十进制加法计数器比设计二进制加法计数器应用广泛,加法器是以数据的累加过程,日常生活中,数据的累加普遍存在,有时候需要一种计数器对累加过程进行运算处理,所以设计十进制加法计数器应广大人们生活的需要,对我们的生活有一个积极地促进作用,解决了生活中许多问题,所以会设计十进制加法计数器使我们对数字电路的理论和实践知识的充分结合,也使我们对电子技术基础有了深刻的了解,而且增强了我们对电子技术基础产生了浓厚的兴趣,这次课程设计使我受益匪浅!一、设计题目 (3)二、设计目的 (3)三、设计依据 (3)四、设计内容 (3)五、设计思路 (4)六、设计方案 (7)七、改进意见 (10)八、设计总结 (11)九、参考文献 (12)一、设计题目十进制加法计数器二、设计目的1.学习电子电路设计任务。
2.通过课程设计培养学生自学能力和分析问题、解决问题的能力。
3.通过设计使学生具有一定的计算能力、制图能力以及查阅手册、使用国家技术标准的能力和一定的文字表达能力。
三、设计依据1.用JK触发器组成。
2.实现同步或异步加法计数。
四、设计内容1.复习课本,收集查阅资料,选定设计方案;2.绘制电气框图、电气原理图;3.对主要元器件进行计算选择,列写元器件的规格及明细表;4.设计总结及改进意见;5.参考资料;6.编写说明书。
4位同步二进制加法计数器计数最大值

4位同步二进制加法计数器是一种常见的数字电路,用于实现二进制计数。
它可以将二进制数字表示为电信号,并且在每次输入脉冲时进行递增。
下面将详细介绍4位同步二进制加法计数器及其计数的最大值。
一、4位同步二进制加法计数器的原理1. 4位同步二进制加法计数器由4个触发器组成,每个触发器对应一个二进制位。
当输入一个脉冲时,每个触发器根据前一位的状态以及输入脉冲的信号进行状态转换。
这样就实现了二进制数的递增。
2. 触发器之间通过门电路连接,用于控制触发器状态的变化。
这些门电路可以根据具体的设计选择不同的逻辑门,常见的有AND门、OR 门、NOT门等。
3. 4位同步二进制加法计数器是同步计数器,即所有触发器同时接收输入脉冲,确保计数的同步性。
二、4位同步二进制加法计数器的计数最大值1. 4位二进制数的表示范围是0~15,因此4位同步二进制加法计数器的计数最大值为15。
2. 在计数到15后,再输入一个脉冲,计数器将重新从0开始计数,即实现了循环计数。
三、4位同步二进制加法计数器的应用1. 4位同步二进制加法计数器常用于数字电子钟、信号发生器等数字电路中,用于实现计数和定时功能。
2. 它还可以作为其他数字电路的组成部分,用于构建更复杂的逻辑功能。
3. 在数字系统中,计数器是十分重要的组件,它能够实现数字信号的计数和控制,广泛应用于各种数字系统中。
4位同步二进制加法计数器是一种重要的数字电路,通过它可以实现对二进制数的递增计数。
其计数的最大值为15,应用领域广泛。
希望本文内容能够对读者有所启发。
四、4位同步二进制加法计数器的工作原理4位同步二进制加法计数器是一种晶体管数字集成电路,它利用触发器和逻辑门等基本元件构成,能够实现二进制数字的加法计数。
在4位同步二进制加法计数器中,每个触发器代表一个二进制位,通过输入脉冲的控制,能够实现对二进制数的递增计数。
具体来说,当输入一个脉冲信号时,4位同步二进制加法计数器会根据触发器之间的连线和逻辑门的作用,根据之前的状态和输入脉冲的信号进行状态转换,从而实现二进制数的递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛阳理工学院
十
进
制
4
位
加
法
计
数
器
系别:电气工程与自动化系
姓名:李奇杰学号:B10041016
十进制4位加法计数器设计
设计要求:
设计一个十进制4位加法计数器设计
设计目的:
1.掌握EDA设计流程
2.熟练VHDL语法
3.理解层次化设计的内在含义和实现
设计原理
通过数电知识了解到十进制异步加法器的逻辑电路图如下
Q3
则可以通过对JK触发器以及与门的例化连接实现十进制异步加法器的设计
设计内容
JK
JK触发器的VHDL文本描述实现:
--JK触发器描述
library ieee;
use ieee.std_logic_1164.all;
entity jk_ff is
port(
j,k,clk: in std_logic;
q,qn:out std_logic
);
end jk_ff;
architecture one of jk_ff is signal q_s: std_logic;
begin
process(j,k,clk)
begin
if clk'event and clk='0' then
if j='0' and k='0' then
q_s <= q_s;
elsif j='0' and k='1' then
q_s <= '0';
elsif j='1' and k='0' then
q_s <= '1';
elsif j='1' and k='1' then
q_s <= not q_s;
end if;
end if;
end process;
q <= q_s;
qn <= not q_s;
end one;
元件门级电路:
与门VHDL文本描述实现:
--与门描述library ieee;
use ieee.std_logic_1164.all;
entity yumen2 is
port(
a,b:in std_logic;
co:out std_logic
);
end entity yumen2;
architecture one of yumen2 is
begin
co<= (a and b );
end architecture one;
门级电路:
十进制异步加法器例化元件文本实现:
library ieee; --JK触发器描述use ieee.std_logic_1164.all;
entity jk_ff is
port(
j,k,clk: in std_logic;
q,qn:out std_logic
);
end jk_ff;
architecture one of jk_ff is
signal q_s: std_logic;
begin
process(j,k,clk)
begin
if clk'event and clk='0' then
if j='0' and k='0' then
q_s <= q_s;
elsif j='0' and k='1' then
q_s <= '0';
elsif j='1' and k='0' then
q_s <= '1';
elsif j='1' and k='1' then
q_s <= not q_s;
end if;
end if;
end process;
q <= q_s;
qn <= not q_s;
end one;
--与门描述
library ieee;
use ieee.std_logic_1164.all;
entity yumen2 is
port(
a,b:in std_logic;
co:out std_logic
);
end entity yumen2;
architecture one of yumen2 is
begin
co<= (a and b );
end architecture one;
library ieee; --十进制加法计数器描述use ieee.std_logic_1164.all;
entity count10 is
port(
cp: in std_logic;
c:out std_logic;
q:out std_logic_vector(3 downto 0)
);
end entity count10;
architecture count of count10 is
--例化元件JK触发器component jk_ff
port(
j,k,clk: in std_logic;
q,qn:out std_logic
);
end component;
--例化元件与门component yumen2
port(
a,b:in std_logic;
co:out std_logic
);
end component;
signal d,e,f,g,h,i,v,l,z:std_logic;
signal ou:std_logic_vector(3 downto 0);
begin
jk1:jk_ff port map(j=>'1',k=>'1',clk=>cp,q=>e);
jk2:jk_ff port map(j=>f,k=>'1',clk=>e,q=>h);
jk3:jk_ff port map(j=>'1',k=>'1',clk=>h,q=>i);
jk4:jk_ff port map(j=>l,k=>'1',clk=>e,q=>z,qn=>f); ym1:yumen2 port map(a=>e,b=>z,co=>c);
ym2:yumen2 port map(a=>h,b=>i,co=>l);
q<=z&i&h&e; -- 信号输出
end architecture count;
门级电路:
波形仿真:
展开二进制显示:
无符十进制显示:
思考与改进:
该设计中可以直接把使用与门的地方改用and语法代替。
若不是用例化语句则该电路可以简单的用循环加法实现。
12月16日
电气工程与自动化系李奇杰
参考资料:
1.数字电子技术基础简明教程(第三版)清华大学电子学教研组高教出版社
2.EDA技术与VHDL(第三版)潘松黄继业清华大学出版社。