平面及其方程
平面及其方程7-5

§7.5平面及其方程一、平面的点法式方程法线向量:如果一非零向量垂直于一平面 .这向量就叫做该平面的法线向量.容易知道 '平面上的任一向量均与该平面的法线向量垂直.唯一确定平面的条件 :当平面口上一点M o (X 0 J0 Z0)和它的一个法线向量 n^A^B *C)为已知时、平面n 的位置就完全确定了 .平面方程的建立:设M(x.y.z)是平面□上的任一点.那么向量M ^M 必与平面n 的法线向量n 垂直、即它们的数量积等于零 :由于Tn 球A*BC)* M 0M =(x —X 0, y —y 。
, Z —Z 0).所以A(XF 0)+B(y-y 0)弋(z-Z 0)=0 .n 上任一点M 的坐标 心工所满足的方程.、如果M (x 、y .Z)不在平面r 上、那么向量M^M 与法线向量n 不垂直、从而…即不在平面□上的点M 的坐标X y .Z 不满足此方程. 由此可知、方程A(x-X 0)+B(y-y 0)P(z-Z 0)n 就是平面□的方程.而平面口就是平面方程的图 形.由于方程A (X%)怕(y-y 0)4c (z-Z 0)=0是由平面L [上的一点M 0(X 0、y 0、Z 0)及它的一个法线向量 n=(AB 、C)确定的、所以此方程叫做平面的点法式方程.例1求过点(2Q)且以 ^(K-2. 3)为法线向量的平面的方程.解根据平面的点法式方程 '得所求平面的方程为(x-2)-2(yt3)t3z=0 * x-2y+3z£n .M 1(2 H ⑷、M 2(—1 \3 L 2)和M 3(0 ,2①的平面的方程.T因为 M 1M 2 =(—3,4, -6)、M 1M 3=(-2,3, —1)、 所以T T in= M 1M^M 1M^ -3-2这就是平面 反过来T n M 0M =0即例2求过三点 解我们可以用 T TM i M 2X M 1M 3作为平面的法线向量k-6 =14 + 9j-k . -1根据平面的点法式方程、得所求平面的方程为14(x-2)H(y+1)-(z -4H0 . 14x49y_ z_15』. 二、平面的一般方程由于平面的点法式方程是 x.y 的一次方程.而任一平面都可以用它上面的一点及它的法线 向量来确定 '所以任一平面都可以用三元一次方程来表示.反过来、设有三元一次方程Ax +By 4Cz 4D =0.我们任取满足该方程的一组数 x o .y o .z ^即Ax o +By o 4Cz o +D =0 .把上述两等式相减 '得A(x£o )+B(y-y o )兀(z-z o )=O 、这正是通过点 M o (x o.y oQ )且以nNA 、BQ 为法线向量的平面方程 .由于方程Ax +By 4Cz *DO与方程A(x 必)+B(y-y o )七(Z-z o ) =o同解*所以任一三元一次方程Ax 也y P z +O n 的图形总是一个平面.方程Ax 4By M z +D =o 称为平面的一般方程,其中 心z 的系数就是该平面的一个法线向量n 的坐标‘即nNA'B .0).例如 '方程3x -4y +z -9=0表示一个平面 小=(3\*訂)是这平面的一个法线向量 .讨论:考察下列特殊的平面方程 .指出法线向量与坐标面、 坐标轴的关系 '平面通过的特殊点或线.Ax +By f z ^o ;By 七Z 也 n^Ax ^z P^o r Ax +By +D P ; Cz +D P 'Ax PO By +D P . 提示: 平面过原点.n =(o *B Q).法线向量垂直于 n =(A 、o rC).法线向量垂直于 n =(A *B *o ).法线向量垂直于 n=(o *o *C)、法线向量垂直于 n=(A .o ,o b 法线向量垂直于 n=(o 占,o b 法线向量垂直于例3求通过x 轴和点(4L 1)的平面的方程.解 平面通过x 轴、一方面表明它的法线向量垂直于 点、即DP .因此可设这平面的方程为By 弋z^o .x 轴*平面平行于 y 轴、平面平行于 z 轴、平面平行于x 轴和y 轴,平面平行于 y 轴和z 轴r 平面平行于 x 轴和z 轴r 平面平行于 xOy 平面.yOz 平面. zOx 平面.X 轴、即AR ;另一方面表明 它必通过原又因为这平面通过点(4 *-3 *7) *所以有—BB-Cn 、或 C 」B .将其代入所设方程并除以B (B 如)、便得所求的平面方程为y ;z=0.例4设一平面与X 、y 、z 轴的交点依次为 P (a *0 * 0)、Q (0、b *0)、R (0 , 0、c )三点、求这平面的 方程(其中乂&?€).解 j a ^D =0, f bB +D =0, pc +D=0,A=-D 、B=-D r C=—D a b c 将其代入所设方程、得 -Dx-Dy-Dz+D =0 、 a b c X +上也=1 . a b c '上述方程叫做平面的截距式方程 *而a 、b 、c 依次叫做平面在 X 、y 、z 轴上的截距.三、两平面的夹角两平面的夹角:两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面n 1和rb 的法线向量分别为 n 1N A 1占1 C )和n 2=(A 2旧2、C 2)、那么平面n 1和rb 的夹角e 、―AAA_A应是(n 1, n 2)和(Til , n 2)F —g ,改)两者中的锐角、因此、cos 日^cosg ,匹)!.按两向量夹角余弦的坐标表示式.平面n 1和rt 的夹角e 可由来确定.从两向量垂直、平行的充分必要条件立即推得下列结论平面口 1和巧垂直相当于A1A2怕辰 QC2=0; 平面□ 1和n 2平行或重合相当于 A =BL -C!.A , B, C 2例5求两平面 x-yPz-6=0和2x 为七-5=0的夹角. 解 n 1=(A 1 启1 Q1)=(1、一1 *2)、n 2m A 2、B 2Q2)=(2*1 * 1).c 1c2l_ I1'2■ (-1)'T ■ 2…I| Jcos g _lAie 日口2 "T A 2+ Bfg 2叔2 +B :七:"712+(-1)2七2722+12+12~^设所求平面的方程为Ax+By4Cz*HD=0.P (a *0 *0)、Q (0 *b *0)、R (0 ,0 ,c )都在这平面上*所以点P 、Q 、R 的坐标都满足所设方程*即 因为点 有由此得IAA2+B 1B 2+C 1C 2IAco眄cosg,讣府魯Y A 呢W|1X2 +(-1)X1 +2咒1||AA 2+B ,B 2pi C 2|所以*所求夹角为,4,例6 一平面通过两点 M 1(1」和M 2(o 」#)且垂直于平面 x+y+z=o 、求它的方程.解 方法一:已知从点M 1到点M 2的向量为 山勻/卫、-?)、平面x+y+z=o 的法线向量为n 2=(1、 1 J). 设所求平面的法线向量为n^A 、B 、C).因为点M 1(1、1、1)和M 2(o1)在所求平面上、所以n 丄n 仁即从—2C=o 、A 亠2C . 又因为所求平面垂直于平面 x^^zT*所以n 丄m*即A+B4C=o*B=C. 于是由点法式方程*所求平面为-2CZ)£(y —1)兀(Z —1)0 即 2x —y-z=o.方法二:从点M 1到点M 2的向量为n 1 =(-1 e *-2) *平面x+y+z=o 的法线向量为“2=(1* 1 , 1). 设所求平面的法线向量因为所以所求平面方程为2(x-1)-(y-1)-(z-1)0 2x-y-z=0 .例7设P o (x o ,y o ,z o )是平面Ax+By 兀z 也=0外一点、求P o 到这平面的距离. 解 设e n 是平面上的单位法线向量.在平面上任取一点 P 1(X 1 $1 *Z 1)*则P o 到这平面的距离为|A(X o^i )+B(y o-y i )七(z o^i )|扌是示:en^7A ^B ^(A, B, C)' 活o =(xo —x 1,yo —y 1,zo —z1)、例8求点(2 J J )到平面x +y -z +1 =0的距离.解 d JAxp^y o 弋zo^DI 」仝2丁X 1—(—1門+1| _ 3 —E _J A 2 + B 2 弋2 j 12+12+(—1)273 ' n 可取为npc n2 .i:-J o 1J A 2 +B 2+C 2JAx o 怕y oy z o-(Ax1HBy 1 七Z 1)| J A 2 +B 2 七2JAx^怕yo +Czo +D|Td 斗RP oen 1 =j 12+12+(_1)2。
平面及其方程

4A B 2C 0
于是
A B 2C,
3
所求平面方程为 2x 2 y 3z 0.
练习4 求平行于平面6x y 6z 5 0而与三个坐
标面所围成的四面体体积为一个单位的平面方程.
解 设平面为 x y z 1, a bc
V 1, 得 1 1 abc 1, 32
由所求平面与已知平面平行得
练习5 一平面通过两点M(1 1,1,1)和M(2 0,1,1) 且垂直于平面x y z 0,求它的方程.
解 设所求平面得一个法线向量为 n (A, B,C).
因M1M2 (1, 0, 2)在所求平面上,它必与n垂直, 所以有
A 2C 0.
(1)
又因所求的平面, 1), M2(2,1, 2)和 M3(1,1, 4) 的平面方程.
解 M1M2 (1,1,3), M1M3 (2,1, 3), 取 n M1M2 M1M3 (6, 3,3), 所求平面方程为
-6(x-1)-3(y-0)+3(z+1)=0 化简得 2x+ 3y- 3z- 3=0.
化简得 2x 3 y z 6 0.
练习2 求通过 x 轴和点(4,3,1)的平面方程.
解 由于平面通过 x 轴,从而它的法线向量垂直 于x轴,于是法线向量在 x轴上的投影为零,即A 0;
又由平面通过 x 轴,它必须通过原点,于是D 0.
因此可设这平面的方程为 By Cz 0.
代入点(4,3,1),得 C 3B.
6.4 平面及其方程
6.4.1 平面方程 6.4.2 两平面间的夹角 6.4.3 点到平面的距离
6.4.1 平面方程
1 平面的点法式方程
如果一非零向量垂直于一平面,这向量就叫做
平面及其方程77567

o
y
x
由所求平面与已知平面平行得
111 (向量平行的充要条件) a b c ,
616
化简得 1 1 1 , 令 1 1 1 t 6a b 6c 6a b 6c
a 1 , b 1, c 1 ,
6t
t
6t 代入体积式
1 1 1 1 1 6 6t t 6t
1
n2 { A2 , B2 ,C2 },
SUCCESS
THANK YOU
2019/6/21
按照两向量夹角余弦公式有
cos
| A1 A2 B1B2 C1C2 |
A12 B12 C12 A22 B22 C22
两平面夹角余弦公式
两平面位置特征:
(1) 1 2 A1 A2 B1B2 C1C2 0;
所求平面方程为
10( x 1) 15( y 1) 5(z 1) 0,
化简得 2x 3 y z 6 0.
二、平面的一般方程
由平面的点法式方程
A( x x0 ) B( y y0 ) C(z z0 ) 0
Ax By Cz ( Ax0 By0 Cz0 ) 0
D
Ax By Cz D 0 平面的一般方程
法向量 n {A, B,C}.
平面一般方程的几种特殊情况:
(1) D 0, 平面通过坐标原点;
D 0, 平面通过 x轴; (2) A 0, D 0, 平面平行于 x轴;
类似地可讨论 B 0, C 0 情形.
一、平面的点法式方程 z
n
如果一非零向量垂直 于一平面,这向量就叫做
M0 M
高等数学7.7平面及其方程

M 0 M {xx 0,yy 0,zz 0},
z n
所以 A(xx 0)B(yy 0)C(zz 0)0. 这就是平面的方程. 此方程叫做平面的点法式方程.
M0
O x
M
y
例1 求过点(2,3,0)且以
n{1,2,3}为法线向量的平
或 C3B. y3z0.
将其代入所设方程并除以B(B 0),便得所求的平面方程为
例4 设一平面与x、y、z轴的交点依次为P(a, 0, 0)、Q(0, b, 0)、 R(0, 0, c)三点,求这平面的方程(其中a 0,b 0,c 0).
z R (0, 0, c)
n Q (0, b, 0) O y
M 1M 3 {2,31},
可取
n M 1 M 2 M 1 M 3 3 4 6 14i9jk, 2 3 1
根据平面的点法式方程,得所求平面的方程为
14(x2)9(y1)(z4)0, 即 14x9yz150.
i
j
k
n
Prj n P1 P0 P1 P0 ·n,
P1
P0
N
1 n {A,B,C}, P1 P0 {x0x1,y0y1,z0z1}, |n| 1 Prj n P1 P0 P1 P0 ·n, {A(x0x1)B(y0y1)C(z0z1)} |n| 1 {Ax0By0Cz0( Ax1By1Cz1)}, |n|
面的方程.
解 根据平面的点法式方程,得所求平面的方程为 (x2)2(y3)3z0, 即 x2y3z80.
例2 求过三点M 1(2,1,4)、M 2(1,3,2)和M 3(0,2,3) 的平面的方程. z 解 先求出这平面的法线向量 n .
8(5)平面及其方程

(plane)
平面的点法式方程 平面的一般方程 两平面的夹角 点到平面的距离 小结 思考题 作业
1
第八章 空间解析几何与向量代数
平面及其方程
在空间内, 在空间内,确定一个平面的几何条件 不共线的三点确定、 是多种多样的. 是多种多样的. 如: 不共线的三点确定 P2
平面及其方程
二、平面的一般方程
平面的点法式方程
A( x − x0 ) + B( y − y0 ) + C ( z − z0 ) = 0
Ax By Cz A + B +C + D= 0 r 法向量 n = ( A, B , C )
Ax + By + Cz − ( Ax0 + By0 + Cz0 ) = 0 =D
y + 3z − 1 = 0
| −1 × 0 + 2 × 1 − 1 × 3 | , 2 2 2 2 2 ( −1) + 2 + ( −1) ⋅ 1 + 3
1 两平面相交, 两平面相交 cosθ = 60
1 夹角 θ = arccos . 60
15
平面及其方程
( 2 ) 2 x − y + z − 1 = 0, − 4 x + 2 y − 2 z − 1 = 0
D = 0,
6 A − 3 B + 2C = 0
z
r n= (A, B,C)
•
r Q n ⊥ (4,−1,2) ∴ 4 A − B + 2C = 0
2 ⇒ A = B = − C, x 3 所求平面方程为 2 x + 2 y − 3 z = 0.
第五节 平面及其方程

G ( x, y , z ) 0
F ( x, y , z ) 0
z
S O y
x
S2
C F ( x, y , z ) 0
S1
则方程组(1)叫做空间曲线 C 的方程, 曲线 C 叫做方程组(1) 的图形.
目录 上页 下页 返回 结束
两个基本问题 : (1) 已知一曲面(曲线)作为点的几何轨迹时, 求曲面(曲线)方程. (2) 已知方程时 , 研究它所表示的几何形状 ( 必要时需作图 ).
平面 2 : A2 x B2 y C2 z D2 0, n2 ( A2 , B2 , C2 ) 垂直: 平行: n1 n2 0
A1 A2 B1B2 C1C2 0
A1 B1 C1 A2 B2 C2
n1 n2 夹角公式: cos n1 n2
1
cos
A1 A2 B1 B2 C1C2
A1 B1 C1
2 2 2
A2 B2 C2
目录
2
2
2
上页
下页
返回
结束
1 : n1 ( A1 , B1 , C1 )
特别有下列结论:
n1 n2 cos 2 : n2 ( A2 , B2 , C2 ) n1 n2
x0 y0 z0 1, 1 3 x0 3 x0
故
O
M0
y
因此所求球面方程为
x
目录
上页
下页
返回
结束
n2
(1) 1 2 (2) 1 // 2
n1 n2 A1 A2 B1 B2 C1 C2 0 n1 // n2
向量代数与空间解析几何-平面及其方程

−1 −1 1 2 Q = = = , 两平面重合 −4 2 2 −2
例8 求过点 M1 (0, −1,0), M 2 (0,0,1),且与xoy面
成 60 角的平面.
o
r n
60o
解 所求平面的法向量为: r n = ( A, B , C ), ⎯ ⎯→ r Q n ⊥ M 1 M 2 = (0, 1, 1) ⎯→ r ⎯ ∴ n ⋅ M 1 M 2 = 0, B + C = 0 r∧ r 又 Q ( n , k ) = 60o r r 1 n⋅k C o = cos 60 = r r = r ∴ 2 nk n
⎯ ⎯→
r n
⋅ P0 P1 ⋅
N
Π
P1 P0 ⋅ n Prjn P1 P0 = n
⎯ ⎯→
P1 P0 = ( x0 − x1 , y0 − y1 , z0 − z1 )
⎯ ⎯→
r n = ( A, B , C )
P1 P0 ⋅ n Prjn P1 P0 = n
⎯ ⎯→ ⎯ ⎯→
A( x0 − x1 ) + B( y0 − y1 ) + C ( z0 − z1 ) = A2 + B 2 + C 2
第七章
第三节 平面及其方程
一、主要内容 二、典型例题 三、同步练习 四、同步练习解答
一、主要内容
(一) 平面方程
设有平面 Π , M0 ( x0 , y0 , z0 ) ∈ Π 点 z r 如果一非零向量垂直于一 n 平面,这向量就叫做该平 M0 Π 面的法向量. M r o 平面 Π 的法向量 n 的 特征: r r x ① n≠0 r ② n⊥Π
y
r 设法向量:n = ( A, B , C ), r ( n = A2 + B2 + C 2 ≠ 0)
1.6平面及其方程

平面的一般方程为Ax+By+Cz+D=0,其法线向量为n=(A, B, C). 讨论: 1.填写下表: 平面方程 By+Cz+D=0 Ax+Cz+D=0 Ax+By+D=0 Cz+D=0 Ax+D=0 By+D=0 法线向量 n=(0, B, C) n=(A, 0, C) n=(A, B, 0) n=(0, 0, C) n=(A, 0, 0) n=(0, B, 0) 法线向量垂直于 平面平行于 x轴 x轴 y轴 y轴 z轴 z轴 x轴和y轴 xOy平面 y轴和z轴 yOz平面 x轴和z轴 zOx平面
平面的点法式方程 过点M0(x0, y0, z0)且法线向量为n=(A, B, C)的平面的方程 为 A(x-x0)+B(y-y0)+C(z-z0)=0.
例1 求过点(2, -3, 0)且以n=(1, -2, 3)为法线向量的平面的 方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x-2)-2(y+3)+3z=0, 即 x-2y+3z-8=0.
平面的点法式方程 过点M0(x0, y0, z0)且法线向量为n=(A, B, C)的平面的方程 为 A(x-x0)+B(y-y0)+C(z-z0)=0.
例2 求过三点M1(2,-1, 4)、M2(-1, 3,-2)和M3(0, 2, 3)的平 面的方程.
解 我们可以用 M 1M 2 M 1M 3 作为平面的法线向量 n. 解
2.平面Ax+By+Cz=0有什么特点? 提示: D=0, 平面过原点.
平面的一般方程为Ax+By+Cz+D=0,其法线向量为n=(A, B, C). 例3 求通过x轴和点(4, -3, -1)的平面的方程. 解 可设此平面的方程为 By+Cz=0. 又因为此平面通过点(4, -3, -1), 所以有 -3B-C=0. 将C=-3B其代入所设方程, 得 By-3Bz=0. 于是所求的平面方程为 y-3z=0. 提示:平面通过 x 轴 , 表明 A=0( 它的法线向量垂直于 x 轴 ) 且 D=0(它通过原点).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)平面的一般方程
1、定理1: 任何x, y, z的一次方程. Ax +By +Cz +D = 0都表示平面,且此平面的一个法向量是:
n = (A, B, C )
证: A, B, C不能全为0, 不妨设A 0, 则方程可以化为
A
x
(
D A
)
B
(
y
0
)
C
(
z
0
)
0
它表示过定点
M
0
(
D A
,0,0)
例4: 求通过x 轴和点(4, 3, 1)的平面方程.
解: 由于平面过x 轴, 所以 A = D = 0. 设所求平面的方程是 By + Cz = 0 又点(4, 3, 1)在平面上, 所以 3B C = 0 C = 3B 所求平面方程为 By 3Bz = 0
即:
y 3z = 0
二、两平面的夹角
(1) [ ] = [ ]= [ ] = – [ ]= – [ ] = – [ ]
(2) , , 共面
[ ]= 0
事实上, 若 , , 在同一个平面上, 则 垂直于它们所在的平面, 故 垂直于 , 即
( ) = 0
3、混合积 ( ) 的几何意义
空间直线可看成是两个不平行平面1与2的交线 已知平面1: A1x + B1y + C1z + D1 = 0
2: A2x + B2y + C2z + D2 = 0
那末, 交线L上的任何点的坐标满足:
z
A1x + B1y + C1z + D1 = 0 (1) A2x + B2y + C2z + D2 = 0
1.定义1 两平面的法向量的夹角(通常指锐角)
称为两平面的夹角. 若已知两平面方程是:
1: A1x + B1y + C1z + D1 = 0
n2 n1
法向量 n1 = (A1, B1, C1)
2: A2x + B2y + C2z + D2 = 0
法向量 n2 = (A2, B2, C2)
2
1
平面Π1与Π2的夹角 应是
(n1, n2 )和( n1, n2 ) (n1, n2 )两者中的锐角,
所以
cosθ cos(n1, n2 )
n2 n1
| n1 n2 | | n1 | | n2 |
| A1 A2 B1 B 2 C1C 2 |
A12
B12
C
2 1
A
2 2
B
2 2
C
2 2
2
1
特别:
平面1与2 相互垂直
2 平面 的法向量n与 上任一向量垂直.
2. 平面的点法式方程
设平面 过定点 M0(x0, y0, z0), 且有法向量n=(A,B, C).
对于平面上任一点M(x, y, z), 向量M0M与n垂直.
z
n
M0
n M0 M = 0
M
而M0 M =(x x0, y y0, z z0),
O
y
得:
已知平面 x+ y+ z = 0的法向量 n1=( 1, 1, 1)
所以:
n M1M2 且n n1
而
M1M2 = ( 1, 0, 2)
于是:
A ( 1) + B 0 + C (2) = 0
A1+B1+C1=0
M1(1, 1, 1) , M2(0, 1, 1)
解得:
B=C
A= 2C
取C = 1, 得平面的一个法向量
,
且
法向量为 n = (A, B, C ) 的平面.
注:一次方程: Ax + By + Cz + D = 0 (4)
称为平面的一般方程.
例3: 已知平面过点M0(1, 2, 3), 且平行于 平面2x 3y + 4z 1= 0, 求其方程.
解: 所求平面与已知平面有相同的法向量n =(2 3, 4)
x + y +1 = 0
2x y + 4 = 0
解得:
x0
5, 3
y0
2 3
所以,
点M
0
(5, 3
2 , 0 )在直线上. 3
(2) 再找直线的方向向量 s .
由于平面1: x + y + z +1 = 0的法线向量 n1=(1, 1, 1)
平面2: 2x y+3z+4 = 0的法线向量 n2=(2,1, 3)
平行六面体
a b = |a| Prjab
底面积 S | |
高 h 为 在 上的投影的绝对值
h | pij |
h
所以,
V = S h = | | | pij |
= |( ) |
混合积( ) 的绝对值等于以 , , 为棱 的平行六面体的体积 V 的数值。
所以, 可取
A1A2 + B1B2 + C1C2 = 0
平面1与2 相互平行
A1 B1 C1 A2 B2 C 2
规定: 若比例式中某个分母为0, 则相应的
分子也为0.
例5: 一平面通过两点M1(1, 1, 1)和M2(0, 1, 1), 且垂 直于平面 x+y+z = 0, 求它的方程.
解: 设所求平面的一个法向量 n = ( A, B, C )
三、两向量的混和积
1.定义2 设有三个向量, , , 称 与 的向量积 再与向量 的数量积为向量, , 的混合积,记作 [ ] 即 [ ]= ( )
2.混合积的坐标表示式
设向量 = (ax , ay , az), = (bx , by , bz), = (cx , cy , cz),
即 V 1 | [AB AC AD] | . 6
AB = (x2 – x1, y2 – y1, z2 – z1),
AC = (x3 – x1, y3 – y1, z3 – z1),
AD = (x4 – x1, y4 – y1, z4 – z1),
所以,
V=
1 6
x2 x3
x1, x1,
x4 x1,
n = (2, 1, 1)
所以, 所求平面方程是 2 (x 1) + 1 (y 1) + 1 (z 1) = 0
即:
2x y z = 0
三、点到平面的距离
设 P0(x0, y0, z0)是平面 Ax+By+Cz+D = 0外一点,
求 P0到这平面的距离d.
在平面上任取一点P1(x1, y1, z1)
n ·i = A ·1 + B ·0 + C ·0 = A = 0 于是:
平行于x 轴的平面方程是 By + Cz + D = 0; 平行于y 轴的平面方程是 Ax + Cz + D = 0; 平行于z 轴的平面方程是 Ax + By + D = 0.
特别: D = 0时, 平面过坐标轴.
(3) 平行于坐标面的平面方程 平行于xOy 面的平面方程是 Cz + D = 0; (即z = k) 平行于xOz 面的平面方程是 By + D = 0; (即y = k) 平行于yOz 面的平面方程是 Ax + D = 0. (即x = k)
所以, 得点P0到平面Ax+By+Cz+D=0的距离:
d Ax 0 By 0 Cz 0 D (5) A2 B2 C2
例6:求点A (1, 2, 1)到平面:x + 2y +2z
10=0的距离
d 11 2 2 2110 3 1
12 22 22
3
§4 空间直线及其方程
一. 空间直线的方程 (一)空间直线的一般方程
M2 ( x 2 , y 2 , z 2), M3 (x 3 , y 3 , z 3),
对于平面上任一点 M (x , y , z),
M1M, M1M2, M1M3 共面
即 x x1 y y1 x2 x1 y2 y1 x3 x1 y3 y1
(M1M M1M2 ) M1M3 0,
z z1 z2 z1 0. (2) z3 z1
n
则 P1P0 =(x0 x1, y0 y1, z0 z1)
P0
过P0点作一法向量 n =(A, B, C)
P1
于是:
d Pr j n P1 P0
P1 P0 n |n|
N
A( x0 x1 ) B( y0 y1 ) C ( z0 z1 ) A2 B2 C2
又 A(x0x1)+B(y0y1)+C(z0z1) = Ax0+By0+Cz0+D(Ax1+By1+Cz1+D) = Ax0+By0+Cz0+D
平面的三点式方程.
(三) 平面的截距式方程
设平面与x, y, z 轴的交点依次为P(a, 0, 0),
Q(0, b, 0), R(0, 0, c)三点
z
则 xa y z
R
a b 0 0.
a 0 c
o P
Qy
有 bcx acy abz abc x
当 a,b, c 非零时
得 x y z 1 (3) abc
例5: 已知空间内不在一个平面上的四点
A (x 1 , y 1 , z 1), B ( x 2 , y 2 , z 2), C (x 3 , y 3 , z 3), D (x 4 , y 4 , z 4) 求四面体 ABCD 的体积。 解:四面体 ABCD 的体积等于以 AB, AC 和 AD 为棱的平行六面体体积的六分之一,