实验(1)PWM电机调速实验报告材料
小直流电机调速实验报告

小直流电机调速实验报告【前言】小直流电机调速是电动机控制的基础,也是电力电子技术中的一个重要实验项目,本实验通过对小直流电动机调速系统的搭建和调试,了解电力电子技术在电动机控制中的应用,提高学生对电动机控制的认识和理解。
【实验目的】1. 熟悉小直流电动机的电路结构和性能特点;2. 掌握控制小直流电机转速的方法;3. 学会使用单相可控硅控制直流电机;4. 掌握直流电动机调速原理及其控制策略;5. 了解直流电动机调速系统的工作流程和控制方法。
1. 小直流电机2. 可控硅触发电路3. 脉冲宽度调制器(PWM)模块4. 直流电源5. 数字万用表小直流电动机调速的基本原理是通过改变电动机的电压和电流来改变转速,实现精度调速。
当调整电动机电源的电压时,电动机转速会相应地变化。
可控硅是被广泛应用的电力半导体器件之一,使用可控硅控制电动机启动和停止,可以实现对电动机的精确控制。
触发电路通过贝尔定律、黎曼和华氏定理结合可控硅的工作原理将正弦波信号转换成脉冲波信号,从而使可控硅转导角度和电流变化。
PWM模块控制可控硅导通时间,间断时间和工作周期,从而实现电机转速的精确调节。
1. 搭建电路:将可控硅触发电路和小直流电动机连接到直流电源上;2. 打开电源开关,将电压调节到合适的值;3. 启动可控硅触发电路,使电机开始运转;4. 使用数字万用表,测量电机运转的转速,记录结果;5. 按照实验要求,改变PWM模块的各种参数,观察电动机转速的变化;6. 记录实验过程和结果,写出实验报告。
【实验结果与分析】通过实验,成功地搭建了小直流电动机调速系统,实现了对电机的转速精确控制。
在调节可控硅导通角度的过程中,电机转速随着导通角度的变化而发生变化,证明控制电机转速的方法是可行的。
在调节PWM模块参数的过程中,也可以看到电机转速的变化。
实验结果表明,小直流电动机调速采用可控硅和PWM模块控制,可以实现高精度、高效率的电机转速调节。
【结论】【改进方向】本实验中使用的是单相可控硅,受限于控制系统的复杂度和硬件成本,只能实现单向控制,控制效果相对较差。
基于.PWM的电机调速系统

基于PWM的电机调速系统实验目的:1.学会并掌握可keil软件的使用;2.学会并掌握protues软件的使用;3.通过实验巩固单片机相关知识和检验自身动手能力实验要求:掌握单片机相关知识,利用调PWM占空比的方式来控制直流电机的转速,并且在led数码管上显示转速。
实验设备和仪器:1.89c51单片机最小系统2.直流电机3.示波器实验内容:本次实验设计是由小组五个成员共同完成基于PWM的电机调速系统并完成实物搭建和撰写实验报告。
本次实验小组共提供了两个方案,方案一和方案二,两个方案各自具有优缺点,详细内容会在下面给出。
方案一实验步骤:1.利用protues画电路图,电路图如图1所示:图1:方案一电路图2.根据电路图编写C语言代码:代码如下:#include <reg51.h>sbit PWM=P2^7;sbit CS3=P2^3;sbit CS2=P2^2;sbit CS1=P2^1;sbit CS0=P2^0;sbit key1=P1^0;sbit key2=P1^1;sbit key3=P1^2;sbit key4=P1^3;unsigned char timer1;unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};void Time1Config();void main(void){Time1Config();while(1){if(timer1>100) //PWM周期为100*0.5ms{timer1=0;}if(~key1){if(timer1 <30) //改变30这个值可以改变直流电机的速度{PWM=1;}else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0;P0=tab[3];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1;P0=tab[0];P0=0xff;}else if(~key2){if(timer1 <50){PWM=1;else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0; P0=tab[5];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1; P0=tab[0];P0=0xff;}else if(~key3){if(timer1 <80){PWM=1;}else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0; P0=tab[8];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1; P0=tab[0];P0=0xff;}else if(~key4){if(timer1 <100){PWM=1;}else{PWM=0;}CS0=0;CS1=1;CS2=0;CS3=0; P0=tab[1];CS0=0;CS1=0;CS2=1;CS3=0;P0=tab[0];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1;P0=tab[0];P0=0xff;}}}void Time1Config(){TMOD|= 0x10; //设置定时计数器工作方式1为定时器//--定时器赋初始值,12MHZ下定时0.5ms--//TH1 = 0xFE;TL1 = 0x0C;ET1 = 1; //开启定时器1中断EA = 1;TR1 = 1; //开启定时器}void Time1(void) interrupt 3 //3 为定时器1的中断号{TH1 = 0xFE; //重新赋初值TL1 = 0x0C;timer1++;}3.实验仿真,部分仿真结果如图2图3所示:图2:仿真结果图(1)图3:仿真结果图(2)4.实物验证结果如图4所示:图4:方案一实物验证结果实物验证可以明显感觉到电机转速的变化,由于每个开发板不同,相比仿真程序,对实物验证程序进行了略微的修改,最终能达到要求。
1-3 直流电动机的脉宽调制(PWM)调速

若VT1关断时间长,在t=t2时,电枢电流ia衰减 到零,那么在电动机内电势Ea的作用下,VT2导通, 电枢电流ia 将沿着相反的方向从B点流入A点,电机 进入能耗制动。通过控制VT2的时间间隔可以控制电 机的制动转矩 注意:在VT1重新导通之间,必须先关闭VT2, 让电枢电流经过VD1续流,电机短时进入再生制动状 态,否则在VT2还没有完全关断之前就让VT1导通, 电源经过VT2、VT1直接短路,损坏开关元件。
1、单极性脉宽调制方式 系统输出电压UA的极性是通过一个控制电压Uc 来改变的。 Uc为正,VT1与VT2交替导通,VT4一直导通, VT3关断,此时,B点总是为正,A点总是为负 Uc为负,VT3与VT4交替导通,VT2一直导通, VT1关断,此时,B点总是为负,A点总是为正
工作原理: Uc为正时 0<t<t1时,VT1导通,VT2关断,若Us>Ea, 电枢电流经VT1、VT4从B流到A,电机处在电动 机状态。 在t1<t<T时,VT1关闭,VD2与VT4续流,电枢 电流方向不变,电机仍处在电动机状态。 若在t1<t<T期间的某一时刻t2电枢电流衰减到 零,那么在t2<t<T期间,Ea使VT2导通,电枢电 流反向,经VT2、VD4从A流到B,电机进入能耗 制动状态 若Ea>Us,在VT2关断期间,电枢电流经VD1 和VD4输回电网,电机作再生制动 Uc为负时,原理与此类似,电机反向
如果电流连续,则电机始终处于电动状态 若在t1<t<T期间的某一时刻t2电枢电流衰减到 零,那么在t2<t<T期间,Us和Ea共同作用,使 VT2、VT3导通,电枢电流反向,经VT2、VT3从A 流到B,电机进入反接制动状态 在VT1、VT4再次导通之前,必须关断VT2、 VT3,电枢电流VD1、VD4续流,电机进入再生制 动
用PWM方法实现电动机调速的设计(模板)任务书.doc

一、电机调速控制模块:方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。
但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。
更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。
方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。
这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。
方案三:采用集成芯片L298N 。
L298N是SGS(通标标准技术服务有限公司)公司的产品,内部包含4通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
其有控制精度高、稳定性好、响应速度快等优点,使用它和PWM技术可控制驱动电流大小以达到电机速度的调整。
兼于方案三调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三。
二、电机测速模块方案一:使用霍尔传感器。
霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,它具有灵敏度高,线性度好,稳定性高、体积小和耐高温等特点,在机车控制系统中占有非常重要的地位。
对测速装置的要求是分辨能力强、高精度和尽可能短的检测时间。
其对硬件电路要求也要高。
方案二:使用光电码盘。
光电码盘是由光学玻璃制成,在上面刻有许多同心码道,每个码道上都有按一定规律排列的透光和不透光部分。
工作时,光投射在码盘上,码盘随运动物体一起旋转,透过亮区的光经过狭缝后由光敏元件接受,光敏元件的排列与码道一一对应,对于亮区和暗区的光敏元件输出的信号,前者为“1”,后者为“0”,当码盘旋转在不同位置时,光敏元件输出信号的组合反映出一定规律的数字量,代表了码盘轴的角位移。
但其使用较麻烦,准确度与反应速度不高。
对软件方面要求也高。
方案三:使用光电开关GK105。
光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
基于pwm技术的无刷直流电机的调速系统设计大学论文

基于PWM技术的无刷直流电机的调速系统设计Brushless DC Motor Speed Control System Based On PWM摘要无刷直流电机(BLDCM)具有调速性能优异、运行性能可靠和维护方便等优点,相较于有刷直流电机,其采用电子换向取代机械换向,有效地提高了电动机的运行效率,也使得其成品体积更加的轻巧。
但是无刷直流电机也存在转矩脉动、控制器复杂、成本较高等缺陷,这些缺陷的存在也一定程度上影响了无刷直流电机作为高效、先进电机在应用上的普及,因此研究如何改善以及解决无刷直流电机存在的问题便具有更加明显的现实意义。
MATLAB是一款用于数据分析与计算、算法开发以及动态系统建立与仿真的数学软件。
最初是由美国MathWorks公司出品的商用数学软件,其由Matlab和Simulink 两个重要组成部分构成,现在更是应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
本文通过对无刷直流电机结构以及工作原理的研究与分析,找出导致其具有较大转矩脉动的原因,并先从理论上得到如何抑制转矩脉动的方法,再通过Matlab 建立起无刷直流电机的仿真模型,对其仿真结果进行分析与改善,从而有效地抑制无刷直流电机的转矩脉动。
关键词:无刷直流电机,转矩脉动,仿真模型AbstractBrushless DC motor (BLDCM) has excellent speed performance, reliable performance and easy maintenance, etc., compared to a brush DC motor, which uses electronically commutated replace mechanical commutation, effectively improve the operating efficiency of the motor, but also so that the volume of the finished product more compact. But there brushless DC motor torque ripple controller complexity, high cost and other defects, the presence of these defects also affected to some extent, a brushless DC motor as efficient and advanced motor universal in application, how to improve and therefore research solve the problems of the brushless DC motor will have more obvious practical significance.MATLAB is a tool for data analysis and computation, algorithm development, and simulation of dynamic systems to establish and mathematical software. MathWorks was originally developed by the US company produced commercial mathematical software, which consists of Matlab and Simulink are two important parts, and now it is used in engineering calculations, control design, signal processing and communications, image processing, signal detection, financial modeling design and analysis and other fields.Based on the brushless DC motor structure and working principle of research and analysis to identify the cause of which has a large torque ripple, and theoretically first get how to suppress torque ripples, established through Matlab brushless Simulation Model DC motor, its simulation results are analyzed and improved in order to effectively suppress the torque ripple of the brushless DC motorKeywords:Brushless DC motor; The torque pulsation; The simulation model目录第一章绪论 (6)1.1 研究背景及研究意义 (6)1.2 无刷直流电机调速系统的国内外研究现状 (7)1.3 本文的主要研究内容及章节安排 (8)第二章无刷直流电机的基本原理 (9)2.1 无刷直流电机的基本结构 (9)2.1.1 电机本体 (9)1.电动机定子 (9)2. 电动机转子 (10)2.1.2 位置传感器 (10)2.2 无刷直流电机的工作原理及换相过程 (12)2.2.1 无刷直流电机的工作原理 (13)2.2.2 无刷直流电机的换相过程 (15)2.3 无刷直流电机的应用 (16)2.4 本章小结 (16)第三章基于PWM技术的无刷直流电机转矩脉动抑制 (17)3.1 PWM控制技术简介 (17)3.1.1 PWM控制技术的基本原理 (17)3.1.2 PWM控制技术的控制方法 (18)3.2 Buck变换器的原理及控制方式 (19)3.2.1 Buck变换器的原理 (19)3.2.2 Buck变换器的控制方式 (20)3.3 无刷直流电机转矩脉动的产生 (20)3.3.1传导区转矩脉动 (21)3.3.2换相区转矩脉动 (22)3.4 无刷直流电机转矩脉动的抑制 (24)3.5 本章小结 (27)第四章无刷直流电机的仿真分析 (28)4.1 MATLAB和SIMULINK的介绍 (28)4.2 无刷直流电机的数学模型 (29)4.2.1电机本体模块 (30)4.2.2转矩计算模块 (31)4.2.3速度控制模块 (32)4.2.4电流控制模块 (32)4.2.5电压逆变模块 (33)4.3无刷直流电机的仿真结果 (33)4.4本章小结 (38)结论 (39)致谢 (40)参考文献 (41)附录 (42)第一章绪论1.1 研究背景及研究意义对于工厂生产和社会发展而言,电力拖动都有着举足轻重的地位,为了满足生产工艺的需求,通过控制电机的转矩以及转速来控制电动机的转速以及位置,这样就可以形成一个自动化系统,称之为电力拖动。
电机调速控制系统实训报告

一、实验目的1. 理解电机调速控制系统的基本原理和结构。
2. 掌握电机调速控制系统的设计方法和步骤。
3. 熟悉电机调速控制系统的调试与优化方法。
4. 提高实际操作能力和分析解决问题的能力。
二、实验原理电机调速控制系统是利用电力电子技术、微电子技术和计算机技术实现电机转速的精确控制。
常见的调速方式有直流调速、交流调速和变频调速等。
本实验以直流调速系统为例,通过PWM(脉宽调制)技术实现对直流电机的调速。
三、实验内容1. 实验器材- 直流电机- 电机驱动器- PWM控制器- 测速传感器- 电脑- 数据采集卡2. 实验步骤(1)搭建实验电路:将直流电机、电机驱动器、PWM控制器、测速传感器和数据采集卡连接起来,形成电机调速控制系统。
(2)编写程序:利用编程软件编写PWM控制器程序,实现对电机转速的控制。
(3)调试系统:通过调整PWM控制器的占空比,观察电机转速的变化,直至达到预期转速。
(4)采集数据:利用数据采集卡采集电机转速、电流等数据,进行分析和处理。
(5)优化系统:根据实验结果,调整PWM控制器的参数,优化电机调速控制系统。
四、实验结果与分析1. 实验结果通过实验,成功搭建了电机调速控制系统,并实现了对直流电机的精确调速。
2. 数据分析(1)电机转速与PWM占空比的关系:实验结果表明,电机转速与PWM占空比呈线性关系。
当占空比增大时,电机转速提高;当占空比减小时,电机转速降低。
(2)电机电流与PWM占空比的关系:实验结果表明,电机电流与PWM占空比呈非线性关系。
当占空比增大时,电机电流先增大后减小;当占空比减小时,电机电流先减小后增大。
(3)电机转速与负载的关系:实验结果表明,电机转速与负载呈非线性关系。
当负载增大时,电机转速降低;当负载减小时,电机转速提高。
五、实验总结1. 本实验成功搭建了电机调速控制系统,并实现了对直流电机的精确调速。
2. 通过实验,掌握了电机调速控制系统的基本原理和设计方法。
PWM直流电机调速实验报告

int real_count=0;
uchar time;
uchar PWMH = 400;uchar PWML = 400;
uchar code table[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,\
sent(table[speed1%100/10]);
sent(table[speed1%100%10]);
}
void timer0init(void)
{
TMOD = 0X01;
TH0=0XD8;
TL0=0XF0;
}
void detectspeed(void)
{
real_count=count/3.0;
{
while(length--){_nop_();}
}
vo value to the display
{
uchar i = 0;
for(i;i<8;i++)
{
DIN = dat&0x80;
CLK = 0;_nop_();CLK = 1;
dat<<=1;
题目:
PWM直流电机调速实验
学生姓名:
学号:
指导教师:
张友旺
学院:
机电工程学院
专业班级:
机械1604班
日期2019年12月
一、实验目的
1.了解脉宽调制(PWM)的原理
2.学习用PWM输出模拟量驱动直流电机
3.熟悉51系列单片机的延时程序
二、实验步骤
本实验需要用到本实验需要用到单片机最小应用系统(F1区)、串行静态显示(I3区)和直流电机驱动模块(M1区 )。
直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

沈阳理工大学课程设计摘要调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。
目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。
早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。
这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。
为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。
这种系统缺点也很明显,主要是污染环境,危害人体健康。
50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。
晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。
近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。
直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。
不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。
同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。
单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。
而基于电流和转速的双闭环直流调速系统静动态特性都很理想。
关键字:调速系统直流调速器晶闸管晶闸管-电动机调速系统沈阳理工大学课程设计目录1 绪论 (1)1.1 背景 (1)1.2 直流调速系统的方案设计 (1)1.2.1 设计已知参数 (1)1.2.2 设计指标 (2)1.2.3 现行方案的讨论与比较 (2)1.2.4 选择PWM控制系统的理由 (2)1.2.5 选择IGBT的H桥型主电路的理由 (3)1.2.6 采用转速电流双闭环的理由 (3)2 直流脉宽调速系统主电路设计 (4)2.1 主电路结构设计 (4)2.1.1 PWM变换器介绍 (4)2.1.2 泵升电路 (7)2.2 参数设计 (7)2.2.1 IGBT管的参数 (7)2.2.2 缓冲电路参数 (8)2.2.3 泵升电路参数 (8)3 直流脉宽调速系统控制电路设计 (9)3.1 PWM信号发生器 (9)3.2 转速、电流双闭环设计 (9)3.2.1 电流调节器设计 (10)3.2.2 转速调节器设计 (13)4 系统调试 (17)4.1 系统结构框图 (17)4.2 系统单元调试 (17)4.2.1 基本调速 (17)4.2.2 转速反馈调节器、电流反馈调节器的整定 (18)4.3 实验结果 (18)4.3.1 开环机械特性测试 (18)4.3.2 闭环系统调试及闭环静特性测定 (19)5 总结 (20)参考文献 (21)附录A (22)A.1 晶闸管直流调速系统参数和环节特性的测定 (22)A.2 双闭环可逆直流脉宽调速系统性能测试 (26)沈阳理工大学课程设计1 绪论背景在现代科学技术革命过程中,电气自动化在20世纪的后四十年曾进行了两次重大的技术更新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWM电机调速
班级:09应电(5)班
姓名:
学号:0906020122
指导老师
时间:2011年10月20日
目录
一、实验名称 (2)
二、实验设计的目的和要求 (2)
三、预习要求 (2)
四、电路原理图 (4)
五、电路工作原理 (4)
六、 PCB图 (5)
七、实验结果 (6)
·
八、实验中出现的问题以及解决方法 (13)
九、实验心得 (13)
十、参考文献 (14)
十一、元件清单 (14)
一、实验名称:PWM电机调速
二、实验设计的目的和要求
1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;
2)掌握脉宽调制PWM控制模式;
3)掌握电子系统的一般设计方法;
4)培养综合应用所学知识来指导实践的能力;
5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。
三、预习要求
3.1关于LM339器件的特点和一些参数
图3-1 LM339管脚分配图
1)电压失调小,一般是2mV;
2)共模范围非常大,为0v到电源电压减1.5v;
3)他对比较信号源的内阻限制很宽;
4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;
5)输出端电位可灵活方便地选用;
6)差动输入电压范围很大,甚至能等于vcc。
3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形
1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波
图3-2 锯齿波
2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽
图3-3 脉冲波(pwm)
3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的
4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护
四、电路原理图
图4-1 PWM电机调速原理图
五、电路工作原理
直流电机的PWM调速原理是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,改变了输送到电枢电压的幅值,从而达到改变直流电机转速的目的。
它的调制方式是调幅。
PWM的占空比决定输出到直流电机的平均电压,PWM的意思是脉宽调节;也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高;如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%;那么输出全部电压,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。
.
1)锯齿波脉冲形成
参见图3-2和图4-1,该控制器的锯齿波脉冲由内的比较器A,定时元件R1~R5,以及C1等组成的施密特振荡器产生。
2)PWM脉冲形成
参见图3-3和图4-1,PWM脉冲形成电路以LM339内的比较器U2C为核心构成。
由锯齿波形成电路输出的锯齿波脉冲加到比较器的反相输入端8脚,与同相输入端9脚输入的直流电压比较后,就可在它的输出端14脚输出矩形的调宽脉冲电压。
3)信号放大
参见图,4-1,矩形脉冲信号放大电路由驱动电路和功率放大电路两部分构成。
驱动电路采用了9012和9013三极管组成的推挽放大电路;功率放大电路采用了大功率场效应管以获得足够大的电流和功率。
当矩形脉冲为高电平时,9012(Q2)截止、9013(Q1)导通,经9013(Q1)射随放大后从E极输出,再经电阻R18驱动效应管TRF530导通,此时电源提供的电压通过电机、效应管TRF530的G/S极、R17到地构成回路,回路中的电流驱动电机旋转。
当矩形脉冲为低电平时,9013(Q1)截止、9012(Q2)导通,将效应管TRF530栅极存储的电压迅速对地释放,以免效应管TRF530因存储效应不能及时关断而产生过大的功耗。
效应管TRF530截止后,流过电机绕组的导通电流消失,使绕组产生反相的电动势。
为了防止这个电动势导致效应管TRF530过压损坏,在效应管TRF530的G极与供电之间设置了泄放二极管D4。
R14是驱动电路的上拉电阻。
4)保护电路
为了防止场效应管IRF640过流损坏,该电路设置了过流保护电路。
该保护电路由内的比较器U1D和取样电路构成。
比较器U1D的同相输入端11管脚通过R11和R12采样得到正电压。
,而它的反相输入端通过脚接R13反馈电阻取得取样电阻R17的取样电压,当电机运转正常,流过效应管IRF640的S极电流正常时,R17产生的上正下负的压降较小,5V电压,于是13脚输出高电平控制电压,不影响PWM调制器的工作,控制器正常工作。
一旦电机运转不正常等原因导致效应管IRF640过流,使R17两端的压降增大,通过R13使脚电位变为低电平后,13脚输出低电平电压,使电位变为低电平,于是14脚输出低电平电压,致使9013截止、9012导通,于是效应管IRF640截止,电机停转,实现了过流保护。
六、PCB图
图6-1 PWM电机调速PCB图
七、实验结果
1) 电源端分别接15V和24V和5V
2) 当可调电阻R7(103)电阻和R5(203)电阻都不动的时候,电机两端的输出电压
Uo=9V;LM339芯片6、9、14管脚输出波形分别如下所示
图7-1 管脚6波形
图7-2 9管脚电压值
图7-3 管脚14波形
3) 当可调电阻R5(203)不动;R7(103)调大的时候,电机两端的输出电压Uo=10V;LM339
芯片管脚6、9、14输出波形分别如下图所示
图7-4 管脚6波形
图7-5 管脚9波形图7-6 管脚14的波形
4)当可调电阻R5(203)不动;R7(103)调小的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-7 管脚6波形
图7-8 管脚9波形
图7-9 管脚14波形
5)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-10 管脚6波形
图7-11 管脚9波形图7-12 管脚14波形
6)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-13 管脚6波形
图1-14 管脚9波形
图7-15 管脚14波形
八、实验中出现的问题以及解决方法
在制作PCB电路板时,由于三极管封装有误,导致Q2(9013)损坏,后经改造电路连接,把三极管接正,电路得以正常
在调试电路板的时候,当我把可调电阻103和203调到最下或最大的时候,14管脚波形和输出Uo波形出现一条直线,当时我以为是电路是不是电路出错,就开始调可调电阻103或203,结果波行发生了变化,于是就想也许是由于我把可调电阻调的太小或太大了,所以才会出现这样的波形,现象出现后老师得知就是因为我把电阻调到了最大或最小,所以才出现波形式一条直线的现象
九、实验心得
通过这次试验我学会了LM339,IRF530,三极管,可调电阻等元器件的应用,当电路发下时,通过分析电路图、画板、做板、焊板、调试更加熟悉的学会电路的设计和制作,在画PCB时候由于对三极管管脚的连接不熟悉,导致电路出现问题,所以以后我会更加认真画图,在焊接电路板时要仔细放置元件,做调试时候会注意接线安全。
在调试过程中也得到一些同学和老师的帮助,学会互相帮助,为此感谢!
十、参考文献
王川主编/实用电源技术-重庆大学出版社2000.8 十一、元件清单(单位都是一个)
插槽DIP40
芯片A1D LM339D
电容C1 33nF
C2 4.7uF
C3 100nF
二极管D1 1N4148
D4 DIODE
电机J111 CON2
三极管Q1 2N222A
Q2 2N2907
场效应管Q3 IRF530
电阻R1 22k
R2 3.0k
R3 10k
R4 20k
R5 20k
R6 4.7k
R7 10k
R8 4.7k
R9 10k
R10 10k
R11 500k
R12 3.9k
R13 10k
R14 10k
R17 0.33
R18 150
R19 4.7k。