正切函数的性质与图像 PPT

合集下载

(完整版)正切函数的性质与图像.ppt

(完整版)正切函数的性质与图像.ppt

2
2



近 线




近 线

性质 :
渐近线方程: x k , k Z 2
对称中心
( kπ,0) 2
正切函数有对称轴吗? 无对称轴
问题5: (1)正切函数是整个定义域上的增函数吗?为什么? (2)正切函数会在某一区间内是减函数吗?为什么?
A
B
在每一个开区间
(-π+ kπ,π+ kπ) ,kZ 内都是增函数。
5、周期性
最小正周期是
3
小结:正切函数的图像和性质
1、正切曲线是先利用平移正切线得y tan x, x ( , )的图象, 22
再利用周期性把该段图象向左、右扩展得到。
2 、y tan x 性质:
⑴ 定义域: {x | x k, k Z}
⑵ 值域: R 2 ⑶ 周期性:
⑷ 奇偶性:奇函数,图象关于原点对称。
22 右呈上升趋势,向上与直线 x
k
,k
Z
无限接近但
永不相交;向下与直线
x
2
k , k
Z无限接近但永不
2
相交。
将 x k , k Z 称为正切曲线的渐近线。
2
题型一 求与正切函数有关的函数的定义域
例1.求下列函数的定义域.
(1) y tan(x );
3 (2) y lg tan x 16 x2 .
x 2k 时, ymax 1 x 2k 时,ymin 1
x[ 2k , 2k ] 增函数
x[2k , 2k ]
偶函数
2
减函数
对称轴: x
2
k
,

高中数学课件-正切函数的图像与性质

高中数学课件-正切函数的图像与性质
(1)如果α是第一象限的角,则由 tanα= 2 可知,角α终边上必有一点 3
P(3,2).所以 x=3,y=2. 因为 r=|OP|= 13 , 所以 sinα= y = 2 13 , r 13
cosα= x = 3 13 . r 13
(2) 如果α是第三象限角,同理可得:sinα= y =- 2 13 , cosα= x =- 3 13 .
2.正切函数的图像.
3p 2
p 2
p
3p 2
3.正切函数的性质.
⑴ 定义域:{x | x p kp, k Z }. 2
⑵ 值域:R.
⑶ 周期性:
⑷ 奇偶性:奇函数,图像关于原点对称.
⑸ 单调性:
白发无凭吾老矣!青春不再汝知乎?年将 弱冠非童子,学不成名岂丈夫?
——俞良弼
定义域
值域
y=tan x
{x | x R, x p kp, k Z} 2
R
奇偶性
奇函数
周期性 单调性
周期kπ(k∈Z,k≠0),
最小正周期是π
在每一个区间 增加的
(
p 2
kp,
p 2
kp)上(k 是Z)
例1. 若 tanα= 2 ,借助三角函数定义求角α的正弦函 3
数值和余弦函数值.
解:因为 tanα= 2 >0,所以α是第一象限或第三象限的角. 3
2.已知θ是三角形的一个内角,且有tanθ≥ -1,
则θ的取值范围是 ( C )
A.
3 4
p
,p
B.
0,p 2
C.
0,p
2
3 4
p
,p
D.以上都不对
3.求函数
的定义域.
解:要使函数有意义,需tan x+1≥0,

5.4.3正切函数的性质与图像课件(人教版)

5.4.3正切函数的性质与图像课件(人教版)
根据研究正切函数、余弦函数的经验,你认为应如何研究正切函数的图象与性质?
一般来说,对函数性质的研究总是先作图象,通过视察图象获得对函数性质的直观认识, 再从代数的角度对性质作出严格表述.所以可以根据研究正弦函数、余弦函数的经验来 研究正切函数.
你能用不同的方法研究正切函数吗? 有了前面的知识准备,我们可以换个角度,即从正切函数的定义出发研究它的性质, 再利用性质研究正弦函数的图象.
新课引入
回顾旧识
前面学习了正弦函数、余弦函数的图象与性质,请回忆我们是如何根据它 们各自的三角函数线得出它们的函数图象的?
P1
6
o1
M-11 A
y
1p1/
作法: (1) 等分 (2) 作正弦线 (3) 平移 (4) 连线
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
-
-
思考
,
2k
k
Z
上单调递增.
解题规律
形如 y Atan(x )(A 0, 0)的函数性质的求解方法:
①定义域:把“x ”作为一个整体,令x k (k Z),可得 x 的取值
范围,即得函数的定义域.
②值域:(, ).
③单调区间:
(a)把“x ( 0)”作为一个整体;
(b)
A
0( A
④奇偶性:当 k (k Z)时为奇函数,否则,不具备奇偶性.
⑤周期:最小正周期T
练一练
1.与函数
y
tan
2x
π 4
的图像不相交的一条直线是(
)
A. x π
2
B. y π

《正切函数的性质与图像》人教版数学高一下册PPT课件

《正切函数的性质与图像》人教版数学高一下册PPT课件

1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.
(1)正切函数的定义域和值域都是 R.( × ) (2)正切函数在其定义域内是单调递增函数.( × ) (3)函数 y=|tanx|与 y=tanx 的周期相等,都是 π.( √) (4)函数 y=tanx 的所有对称中心是(kπ,0)(k∈Z).( ×) (5)直线 y=a 与正切函数 y=tanx 的图象相邻两个交点之间的距离为 π.(√ )

第一章 三角函数
[拓展](1)正切函数图象的对称中心是k2π,0(k∈Z),不存在对称轴. (2)直线 x=π2+kπ(k∈Z)称为正切曲线的渐近线,正切曲线无限接近渐近线. (3)函数 y=Atan(ωx+φ)+b 的周期是 T=|ωπ|.
第一章 三角函数
[知识点拨]正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性. (2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),… 上都是增函数. (3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函 数在(-π2,π2)∪(π2,32π)∪…上是增函数.
[思路分析] 先确定在一个周期-π2,2π内的 x 值的范围,再写出不等式的解集.
第一章 三角函数
[解析] 函数 y=tanx 在区间-π2,π2内的图象如图所示.
作直线 y=1,则在-π2,π2内,当 tanx>1 时,有π4<x<π2,又函数 y=tanx
的周期为 π,则 tanx>1 的解集是xπ4+kπ<x<π2+kπ,k∈Z
(1)tan32°___<___tan215°. (2)tan185π___<___tan-289π.

人教版高中数学必修4(A版) 正切函数的性质与图像 PPT课件

人教版高中数学必修4(A版) 正切函数的性质与图像 PPT课件

例4 求下列函数的周期:
( 2)变题 y 3 tan(
4
1 解 : f ( x) 3 tan( x ) 2 4
1 x ); 2 4
f (x ) 2 周期 T 2
3 tan[ 2( x ) ] 2 4
1 3 tan( x ) 2 4 1 3 tan[ ( x 2 ) ]
f ( x 2 ) 周期T 2
2
4
周期T | |
(1)正切函数的图像
(2)正切函数的性质: x | x k , k Z 2 定义域:
值域:全体实数R
正切函数是周期函数, 周期性: 最小正周期T= 奇函数, 奇偶性:

tan1670 tan1730
1 (1) y 3 tan( x ); 2 4
解 : (1)令u
例3
求下列的单调区间:
变题 (2) y 3 tan(
u
1 x 为增函数; 且y tan u的单调区间为: 2 4
1 x , 则y 3 tan u 2 4
正切函数在开区间 k , k , k Z 内都是增函数。
2

正切函数是周期函
数,T=

例1 求函数 y tan( x
解:令

4
z x

)的定义域。
z | z k , k Z 2
那么函数
y tan的定义域是: z
k , k , k Z 2 正切函数在开区间 2 单调性:
内都是增函数。

2

正切函数图像.ppt

正切函数图像.ppt
正切函数的图象和性质
4.10 正切函数的图像和性质 一、引入
如何用正弦线作正弦函数图象呢? 1、用平移正弦线得y sin x, x [0,2 ]图象. 2、再利用周期性把该段图象向左、右扩展得到.
类 比
用正切线作正切函数y=tanx的图象
4.10 正切函数的图像和性质
二、探究用正切线作正切函数图象
⑷ 奇偶性: 奇函数,图象关于原点对称。
⑸ 单调性: 在每一个开区间
( k , k )
2
2
,k Z 内都是增函数。
(6)渐近线方程:x
k
2
,
kZ
(7)对称中心 (kπ,0) 2
问题讨论
问题:
(1)正切函数是整个定义域上的增函数吗?为什么? (2)正切函数会不会在某一区间内是减函数?为什么?
解: 因为tan(3x ) tan 3x,
即tan3(x+ )=tan3x,
3 这说明自变量 x
,至少要增加
,函数的值
才能重复取得,所以函数
y
3
tan 3x
的周期

3
反馈练习:求下列函数的周期:
(1) y 5 tan x
2 2
(2) y tan(4x)
4
例题分析
例 4 解不等式:tan x 3
问题2、如何利用正切线画出函数 的图像?
y
tan
x,x
2

2
角 的终边 Y
T3

3
,tan

3
A
0
X
3
利用正切线画出函数
y
tan
x
,x
2

2
的图像:

高中数学《正切函数的图像和性质》公开课PPT课件

高中数学《正切函数的图像和性质》公开课PPT课件
1.4.3 正切函数的性质与图象
1.在诱导公式中,tan(x+π)=tan x,tan(-x) =-tan x.想一想,这两个公式体现了正切函 数的什么性质? 2.回想一下正弦曲线的画法,利用正弦线画出 [0,2π]上的图象.你能否利用正切线画出函数 y =tan x,x∈-π2,π2的图象?
2
4.求函数 y= tan x+lg(1-tan x)的定义域.
解析:
由题意得t1a-n txa≥n 0x>0
,即tan x≥0 tan x<1

∴0≤tan x<1.∴kπ≤x<kπ+π4,
Байду номын сангаас
即函数的定义域为{x|kπ≤x<kπ+π4,k∈Z}.
与正切函数有关的定义域和值域问题
(1)求函数y= 1- tanx 的定义域;
(1)求函数 y=tan-12x+π4的单调区间; (2)比较 tan 1、tan 2、tan 3 的大小.
[解题过程] (1)y=tan-12x+π4=-tan12x-π4, 由 kπ-π2<12x-π4<kπ+π2,k∈Z, 得 2kπ-π2<x<2kπ+32π,k∈Z, 所以函数 y=tan-12x+π4的单调递减区间是 2kπ-π2,2kπ+32π,k∈Z.
所以函数y=tan |x|的值域为R.
[题后感悟] 解形如tan x>a的不等式的步骤:
1.(1)求函数 y= tan x- 3的定义域; (2)已知 f(x)=tan2x-2tan x|x|≤π3,求 f(x)的值 域.
解析: (1)要使函数有意义,必须使 tan x- 3 ≥0 即 tan x≥ 3. ∴kπ+π3≤x<kπ-π2,k∈Z. ∴函数 y= tan x- 3的定义域为 kπ+π3,kπ-π2(k∈Z)

正切函数的图像和性质(PPT)3-3

正切函数的图像和性质(PPT)3-3
白萝卜和胡萝卜就差一个字,口感差距却很大。很多人对胡萝卜敬而远之,却对白萝卜情有独钟。原
4.10 正切函数的图像和性质
例2.不通过求值,比较下列各组中两个正切函数值的大小:
(1)tan167与
tan173
;(2)tan

11
4

tan

13
5


解:((2)1)∵∵ta9n0141167
∴ y tan x是周期函数, 是它的一个周期.
利用正切线画出函数
y

tan
x
,x

Leabharlann 2,
2

的图像:
几何画板演示
深海,并在深海环境中完成整个生活史。 [] 作为凶悍的猎手,巨齿鲨活动量大,能量消耗也大,每天必须吃近吨的食物才能生存。显然,一旦食物短缺,其 生命脆弱性的一面就暴露无遗。“巨齿鲨为体型巨大的掠食者,处于最高的营养级,从理论上来讲,当前的海洋生态系统中的食物网结构无法支撑如此巨大 掠食者的生存。”赵宇; 云股票:/ ;说,所以,巨齿鲨如今依然存活于某处的说法站不住脚。 [] 化石证据表明巨齿鲨灭绝于约 万年前,这与最后一次冰期开始的时间吻合。因此,有人认为巨齿鲨因为无法适应海水温度骤降而灭绝。 [] 苏黎世大学研究人员年的研究显示,巨齿鲨的灭 绝与海水温度变化并无直接关系,该研究指出,生物因素是引起巨齿鲨灭绝的重要原因,巨齿鲨种群衰退伴随着鲸类多样性的下降,以及其它大型掠食性生

1ta7n3

3180
4
又 ∵ y tantaxn,在1390,2ta7n0 上3是 增函数 5 5
∴又∵tan3167

3tan1733
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档