机器人定位技术详解
AGV移动机器人的五种定位技术介绍

AGV移动机器人的五种定位技术介绍AGV(Automated Guided Vehicle)移动机器人是一种自动导引车辆,能够在工业和物流领域进行物品运输和搬运任务。
为了准确定位AGV移动机器人的位置,可以采用多种定位技术。
下面将介绍五种常见的AGV定位技术。
1.激光定位技术:激光定位技术是一种通过激光扫描仪实现的定位方法。
它通过扫描周围环境并计算与物体的距离和角度来确定机器人的位置。
这种定位技术具有高精度和高可靠性的特点,适用于需要精确定位的场景,如仓库等。
2.视觉定位技术:视觉定位技术是一种使用摄像头和图像处理算法来确定机器人位置的方法。
它通过识别和匹配环境中的特征点或标志物来进行定位。
视觉定位技术具有较高的灵活性和适应性,可以适应不同环境和场景的变化。
3.超声波定位技术:超声波定位技术是一种使用超声波传感器来测量距离和方向的方法。
机器人通过发送超声波信号,并根据接收到的反射信号计算与物体的距离和方向,进而确定自身位置。
这种定位技术需要在环境中设置超声波信号源,适用于开放空间和室内场景。
4.地磁定位技术:地磁定位技术是一种通过检测地球磁场强度和方向来进行定位的方法。
机器人搭载磁力计和罗盘传感器,通过测量环境中的地磁场来确定自身位置。
地磁定位技术具有较高的稳定性和精度,适用于室内和地下场景。
5.惯性导航定位技术:惯性导航定位技术是一种使用加速度计和陀螺仪等惯性传感器来确定机器人位置的方法。
它通过测量机器人的加速度和角速度来计算和集成运动路径,并推算出位置。
惯性导航定位技术具有较高的实时性和灵活性,适用于复杂环境和短距离运动。
这些AGV定位技术各有优劣,可以根据不同的应用场景和需求选择合适的技术。
在实际应用中,也可以将多种定位技术进行组合和协同,以提高定位的精度和鲁棒性。
随着技术的不断进步,AGV定位技术将会越来越成熟和普及。
机器人操作系统中的机器人定位与导航研究

机器人操作系统中的机器人定位与导航研究随着机器人技术的日益发展,机器人在工业、医疗、服务等领域得到了广泛的应用。
而在机器人的基础技术中,机器人的定位和导航技术是其中至关重要的一环。
机器人的定位和导航技术是指机器人在运动过程中,如何获得自身的位置和姿态信息,以及根据任务需求制定路径规划,实现精准的移动和操作。
在过去的几十年中,人们已经提出了许多机器人定位和导航技术,例如GPS定位、惯性导航、视觉定位、激光雷达等。
在机器人操作系统中,这些技术被封装成一系列软件模块,方便机器人实现自主导航。
一、机器人定位技术机器人定位技术是指机器人如何找到自己在空间中的位置和方向。
现代机器人的定位技术通常采用多个传感器融合的方法,在保证精度和稳定性的前提下,提高机器人的位置和方向信息的准确性。
在机器人操作系统中,机器人定位通常采用无线电传感器、视觉和激光雷达传感器等多种传感器进行数据采集。
其中,无线电传感器能够对机器人的位置信息进行精准的跟踪,并生成精确的位置信息。
视觉技术则利用机器人的相机对周围环境的图像进行分析,以确定机器人在环境中的位置和姿态。
激光雷达传感器则能够捕捉物体的位置和物体的距离,通过对物体位置的识别来确定机器人的位置和方向。
二、机器人导航技术机器人导航技术是指机器人如何在空间中进行移动,并根据需要实现路径规划和决策。
在机器人操作系统中,机器人导航技术一般采用SLAM(Simultaneous Localization and Mapping)技术,即同时定位和地图构建技术。
这种技术可以使机器人在运动中不断地更新自己在地图上的位置,并构建出精确的地图。
在实际应用中,通过机器人操作系统中的导航模块,机器人可以依据路径规划进行移动,并在运动过程中不断地更新自己在地图上的位置和方向。
三、机器人操作系统中机器人定位与导航技术的应用机器人操作系统是现代机器人最广泛应用的软件平台之一。
在机器人操作系统中,机器人定位与导航技术已经被封装成各种软件模块,方便使用者进行编程,实现机器人的自主导航。
智能机器人的感知与定位技术实现分析

智能机器人的感知与定位技术实现分析随着人工智能领域的飞速发展,智能机器人正逐渐成为现实生活中的一部分。
智能机器人能够感知和理解环境,并准确地定位自身位置,这是实现其自主导航和执行任务的关键。
本文将从感知和定位两个方面,探讨智能机器人的技术实现方法。
一、感知技术智能机器人的感知技术包括视觉感知、声音感知、触觉感知等多种方式,使机器人能够感知周围环境的信息。
1. 视觉感知视觉感知是智能机器人获取环境信息最常用的方法之一。
机器人通过安装摄像头等感知器件,利用图像处理算法来识别和理解环境中的物体、人和场景。
例如,通过图像识别技术,机器人可以识别人脸、数字、文字等,并执行相应的任务。
2. 声音感知声音感知使智能机器人能够通过声音信号来感知环境。
机器人通常使用麦克风等感知器件来采集声音,并通过音频处理算法来识别和理解语音指令或环境中的声音信号。
这种技术使得机器人可以与用户进行语音交互,识别并执行口头命令。
3. 触觉感知触觉感知技术使机器人能够感知物体和环境的力量、压力和接触信息。
智能机器人通过搭载触觉传感器等器件,能够精确地感知和识别物体的形状、硬度和温度等特征。
利用这些信息,机器人可以避免碰撞、抓取物体和执行其他与触摸相关的任务。
二、定位技术在智能机器人的实现过程中,确定机器人在环境中的位置信息至关重要。
通过定位技术,机器人能够精确地了解自身所处的位置和方向,从而进行自主移动和执行任务。
1. 视觉定位视觉定位是智能机器人利用图像信息进行定位的一种方法。
机器人通过摄像头等感知器件采集图像,并基于图像处理技术进行特征提取和匹配,从而确定自身的位置和方向。
视觉定位适用于有明显视觉标识的环境中,例如使用二维码、标志物或特定图案进行定位。
2. 惯性导航惯性导航是一种通过测量机器人自身的重力加速度和角速度来推算位置和方向的定位技术。
智能机器人通常搭载陀螺仪、加速度计等惯性传感器,通过采集和处理传感器数据,计算机器人相对于初始位置的运动量。
机器人定位技术的工作原理

机器人定位技术的工作原理机器人定位技术是现代机器人领域中的重要部分,它通过利用传感器和算法来确定机器人在空间中的位置和方向。
这种技术的发展为机器人的自主导航、路径规划和环境感知提供了有力支持。
本文将介绍机器人定位技术的工作原理,并探讨其在不同应用领域中的应用。
一、定位技术的分类机器人定位技术可以按照其使用的传感器类型进行分类。
常见的定位技术包括全球定位系统(GPS)、惯性导航系统、视觉定位系统和激光雷达定位系统等。
1. 全球定位系统(GPS)全球定位系统是一种基于卫星导航的定位技术,通过接收卫星发射的信号,机器人可以精确计算自身的经纬度坐标。
然而,由于GPS信号在室内或复杂环境中的接收存在问题,机器人定位技术通常需要借助其他传感器进行辅助。
2. 惯性导航系统惯性导航系统利用加速度计和陀螺仪等传感器来测量机器人的加速度和角速度,从而计算出机器人的位移和方向。
这种技术的主要优点是精度高、响应速度快,但在长时间使用过程中会有累积误差。
3. 视觉定位系统视觉定位系统通过摄像头或深度相机等传感器来获取机器人周围环境的图像信息,并利用图像处理算法来识别目标物体或特征点。
通过与地图或先验知识的匹配,从而实现机器人的定位。
视觉定位系统在室内环境中具有较好的定位精度,但对光照条件和环境变化较为敏感。
4. 激光雷达定位系统激光雷达定位系统利用激光束扫描周围环境,并通过测量激光束的返回时间来计算机器人与周围物体的距离。
通过将多个激光束的测量结果组合,可以生成机器人周围环境的三维地图,从而实现机器人的定位。
二、机器人定位算法机器人定位算法是实现机器人定位的核心部分,它通过传感器测量数据和环境信息来实现机器人的定位。
常见的机器人定位算法包括扩展卡尔曼滤波(EKF)、粒子滤波、同步定位与地图构建(SLAM)等。
1. 扩展卡尔曼滤波(EKF)扩展卡尔曼滤波是一种基于状态估计的定位算法,通过结合系统的动力学模型和传感器测量数据,对机器人的位置和速度进行估计。
移动机器人中的导航与定位技术研究

移动机器人中的导航与定位技术研究导言:移动机器人是现代智能技术的重要应用领域之一。
导航与定位技术是移动机器人实现自主行动和任务完成的关键。
本文将介绍移动机器人中的导航与定位技术的研究现状、挑战以及未来发展方向。
一、导航技术概述导航技术是移动机器人能够在未知或部分未知环境中自主行动的基础。
传统的导航技术主要依靠地图和路径规划算法实现。
然而,在复杂的室内环境或者无人工智能指导的情况下,这些方法可能显得不够实用。
因此,现代导航技术侧重于感知、学习和适应能力的提升。
二、定位技术概述定位技术是移动机器人获取自身位置信息的关键。
1. GPS定位:GPS定位是目前最常用的定位技术之一。
然而,在室内环境或无人导航系统的情况下,GPS信号可能受到干扰或无法获得,因此需要其他定位技术的支持。
2. 视觉定位:视觉定位是指通过图像处理和计算机视觉技术获取机器人位置信息的方法。
这种方法可以通过摄像头或激光雷达获取机器人周围环境,从而实现定位。
3. 惯性定位:惯性定位是通过惯性传感器(如陀螺仪和加速度计)获取机器人运动信息,并结合数学模型计算机器人位置的方法。
惯性定位技术具有较高的精度和实时性,对于室内环境下的短距离移动尤为适用。
三、移动机器人导航与定位技术研究挑战尽管导航与定位技术在过去几十年里取得了巨大的进展,但在复杂和未知环境下,仍然存在一些困难和挑战。
1. 感知和环境认知:移动机器人需要准确感知周围环境,包括障碍物、地图和其他机器人。
同时,机器人还需要理解这些信息并作出相应的决策。
2. 精确的定位:在未知环境下,定位的精确性是导航和路径规划的基础。
因此,开发高精度的定位技术是一个关键问题。
3. 鲁棒性和适应性:移动机器人需要具备鲁棒性和适应性,以适应不同环境、场景和任务需求。
这对算法和系统设计提出了更高的要求。
四、未来发展方向随着人工智能技术的快速发展,移动机器人导航与定位技术也将得到进一步改进和完善。
1. 强化学习:利用强化学习方法,使机器人能够通过试错和学习提高导航能力。
工业机器人的精准定位与高精度加工技术

工业机器人的精准定位与高精度加工技术工业机器人一直以来都是现代制造业中不可或缺的重要工具。
随着科技的发展,工业机器人的功能和性能不断提升,特别是在精准定位和高精度加工方面取得了显著的进展。
本文将探讨工业机器人的精准定位技术和高精度加工技术,并探讨其在实际应用中的优势和挑战。
一、工业机器人的精准定位技术精准定位是工业机器人实现精确操作的基础。
在工业生产中,机器人需要准确地识别和追踪工件的位置,以便进行合适的操作。
以下是几种常见的工业机器人精准定位技术:1. 视觉定位技术视觉定位技术利用相机和图像处理算法,对工件进行图像识别和测量,从而确定其位置和姿态。
通过分析工件的特征、形状和颜色等信息,机器人可以精准地定位和对齐工件,实现高精度操作。
视觉定位技术广泛应用于焊接、装配和喷涂等工业领域。
2. 激光测距技术激光测距技术利用激光传感器测量工件与机器人之间的距离和位置。
激光传感器可以发射激光束,并通过接收激光的反射信号来计算距离。
激光测距技术具有高精度和快速响应的特点,常用于工件定位和测量。
3. RFID技术RFID(无线射频识别)技术利用射频信号实现对工件的追踪和定位。
每个工件都附带有RFID标签,机器人通过读取标签中的唯一识别码,可以准确地知道工件的位置和属性。
RFID技术适用于物流管理和仓库自动化等领域。
二、工业机器人的高精度加工技术高精度加工是工业机器人在制造过程中的重要应用之一。
随着制造业对产品精度和质量要求的提升,工业机器人在高精度加工方面扮演着越来越重要的角色。
以下是几种常见的工业机器人高精度加工技术:1. 精密传感技术精密传感技术能够实时监测机器人和工件的状态,在加工过程中进行反馈控制。
通过使用高精度传感器和控制算法,机器人可以实现对工具和工件的精确控制,以达到高精度的加工要求。
2. 轨迹规划和插补技术轨迹规划和插补技术是工业机器人实现高精度加工的关键。
通过使用数学模型和算法,机器人可以根据工艺要求和工件形状,生成合适的轨迹和插补路径。
机器人定位技术的工作原理

机器人定位技术的工作原理机器人定位技术是机器人技术中的重要部分,主要用于实现机器人在空间中的定位和导航。
在工业生产、医疗卫生等领域,机器人定位技术的应用极为广泛。
本文将介绍机器人定位技术的工作原理。
一、机器人定位技术分类机器人定位技术包含多种技术手段,常见的主要有以下几种:1.视觉导航技术:利用相机、激光雷达等传感器实现对机器人周围环境的监测,并结合图像处理技术进行定位和导航。
2.惯性导航技术:基于陀螺仪和加速度计等传感器的测量数据,结合卡尔曼滤波等算法进行机器人定位和导航。
3.全球定位系统(GPS)技术:利用卫星信号实现机器人在地球上的定位。
4.超声波测距技术:利用超声波传感器测量机器人到障碍物的距离,通过计算得到其在空间中的位置。
5.蓝牙、红外等无线通信技术:利用蓝牙、红外等技术实现机器人之间的通信,从而进行协作定位。
在实际应用中,常常会综合多种技术进行机器人定位,以提高定位精度和鲁棒性。
二、机器人视觉定位技术机器人视觉定位技术主要利用相机和激光雷达等传感器捕捉环境信息,并利用计算机视觉技术提取特征,实现机器人的定位和导航。
1.视觉传感器视觉传感器用于捕捉场景信息,包括彩色相机、深度相机、激光扫描仪等。
其中,彩色相机能够获取场景的颜色信息,深度相机可以测量场景中每个像素与相机的距离,而激光扫描仪则能够快速获取场景的三维几何信息。
2.特征点提取和匹配为了实现机器人的定位和导航,需要根据环境信息提取特征,并与先前观测到的特征进行匹配,计算机器人的运动姿态。
一般采用的特征点提取算法包括SIFT、SURF、ORB等。
这些算法能够对场景图像进行特征检测和提取,提取出具有描述性的特征点。
而特征匹配算法常用的有基于特征描述子的匹配算法,如基于FLANN的近似最近邻匹配算法等。
3.定位算法机器人视觉定位算法是利用相机捕捉的环境信息和特征匹配实现机器人定位和姿态估计的算法。
相比于其他定位技术,机器人视觉定位算法不需要预先安装额外的设备和标记,因此具有更广泛的适用性和更低的成本。
机器人精确定位的工作原理

机器人精确定位的工作原理在现代科技的推动下,机器人已经成为了我们生活中不可或缺的一部分。
无论是工业生产线上的自动操作,还是家庭生活中的智能助手,机器人都扮演着重要的角色。
而机器人能够完成准确的定位操作,正是得益于其精确定位的工作原理。
本文将为大家介绍机器人精确定位的原理和相关技术。
一、全球定位系统(GPS)全球定位系统(GPS)是一种通过卫星和地面设备配合,用于在地球表面准确测量相关位置和时间的技术系统。
GPS系统主要由地球上的控制终端、地球上的测量终端和一系列地球静态卫星组成。
机器人通过接收来自卫星的信号,能够精确获取自身的位置坐标。
这种定位方式被广泛应用于室外环境,例如农业、航空和探险等领域。
二、惯性导航系统惯性导航系统是一种通过加速度计和陀螺仪等传感器测量物体在空间中的运动状态的技术。
机器人内部集成了惯性传感器,可以实时测量机器人的加速度以及旋转角速度等信息。
通过对这些数据的分析,机器人可以推算出自身相对于起始位置的准确位移。
惯性导航系统适用于室内环境,尤其是在无GPS信号的情况下。
三、激光测距仪激光测距仪是一种通过激光束测量物体距离的技术。
机器人通过激光测距仪向特定方向发射激光束,然后测量激光束从机器人发射出去到返回的时间,通过光速和时间的关系计算出距离。
利用激光测距仪可以高精度地定位机器人相对于周围环境的位置,尤其适用于室内机器人的定位。
四、视觉定位系统视觉定位系统是一种通过计算机视觉技术对环境进行分析和定位的方法。
机器人通过搭载摄像头等设备,获取周围环境的图像信息,并利用图像处理算法提取特征点以及地标信息。
通过对比已知地标和实际环境中的地标,机器人可以确定自身位置。
视觉定位系统在室内室外均可使用,具有较高的精度和灵活性。
五、融合定位系统融合定位系统是一种将多种定位技术相互融合,提高机器人定位精度的方法。
通过将GPS、惯性导航系统、激光测距仪和视觉定位系统等传感器数据进行综合分析,可以在不同环境中提供更准确的定位结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人定位技术介绍
前言
随着传感技术、智能技术和计算技术等的不断提高,智能移动机器人一定
能够在生产和生活中扮演人的角色。
那么移动机器人定位技术主要涉及到
哪些呢?经总结目前移动机器人主要有这5大定位技术。
移动机器人超声波导航定位技术
超声波导航定位的工作原理也与激光和红外类似,通常是由超声波传感器的发射探头发射出超声波,超声波在介质中遇到障碍物而返回到接收装置。
通过接收自身发射的超声波反射信号,根据超声波发出及回波接收时间差及传播速度,计算出传播距离S,就能得到障碍物到机器人的距离,即有公式:S=Tv/2式中,T—超声波发射和接收的时间差;v—超声波在介质中传播的波速。
当然,也有不少移动机器人导航定位技术中用到的是分开的发射和接收装置,在环境地图中布置多个接收装置,而在移动机器人上安装发射探头。
在移动机器人的导航定位中,因为超声波传感器自身的缺陷,如:镜面反射、有限的波束角等,给充分获得周边环境信息造成了困难,因此,通常采用多传感器组成的超声波传感系统,建立相应的环境模型,通过串行通信把传感器采集到的信息传递给移动机器人的控制系统,控制系统再根据采集的信号和建立的数学模型采取一定的算法进行对应数据处理便可以得到机器人的位置环境信息。
由于超声波传感器具有成本低廉、采集信息速率快、距离分辨率高等优点,长期以来被广泛地应用到移动机器人的导航定位中。
而且它采集环境信息时不需要复杂的图像配备技术,因此测距速度快、实时性好。
同时,超声波传感器也不易受到如天气条件、环境光照及障碍物阴影、表面
粗糙度等外界环境条件的影响。
超声波进行导航定位已经被广泛应用到各种移动机器人的感知系统中。
移动机器人视觉导航定位技术
在视觉导航定位系统中,目前国内外应用较多的是基于局部视觉的在机器人中安装车载摄像机的导航方式。
在这种导航方式中,控制设备和传感装置装载在机器人车体上,图像识别、路径规划等高层决策都由车载控制计算机完成。
视觉导航定位系统主要包括:摄像机(或CCD图像传感器)、视频信号数字化设备、基于DSP的快速信号处理器、计算机及其外设等。
现在有很多机器人系统采用CCD图像传感器,其基本元件是一行硅成像元素,在一个衬底上配置光敏元件和电荷转移器件,通过电荷的依次转移,将多个像素的视频信号分时、顺序地取出来,如面阵CCD传感器采集的图像的分辨率可以从
32×32到1024×1024像素等。
视觉导航定位系统的工作原理简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。
GPS全球定位系统
如今,在智能机器人的导航定位技术应用中,一般采用伪距差分动态定位法,用基准接收机和动态接收机共同观测4颗GPS卫星,按照一定的算法即可求出某时某刻机器人的三维位置坐标。
差分动态定位消除了星钟误差,对于在距离基准站1000km的用户,可以消除星钟误差和对流层引起的误差,因而可以显着提高动态定位精度。
但是因为在移动导航中,移动GPS接收机定位精度受到卫星信号状况和道路环境的影响,同时还受到时钟误差、传播误差、接收机噪声等诸多因素的影响,因此,单纯利用GPS导航存在定位精度比较低、可靠性不高的问题,所以在机器人的导航应用中通常还辅以磁罗盘、光码盘和GPS的数据进行导
航。
另外,GPS导航系统也不适应用在室内或者水下机器人的导航中以及对于位置精度要求较高的机器人系统。
移动机器人光反射导航定位技术
典型的光反射导航定位方法主要是利用激光或红外传感器来测距。
激光和红外都是利用光反射技术来进行导航定位的。
激光全局定位系统一般由激光器旋转机构、反射镜、光电接收装置和数据采集与传输装置等部分组成。
工作时,激光经过旋转镜面机构向外发射,当扫描到由后向反射器构成的合作路标时,反射光经光电接收器件处理作为检测信号,启动数据采集程序读取旋转机构的码盘数据(目标的测量角度值),然后通过通讯传递到上位机进行数据处理,根据已知路标的位置和检测到的信息,就可以计算出传感器当前在路标坐标系下的位置和方向,从而达到进一步导航定位的目的。
激光测距具有光束窄、平行性好、散射小、测距方向分辨率高等优点,但同时它也受环境因素干扰比较大,因此采用激光测距时怎样对采集的信号进行去噪等也是一个比较大的难题,另外激光测距也存在盲区,所以光靠激光进行导航定位实现起来比较困难,在工业应用中,一般还是在特定范围内的工业现场检测,如检测管道裂缝等场合应用较多。
红外传感技术经常被用在多关节机器人避障系统中,用来构成大面积机器人“敏感皮肤”,覆盖在机器人手臂表面,可以检测机器人手臂运行过程中遇到的各种物体。
典型的红外传感器包括一个可以发射红外光的固态发光二极管和一个用作接收器的固态光敏二极管。
由红外发光管发射经过调制的信号,红外光敏管接收目标物反射的红外调制信号,环境红外光干扰的消除由信号调制和专用红外滤光片保证。
设输出信号Vo代表反射光强度的电压输出,则Vo是探头至工件间距离的函数:Vo=f(x,p)式中,p—工件反射系数。
p与目标物表面颜色、粗糙度有关。
x—探头至工件间距离。
当工件为p值一致的同类目标物时,x和Vo一一对应。
x可通过对各种目标物的接近测量实验数据进行插值得到。
这样通过红外传感器就可以测出机器人距离目标物体的位置,进而通过其他的信息处理方法也就可以对移动机器人进行导航定位。
虽然红外传感定位同样具有灵敏度高、结构简单、成本低等优点,但因为它们角度分辨率高,而距离分辨率低,因此在移动机器人中,常用作接近觉传感器,探测临近或突发运动障碍,便于机器人紧急停障。
SLAM技术
行业领先的服务机器人企业,大多都采用了SLAM技术。
唯有(SLAMTEC)思岚科技在SLAM技术上独占优势,到底什么是SLAM技术呢?简单来说,SLAM技术是指机器人在未知环境中,完成定位、建图、路径规划的整套流程。
SLAM(Simultaneous Localization and Mapping,即时定位与地图构建),自1988年被提出以来,主要用于研究机器人移动的智能化。
对于完全未知的室内环境,配备激光雷达等核心传感器后,SLAM技术可以帮助机器人构建室内环境地图,助力机器人的自主行走。
SLAM问题可以描述为:机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和传感器数据进行自身定位,同时建造增量式地图。
SLAM技术的实现途径主要包括VSLAM、Wifi-SLAM与Lidar SLAM。
1.VSLAM(视觉SLAM)
指在室内环境下,用摄像机、Kinect等深度相机来做导航和探索。
其工作原理简单来说就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。
但是,室内的VSLAM仍处于研究阶段,远未到实际应用的程度。
一方面,计算量太大,对机器人系统的性能要求较高;另一方面,VSLAM生成的地图(多数是点云)还不能用来做机器人的路径规划,需要进一步探索和研究。
2.Wifi-SLAM
指利用智能手机中的多种传感设备进行定位,包括Wifi、GPS、陀螺仪、加速计和磁力计,并通过机器学习和模式识别等算法将获得的数据绘制出准确的室内地图。
该技术的提供商已于2013年被苹果公司收购,苹果公司是否已经把Wifi-SLAM 的科技用到iPhone上,使所有 iPhone 用户相当于携带了一个绘
图小机器人,这一切暂未可知。
毋庸置疑的是,更精准的定位不仅有利于地图,它会让所有依赖地理位置的应用(LBS)更加精准。
3.Lidar SLAM
指利用激光雷达作为传感器,获取地图数据,使机器人实现同步定位与地图构建。
就技术本身而言,经过多年验证,已相当成熟,但Lidar成本昂贵这一瓶颈问题亟待解决。
Google无人驾驶汽车正是采用该项技术,车顶安装的激光雷达来自美国Velodyne公司,售价高达7万美元以上。
这款激光雷达可以在高速旋转时向周围发射64束激光,激光碰到周围物体并返回,便可计算出车体与周边物体的距离。
计算机系统再根据这些数据描绘出精细的3D地形图,然后与高分辨率地图相结合,生成不同的数据模型供车载计算机系统使用。
激光雷达占去了整车成本的一半,这可能也是 Google 无人车迟迟无法量产的原因之一。
激光雷达具有指向性强的特点,使得导航的精度得到有效保障,能很好地适应室内环境。
但是,Lidar SLAM却并未在机器人室内导航领域有出色表现,原因就在于激光雷达的价格过于昂贵。