2019-2020学年重庆市沙坪坝区八年级(上)期末数学试卷 (解析版)
2019-2020学年重庆市渝北区八年级(上)期末数学试卷解析版

一个是正确的,请将答题卡上对应题目的正确答案标号涂黑C. 6B.缩小C.改变原来的、选择题:2019-2020学年重庆市渝北区八年级(上)期末数学试卷(每小题4分,共48分)在每个小题的下面,都给出了代号为 A, B, C, D 的四个答案,其中只有(4分)下列图标中, 是轴对称图形的是(卜列分式的值为C.D.2. (4分)若x = 1时, 0的是3. C.D.x 2-l(4分)木工师傅准备钉一个三角形木架,已有两根长为 2和5的木棒, 木工师傅应该选择如下哪根木棒4. (芯#0, 了卢0)中的分子、分母的(4分)把分式x 、y 同时扩大2倍,那么分式的值(5. (4分)下列等式成立的是(A. (a 3b 2) 3=a 9b 6 _ 4B. 0.000028 = 2.8X 10 4 6. 7. 8.C. x 2+3x 2=4x 4D. (- a+b) ( - a - b) = b 2 -a(4分)已知等腰三角形的两条边长分别为 2和3,则它的周长为C. 5D.(4 分)如果(x —1) (x+2) =x 2+px+q,那么 p, q 的值为( A . p=l, q= — 2 B . p= - 1, q=- 2 C. p=1, q= 2D.(4分)如图,将一张含有 30。
角的三角形纸片的两个顶点叠放在矩形的两条对边上,若/2=46° ,则/ 1的大A . 14B .16 C. 90°D. a- 44D.D.不改变9. (4分)如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第的面积为 6,第③个图形的面积为 12 ,…,那么第⑧个图形面积为(10. (4 分)如图,在^ ABC 中,AB=AC, △ ADE 的顶点 D, E 分别在 BC, AC 上,且/ DAE = 90 ° , AD = AE.若ZC+Z BAC=155° ,则/ EDC 的度数为数解,则所有符合条件的整数 a 的和是()、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13. (4 分)计算:(2 -兀)0- |12018|=14. (4分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”则该等腰三角形的顶角为.215. (4分)因式分斛:4x- x =.16. (4分)如图,点M 是/ AOB 平分线上一点,/ AOB = 60° , ME ± OAT E, OM =3,如果P 是OB 上一动点,则线段MP 的取值范围是.①个图形面积为2,第②个图形C. 21 °D. 22°11. (4分)若C 也是图中的格点,且使得△ABC 为等腰三角形,则符合条件的点C 有()个.B. 3个C. 4个D. 5个12. (4分)如果关于x 的不等式组<的解集为 2-x 3-x=3有正整B. - 8C. - 7D. 0,记作k,若k=A. 42B. 56C. 72D. 90x>- 2,且关于x 的分式方程+17. (4分)如图,/ ABC=20°,点D, E 分别在射线 BC, BA 上,且BD=3, BE=3,点M, N 分别是射线 BA, BC 上的动点,求 DM+MN + NE 的最小值为 .18. (4分)《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一,凡百钱买鸡百只,问鸡翁、母、雏各几何.”(译文:公鸡每只值五文钱, 母鸡每只值三文钱,小鸡每三只值一文钱, 现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?)若买得公鸡和母鸡之和不超过20只,且买得公鸡数不低于母鸡数,则此时买得小鸡 只.三、解答题:(本大题2个小题,每小题 8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将 解答书写在答题卡中对应的位置上19. (8 分)解方程: 一= " — 1x-1 2x-220. (8 分)已知:如图,点 E, A, C 在同一直线上, AB//CD, AB=CE, AC=CD.求证:BC = ED.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请 将解答书写在答题卡中对应的位置上.21 . (10分)计算:(2)分解因式:6mn 2-m 2n-9n 3(1)化简:2x—x 2- 1) 2—y (x 2— 6x 3y) + 3x 2y2017年中国创新指数为 196.3,比上年增长6.8%,测算结果表明,2017年,中国创新环境进一步优化,创新投入力度继续加大,创新产出持续提升,创新成效稳步增强, 创新能力向高质量发展要求稳步迈进. 渝北区政府在创新环境建设中,拟对城区部分路段的人行道、水管道等公用设施更新改造.现有甲、乙两个工程队有意承包这项工程, 经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的 2倍,若甲、乙两工程队合作只需 20天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)市政府决定由甲、乙共同完成此项工程.若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,若工程总费用不超过 143万元,则甲工程队至少工作多少天?24. (10分)在等边△ ABC 中,D 是4ABC 内一点,且 DA = DB , E 为4ABC 外一点,连接 BE 交AC 于F, BE = BC, BD 平分/ EBC,连接 DE, CE, AD // CE. (1)求证:/ DAC = Z DBE; (2)若AB = 6,求^ BEC 的面积.25. (10分)阅读并完成下列问题通过观察,发现方程:x+2=2+ —的解是:XI =2, x 2= —; w 2 2x+工=3+2"的解是: x 1=3, x 2=;313 3 x+工=4+二的解是: x 1=4, x 2= ~~ ;K44(1)观察方程的解,猜想关于 x 的方程x+L=10+」L 的解是 ;根据以上规律,猜想关于 x 的方程x+二\x\[10 K=m+工的解是;m(2)利用上述规律解关于 x 的方程及沁宁 =a+口^.x-2 a-222. (10分)先化简,再求值(m-n—m—,其中 m,iD 2-2ntn+n 2n 满足 m+n —— =0.323. (10分)国家统计局网站近日发布一组数据显示, 绿化带、排).nB ---------------- C五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推步骤,请将解答书写在答题卡中对应的位置上26.(12分)如图,在RtABCD中,/ CBD=90° , BC = BD,点A在CB的延长线上,且BA= BC ,点BD上移动,过点E作射线EFXEA,交CD所在直线于点F .(1)试求证图(1)中:/ BAE=Z DEF;(2)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(3)当点E在直线BD上移动时,在图(2)与图(3)中,分别猜想线段AE与EF有怎样的数量关系, (3)的猜想结果说明理由.E在直线并就图参考答案与试题解析一、选择题:(每小题4分,共48分)在每个小题的下面,都给出了代号为A, B, C, D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1 .【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选:D .3.【解答】解:设第三边长为xcm,由三角形三边关系定理可知, 5 - 2vxv5+23< x<7,故选:C.4.【解答】解:分子、分母的x、y同时扩大2倍,即一个,根据分式的基本性质,则分式的值不变.2x+2y故选:D .5.【解答】解:A、结果是a9b6,故本选项符合题意;B、结果是2.8X10-5,故本选项不符合题意;C、结果是4x2,故本选项不符合题意;D、结果是a2 - b2,故本选项不符合题意;故选:A.6.【解答】解:①2是腰长时,能组成三角形,周长= 2+2+3 = 7,②3是腰长时,能组成三角形,周长= 3+3+2 =8,所以,它的周长是7或8.故选:D .7.【解答】解::( x- 1) (x+2) = x2+x- 2,又「(x-1) (x+2) = x2+px+q,•• p= 1, q = — 2,故选:A.8.【解答】解:如图,二•矩形的对边平行,・・/ 2=7 3=46° ,根据三角形外角性质,可得/ 3=7 1+30° ,Z 1 = 46 - 30 = 16 ,故选:B.第②个图形的面积为2X 3X 1 = 6cm2,第③个图形的面积为3X4X1 = 12cm2,…,,第⑧ 个图形的面积为8X 9X1 = 72cm2,故选:C.10.【解答】解:AB = AC,・./ B=Z C,. B+/C+/BAC=2/C+/BAC=180° ,又/ C+ZBAC=155° ,・./ C=25° ,・. / DAE= 90° , AD = AE,・./ AED=45° ,・./ EDC=/ AED-/ C=20° ,故选:A.11•【解答】解:如图:分情况讨论.①AB为等腰△ ABC底边时,符合条件的C点有2个;②AB为等腰△ ABC其中的一条腰时,符合条件的C点有2个.故答案为:20°故选:C.由已知解集为 x> - 2,得到2a- 4W-2, 解得:a< 1,分式方程去分母得: a+x-2=3x-9, 解得:x =wiE,2由分式方程有正整数解,得到 且上卫>0,且皂士工才3,2 \2• - a = 1, - 3, - 5,则所有满足条件的整数 a 的和是-7, 故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13 .【解答】解:原式=1-1=0.故答案为:0.14 .【解答】解:如图.. △ABC 中,AB=AC, ・ ./ B=Z C, ・••等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=L ,4・ •/ A: / B=1: 4, ,• / A+/B+/C=180° , . A+4Z A+4Z A=180° ,即 9/A= 180° ,・./ A=20° ,15.【解答】解:原式=x (4-x),故答案为:x (4 - x)16.【解答】解:作MH,OB于H,M 是/ AOB 平分线上一点,/ AOB = 60° ,・./ AOM = 30° ,又MELOA,EM =——萼----- =1.5,tanZ^ AOM・. M 是/ AOB 平分线上一点,ME^OA, MHXOB,MH = ME = 1.5,则MP >1.5,故答案为:MP>1.517.【解答】解:如图所示:G作点D关于AB的对称点G,作点E关于BC的对称点H , 连接GH交AB于点M、交BC于点N,连接DM、EN,此时DM + MN+NE的值最小.根据对称的性质可知:DB=BG=3, / GBE = / DBE = 20° ,BH=BE=3, Z HBD =Z EBD = 20° ,・./ GBH = 60° ,・•.△ BGH是等边三角形,,-.GH=GB= HB=3,・•. DM+MN + NE的最小值为3.故答案为3.18.【解答】解:设公鸡买了x只,母鸡买了y只,则小鸡买了(100-x-y)只,依题意,得:5x+3y+—(100- x- y) =100,3y= 25 ———x.4. x, y均为正整数,|1y=18 1y= 11 \ y=4x>y,且x+yw 20,x= 12, y= 4,「•100 — x — y= 84.故答案为:84.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.【解答】解:去分母得: 2x=3- 2x+2,解得:x=—,经检验x=/是分式方程的解.20.【解答】证明:.「AB // CD,・./ BAC=Z ECD,[AB=ECZBAC=ZECD,AC=CD ・.△ BAC^A ECD (SAS),,CB=ED.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.【解答】解:(1)原式=x3-2x-_1_+2xy;(2)原式=-n (- 6mn+m2+9n2)=-n (m - 3n) 222.【解答】解:(- J ) + m 皿m-n - n m2-2nn+n2Cm+n) (m-n) mfui-n)=•二・(mtn) (m-n) m(m-n)m+n23.【解答】解:(1)设甲工程队单独完成此项工程需x天,则乙工程队单独完成此工程需2x天.由题意,得20 X (工+0L) = 1支2 M解得:x=30.经检验,x= 30是原方程的根..•-2x=60.答:甲、乙两个工程队单独完成此项工程分别需(2)设甲工程队最多工作y天,由题意,得:4.5y+2.5X l1一W 143, 而答:甲工程队至少工作14天. 30天和60天.m+n=解得:y>1424 •【解答】证明:(1)连接CD,延长BD交EC于点H,AC=BC, Z ACB = 60° ,AC=BC, CD = CD, AD=BD,ADC^A BDC (SSS・./ DAC=Z DBC,BD 平分/ EBC,・./ DBC=Z DBE,DAC=Z DBE;(2) ••• BE=BC, Z DBC = Z DBE , BD = BD,「.△ BDE^A BDC (SAS)・./ BED=Z BCD,・/△ ADC^A BDC・./ BCD=Z ACD = 30° ,Z BED= 30° ,1.AD // CE,・./ DAC=Z ACE=/ DBC = Z DBE,BE= BC, Z DBC = Z DBE,Z BHC= 90° ,Z DBC+ Z ACB+ Z ACE = 90 ,・./ ACE=Z DBC= 15 ,・./ EBC=30 ,CF = _BC= 3,• Z CFB=90° ,2・•.△BEC 的面积= =XBEXCF = 9.225•【解答】解:(1)观察方程的解,猜想关于x的方程x+二=10+1的解是xi = 10, x2=」=;根据以上规律,x 10 10猜想关于x的方程x+A= m+—的解是xi=m, x2=—;x m m故答案为:xi = 10, x2=」—;xi = m, x2=—;10 m(2) 方程整理得:x+―--= a+--—,即x - 2+--—= a - 2+--—,s-2 a-2 y-2 a-2可得x - 2=a - 2 或x- 2=―-—,x-2解得:x1=a, x2= .a-2五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推步骤,请将解答书写在答题卡中对应的位置上26.【解答】(1)证明:二,在RtABCD中,/ CBD = 90°,点A在CB的延长线上,・./ ABD= 90° ,・./ AEB+Z A=90° ,EF± EA,・./ AEB+Z FED = 90° ,・./ BAE = Z DEF ;(2)证明:如图1中,在BA上截取BH,使得BH = BE.c图⑴・,BC = AB=BD, BE=BH,.•.AH = ED,・. / AEF = Z ABE =90° ,・•.Z AEB+Z FED = 90° , Z AEB+Z BAE =90° ,FED = Z HAE,・. / BHE=Z CDB = 45° ,・./ AHE=Z EDF=135° ,AHE^A EDF (AAS),AE= EF.(3)解:如图2中,在BC上截取BH = BE,同法可证:AE=EF,C圉⑵如图3中,延长BA至点H,使得BH = BE.同法可证:AE=EF.图⑴。
重庆市2019-2020年度八年级上学期期末数学试题A卷

重庆市2019-2020年度八年级上学期期末数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2 . 计算,正确的是()A.B.C.D.3 . 马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依据等量关系,列方程为A.B.C.D.4 . 代数式中x的取值范围在数轴上表示为()A.B.C.D.5 . 在平面直角坐标系中,点(5,6)关于x轴的对称点是()A.(6,5)B.(-5,6)C.(5,-6)D.(-5,-6)6 . 若一个多边形的每一个外角都是24°,则此多边形的内角和为()A.2160°B.2340°C.2700°D.2880°7 . 如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°8 . 关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.59 . 下列多项式中,不能进行因式分解的是()A.﹣a2+b2B.﹣a2﹣b2C.a3﹣3a2+2a D.a2﹣2ab+b2﹣110 . 如图,在等边中,角平分线交于点,过点作于点,且,则的长为()A.4B.6C.9D.12二、填空题11 . 如果9x2﹣kxy+25y2是一个完全平方式,那么k的值是_____.12 . 计算:____________13 . 已知,且,,,…,,请计算__________(用含在代数式表示).14 . 如图,四边形是轴对称图形,且直线l是对称轴,,则下列结论①;②是等边三角形;③;④四边形是正方形.其中正确的是______.(只填写序号)15 . 如图所示,∠A与∠B的度数之比为2:3,则∠A=________°.16 . 等腰三角形ABC的周长为8cm,AB=3cm,则BC=_____cm.17 . 我们知道下面的结论:若am=an(a>0,且a≠1),则m=n.利用这个结论解决下列问题:设2m=3,2n=6,2p=12.现给出m,n,p三者之间的三个关系式:①m+p=2n,②m+n=2p﹣3,③n2﹣mp=1.其中正确的是___.(填编号)18 . 已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为_______.19 . 若分式的值为,则的值等于__________.20 . 如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为__.三、解答题21 . 分解因式:.22 . 某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了 10400 元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.(1)甲、乙两种款型的T恤衫各进货多少件?(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)23 . 化简:24 . 已知:如图①,在△ABC中,BC=AC,在△CDE中,CE=CD,现把两个三角形的C点重合,且使∠BCA=∠ECD,连接BE、AA.(1)求证:BE=AD(2)若将△ECD绕点C旋转至图②、③所示的情况时,其余条件不变,BE与AD还相等么?若相等,请给与证明;若不相等,请说明理由.25 . 如图,∠ABD和∠BDC的平分线交于E,BE的延长线交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)求证:∠2+∠3=90°.26 . 如图,在中求作一点P,是P到AB、BC的距离相等,并且PB=PC,(要求尺规作图,不写作法,保留作图痕迹)27 . (1)问题发现:如图1,在等边中,点为边上一动点,交于点,将绕点顺时针旋转得到,连接.则与的数量关系是_____,的度数为______.(2)拓展探究:如图2,在中,,,点为边上一动点,交于点,当∠ADF=∠ACF=90°时,求的值.(3)解决问题:如图3,在中,,点为的延长线上一点,过点作交的延长线于点,直接写出当时的值.28 .。
重庆市2019-2020学年八年级上册数学期末考试试卷D卷

重庆市2019-2020学年八年级上册数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七下·海安期中) 下列实数中是无理数的是()A .B .C . 0.12D .2. (2分) (2019八下·长兴月考) 下列根式中,属于最简二次根式的是()A .B .C .D .3. (2分) (2016八上·锡山期末) 已知点A(m+2,3m-6)在第一象限角平分线上,则m的值为()A . 2B . -1C . 4D . -24. (2分)若△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则△ABC是()A . 等腰三角形B . 等边三角形C . 等腰直角三角形D . 等腰三角形或直角三角形5. (2分)下列关系式中,表示y是x的正比例函数的是()A . y=B . y=1C . y=x+1D . y=2x6. (2分) (2016七下·邹城期中) 如图所示,∠1=70°,有下列结论:①若∠2=70°,则AB∥CD;②若∠5=70°,则AB∥CD;③若∠3=110°,则AB∥CD;④若∠4=110°,则AB∥CD.其中正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分)下列语句:①数轴上的点仅能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.说法正确的个数是()A . 1B . 2C . 3D . 48. (2分)(2017·枝江模拟) 若,则用只含x的代数式表示为()A . y=2x+7B . y=7﹣2xC . y=﹣2x﹣5D . y=2x﹣59. (2分) (2020七上·越城期末) 将一副直角三角尺按如下不同方式摆放,则图中锐角∠1与∠2互余的是().A .B .C .D .10. (2分)(2011·梧州) 如图,在平面直角坐标系中,直线y= x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A . 6B . 3C . 12D .二、填空题 (共6题;共6分)11. (1分) (2018七上·杭州期中) 64的算术平方根是________.12. (1分) (2018八上·互助期末) 已知 y﹣3 与 x﹣1 成正比例,当 x=3 时,y=7,那么 y 与 x 的函数关系式是________.13. (1分) (2018八上·白城期中) 点A(4,﹣2)关于y轴的对称点A′的坐标为________.14. (1分) (2018八上·大田期中) 如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是________。
2019-2020学年重庆八中八年级(上)期末数学试卷(含解析)

2019-2020学年重庆八中八年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题4分,共40分)1.用不等式表示图中的解集,以下选项正确的是()A.x>1 B.x<1 C.x≥1 D.x≤12.下列图形中,是中心对称图形的是()A.B.C.D.3.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b4.在平面直角坐标系内,将M(5,2)先向上平移3个单位,再向左平移2个单位,则移动后的点的坐标是()A.(2,0)B.(3,5)C.(8,4)D.(2,3)5.为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A.B.C.D.6.如图,直线y=kx+b(k≠0)与直线y=mx(m≠0)交于点P(﹣1,﹣2),则关于x的不等式kx+b≤mx的解集为()A.x≥﹣2 B.x≤﹣2 C.x≥﹣1 D.x≤﹣17.如图,在平面直角坐标系中,点A(3,0),点B(0,2),连结AB,将线段AB绕点A顺时针旋转90°得到线段AC,连接OC,则线段OC的长度为()A.4 B.C.6 D.8.按如图所示的运算程序,能使输出结果为﹣8的是()A.x=3,y=4 B.x=4,y=3 C.x=﹣4,y=2 D.x=﹣2,y=49.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,以下命题是假命题的是()A.若∠B+∠C=∠A,则△ABC是直角三角形B.若a2=(b+c)(b﹣c),则△ABC是直角三角形C.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.若a=32,b=42,c=52,则△ABC是直角三角形10.如图,在同一平面内,将△ABC绕A点逆时针旋转得到△ADE,若AC⊥DE,∠ADB=53°,以下选项正确的是.(多选)A.∠E=16°B.∠ABD=53°C.∠BAD=90°D.∠EAC=53°二、填空题(本大题共3小题,每小题4分,共12分)11.二次根式有意义,则x的取值范围是.12.直线v=kx+b(k≠0)与经过点(4,3),且平行于直线y=2x+1,则这条直线的解析式为.13.如图,在Rt△ABC中,∠B=90°,AB=2,BC=2+,点D在边BC上,将△ACD沿直线AD翻折得到△AED,若DE⊥BC,则CD=.三、解答题(本大题共5个小题,14题8分,15、16、17、18每小题8分,共48分)14.(8分)(1)(2)15.(10分)如图,在△ABC中,∠A=90°,CD平分∠ACB,交AB于点D,过点D作DE⊥BC于点E.(1)求证:△ACD≌△ECD;(2)若BE=EC,求∠ADE的度数.16.(10分)如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.17.(10分)阅读理解材料一:已知在平面直角坐标系中有两点M(x1,y1),N(x2,y2),其两点间的距离公式为:MN=,当两点所在直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可化简为|x2﹣x1|或|y2﹣y1|;材料二:如图1,点P,Q在直线l的同侧,直线l上找一点H,使得PH+HQ的值最小.解题思路:如图2,作点P关于直线l的对称点P1,连接P1Q交直线l于H,则点P1,Q之间的距离即为PH+HQ的最小值.请根据以上材料解决下列问题:(1)已知点A,B在平行于x轴的直线上,点A(2a﹣1,5﹣a)在第二象限的角平分线上,AB=5,求点B 的坐标;(2)如图3,在平面直角坐标系中,点C(0,2),点D(3,5),请在直线y=x上找一点E,使得CE+DE最小,求出CE+DE的最小值及此时点E的坐标.18.(10分)学校对初2021级甲、乙两班各60名学生进行知识测试,测试完成后分别抽取了12份成绩,整理分析过程如下,请补充完整.【收集数据】甲班12名学生测试成绩统计如下:45,59,60,38,57,53,52,58,60,50,43,49乙班12名学生测试成绩统计如下:35,55,46,39,54,47,43,57,42,59,60,47【整理数据】按如下分数段整理,描述这两组样本数据组别频数35≤x<40 40≤x<45 45≤x<50 50≤x<55 55≤x≤60 甲0 1 3 3 5乙 2 2 3 1 4【分析数据】两组样本数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数甲52 x 52.5乙48.7 47 y(1)x=,y=;(2)若规定得分在40分及以上为合格,请估计乙班60名学生中知识测试合格的学生有多少人?(3)你认为哪个班的学生知识测试的整体水平较好,请说明一条理由.B卷(50分)一、选择题填空题(本大题共5小题,每小题4分,共20分)19.若关于x,y的方程组的解满足4x+3y=14,则n的值为()A.B.1 C.D.﹣120.(多选)在同一条道路上,甲车从A地到B地,乙车从B地到A地,两车同时出发,乙车先到达目的地,图中的折线段表示甲,乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系,下列说法正确的是.A.甲乙两车出发2小时后相遇B.甲车速度是40千米/小时C.相遇时乙车距离B地100千米D.乙车到A地比甲车到B地早小时21.已知整数a使得不等式组的解集为x>﹣4,且使得一次函数y=(a+5)x+5的图象不经过第四象限,则整数a的值为.22.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.23.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD=6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是.二、解答题(本大题共3个小题,24题8分,25题10分,26题12分,共30分)24.(8分)如图1,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点P从B点出发,沿射线AB的方向运动,已知C(1,0),点P的横坐标为x,连接OP,PC,记△COP的面积为y1.(1)求y1关于x的函数关系式及x的取值范围;(2)在图2所示的平面直角坐标系中画出(1)中所得函数的图象,记其与y轴的交点为D,将该图象绕点D逆时针旋转90°,画出旋转后的图象;(3)结合函数图象,直接写出旋转前后的图象与直线y2=﹣x+3的交点坐标.25.(10分)某文具店计划购进A,B两种笔记本共60本,每本A种笔记本比B种笔记本的利润高3元,销售2本A种笔记本与3本B种笔记本所得利润相同,其中A种笔记本的进货量不超过进货总量的,B种笔记本的进货量不超过30本.(1)每本A种笔记本与B种笔记本的利润各为多少元?(2)设购进B种笔记本m本,销售总利润为W元,文具店应如何安排进货才能使得W最大?(3)实际进货时,B种笔记本进价下降n(3≤n≤5)元.若两种笔记本售价不变,请设计出笔记本销售总利润最大的进货方案.26.(12分)如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC =CD.(1)如图1,若AC=3,DE=2,求EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE=AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.参考答案与试题解析一、选择题1.【解答】解:由题意,得x≥1,故选:C.2.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.3.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.4.【解答】解:把点A(5,2)先向上平移3个单位长度,再向左平移2个单位长度得到点的坐标为(3,5),故选:B.5.【解答】解:设A工程小组整治河道x米,B工程小组整治河道y米,依题意可得:,故选:A.6.【解答】解:根据图象可得:不等式kx+b≤mx的解集为:x≥﹣1,故选:C.7.【解答】解:如图,作CH⊥x轴于H.∵A(3,0),B(0,2),∴OA=3,OB=2,∵∠AOB=∠BAC=∠AHC=90°,∴∠BAO+∠HAC=90°,∠HAC+∠ACH=90°,∴∠BAO=∠ACH,∵AB=AC,∴△ABO≌△CAH(AAS),∴AH=OB=2,CH=OA=3,∴OH=OA+AH=3+2=5,∴C(5,3),∴OC===,故选:D.8.【解答】解:A.x=3,y=4时,输出的结果为3×3﹣42=﹣7,不符合题意;B.x=4,y=﹣3时,输出的结果为4×3﹣(﹣3)2=3,不符合题意;C.x=﹣4,y=2时,输出的结果为3×(﹣4)+22=﹣8,符合题意;D.x=﹣2,y=4时,输出结果为3×(﹣2)+42=10,不符合题意.故选:C.9.【解答】解:A、若∠B+∠C=∠A,则△ABC是直角三角形,是真命题,不合题意;B、若a2=(b+c)(b﹣c),则△ABC是直角三角形,是真命题,不合题意;C、若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,是真命题,不合题意;D、若a=32=9,b=42=16,c=52=25,92+162≠252,则△ABC不是直角三角形,原命题是假命题,符合题意.故选:D.10.【解答】解:∵将△ABC绕A点逆时针旋转到△ADE的位置.∴AB=AD,∠E=∠C,∠BAD=∠EAC,∵AB=AD,∴∠ABD=∠ADB=53°,故B选项正确;∴∠BAD=180°﹣53°﹣53°=74°=∠EAC,故C选项错误,选项D错误;∵AC⊥DE,∴∠CAD+∠ADE=90°,∵∠E=180°﹣∠EAC﹣∠CAD﹣∠EDA,∴∠E=16°=∠ACB,故A选项正确,正确选项的是A,B.故答案为A,B.二、填空题11.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.12.【解答】解:∵直线v=kx+b(k≠0)经过点(4,3),∴4k+b=3,∵直线v=kx+b平行于直线y=2x+1,∴k=2,∴4×2+b=3,解得b=﹣5.所以这条直线的解析式为v=2x﹣5.故答案为:v=2x﹣5.13.【解答】解:∵将△ACD沿直线AD翻折得△AED,∴∠ADC=∠ADE,∵DE⊥BC,∴∠BDE=90°∴∠ADE=90°+∠ADB=∠ADC,∴90°+∠ADB=180°﹣∠ADB,∴∠ADB=45°,且∠ABC=90°,∴∠ADB=∠BAD=45°,∴AB=BD=2,∴CD=BC﹣BD=2+﹣2=,故答案为:.三、解答题14.【解答】解:(1),①×3+②×2,得:13x=65,解得x=5,将x=5代入①,得:15﹣2y=11,解得y=2,∴;(2)解不等式5x﹣1>3(x+1),得:x>2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为2<x≤4.15.【解答】证明:(1)∵CD平分∠ACB,DE⊥BC,∠A=90°,∴AD=ED,∠DAC=∠DEC=90°,∵在Rt△ACD和Rt△ECD中,∴Rt△ACD≌Rt△ECD(HL);(2)解:∵DE⊥BC,BE=CE,∴DB=DC,∴∠DBC=∠DCB,∵△ACD≌△ECD,∴∠DCB=∠ACD,∵∠A=90°,∴∠DBC+∠DCB+∠ACD=90°,∴3∠DBC=90°,∴∠DBC=30°,∴∠BDE=60°,∴∠ADE=180°﹣60°=120°.16.【解答】解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.17.【解答】解:(1)∵点A(2a﹣1,5﹣a)在第二象限的角平分线上,∴5﹣a=1﹣2a,∴a=﹣4,∴A(﹣9,9),∵点A,B在平行于x轴的直线上,∴B点的纵坐标为9,∵AB=5,∴B(﹣4,9)或B(﹣14,9);(2)作点C关于y=x的对称点为C'(2,0),连接C'D与y=x的交点即可所求点E;∵CE=C'E,∴CE+DE=C'E+DE=C'D,∵D(3,5),∴C'D=,直线C'D的解析式为y=5x﹣10,联立:5x﹣10=x,∴x=,∴E(,),∴CE+DE的最小值,此时点E的坐标(,).18.【解答】解:(1)45,59,60,38,57,53,52,58,60,50,43,49,众数是x=60,35,39,42,43,46,47,47,54,55,57,59,60,中位数是y=47;(2)60×=50(人).即乙班60名学生中知识测试合格的学生有50人;(3)甲班的学生知识测试的整体水平较好,∵甲班平均数>乙班平均数,∴甲班的学生知识测试的整体水平较好.故答案为:60,47.B卷一、选择题填空题19.【解答】解:根据已知条件可知:解方程组,得把x=2,y=2代入2x+y=2n+5中,得6=2n+5解得n=.故选:A.20.【解答】解:出发2h后,其距离为零,即两车相遇,故选项A说法正确;甲的速度是=40(km/h),故选项B说法正确;乙的速度为:﹣40=60(km/h),60×2=120(km),即遇时乙车距离B地120千米,故选项C说法错误;=(h),即甲车到B地比乙车到A地早h,故选项D说法正确.故答案为:ABD.21.【解答】解:∵不等式组的解集为x>﹣4,∴的解集为x>﹣4,∴a≤﹣4,∵一次函数y=(a+5)x+5的图象不经过第四象限,∴a+5>0,解得:a>﹣5,∴﹣5<a≤﹣4,∴整数a的值为:﹣4.故答案为:﹣4.22.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.23.【解答】解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠PAB=∠BAP1,∠PAC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=AP2=PA.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=6>AB,∵AB=8,∴BD=2,BC===2,∵S△ABC=•BC•AH=•AB•CD,∴AH==,∵≤PA≤6,∴≤P1P2≤12.故答案为≤P1P2≤12.二、解答题24.【解答】解:(1)∵直线y=x+2与x轴,y轴分别交于A,B两点,∴当x=0时,y=2,B(0,2),当y=0时,x=﹣2,A(2,0).∵点P从B点出发,沿射线AB的方向运动,∴P(x,x+2),∵C(1,0),∴△COP的面积为y1=×1×(x+2)=x+1.∴y1关于x的函数关系式为:y=x+1,x的取值范围为:x≥0;(2)如图所示,(1)中所得函数的图象为y1=0.5x+1,旋转后的图象为y3=﹣2x+1.(3)旋转前后的图象与直线y2=﹣x+3的交点坐标为点E、F,解得所以E(,).解得所以F(﹣2,5).答:旋转前后的图象与直线y2=﹣x+3的交点坐标为(,),(﹣2,5).25.【解答】解:(1)设每本A种笔记本的利润为x元,则每本B种笔记本的利润为(x﹣3)元,根据题意得,2x=3(x﹣3),解得,x=9,∴x﹣3=6,答:每本A种笔记本与B种笔记本的利润各为9元和6元;(2)由题意得,,解得,20≤m≤30,由题意得,W=9(60﹣m)+6m=﹣3m+540,∵﹣3<0,∴W随m的增大而减小,∴当m=20时,W有最大值,∴文具店应进A种笔记本40本,B种笔记本20本,才能使得W最大.答:文具店应进A种笔记本40本,B种笔记本20本,才能使得W最大.(3)根据题意得,W=9(60﹣m)+(6+n)m=(n﹣3)m+540,∵3≤n≤5,∴0≤n﹣3≤2,①当n﹣3=0,即n=3时,m不论为何值时,W=540(元),②当0<n﹣3≤2,即3<n≤5时,W随m的增大而增大,∴此时,当m=30时,W有最大值为:W=30(n﹣3)+540=30n+450,∵3<n≤5,∴540<W≤610,故当m=30时,W有最大值.综上,当m=30时,W有最大值.∴文具店应进A种笔记本30本,B种笔记本30本,才能使得W最大.答:文具店应进A种笔记本30本,B种笔记本30本,才能使得W最大.26.【解答】解:(1)如图1,过点C作CG⊥AB于G,∴∠AGC=∠AGB=90°,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD=DE=2,∴BG=BD+DG=2+a,在Rt△BGC中,∠BCG=90°﹣∠ABC=30°,∴BC=2BG,CG=BG=6+a,在Rt△DGC中,CD=AC=3,根据勾股定理得,CG2+DG2=CD2,∴(6+a)2+a2=90,∴a=或a=(舍),∴BC=EC+BE=EC+BD,∴EC+BD=2(BD+DG),∴EC=BD+2DG=2+2a=2+2×=9﹣;(2)如图2,在MC上取一点P,使MP=DE,连接AP,∵△BDE是等边三角形,∴∠BED=60°,BE=DE,∴∠DEC=120°,BE=PM,∵AE=AM,∴∠AEM=∠AME,∴∠AEB=∠AMP,∴△ABE≌△APM(SAS),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°﹣∠BDE﹣∠ADC=180°﹣60°﹣∠DAC=120°﹣∠DAC,在△ABC中,∠ACB=180°﹣∠ABC﹣∠DAC=120°﹣∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如备用图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH中,AH=BH=m,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°﹣∠ACB=45°=∠ACB,∴CH=AH=m,AC=AH=m,∵MC+AD=BC=BH+CH=m+m=(1+)m,∴MC+AD=AC.。
重庆市沙坪坝区2019-2020八年级上学期期末数学试卷 及答案解析

重庆市沙坪坝区2019-2020八年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1. 16的平方根是( )A. 4B. −4C. ±4D. ±22. 计算(−a 3)2的结果是( )A. a 6B. −a 6C. a 5D. −a 5 3. 在实数√3,−12,0,√−13,3.1415,π2,√43中,无理数的个数是( )A. 2个B. 3个C. 4个D. 5个4. 计算:(8x 3−12x 2−4x)÷(−4x)=( )A. −2x 2+3xB. −2x 2+3x +1C. −2x 2+3x −1D. 2x 2+3x +15. 如图,在数轴上点A 和点B 之间的整数是( )A. 1和2B. 2和3C. 3和4D. 4和56. 若分别以下列各组数值为一个三角形的三条边长,其中能构成直角三角形的是( )A. 13,14,15B. 8,10,6C. 9,16,25D. 13,14,157. 下列命题中,为真命题的是( )A. 对顶角相等B. 同位角相等C. 若a 2=b 2,则a =bD. 若a >b ,则−2a >−2b8. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b),如图(1)所示,把余下的部分拼成一个矩形,如图(2),根据两个图形中的阴影部分面积相等,可以验证等式是( )A. (a−b)2=a2−2ab+b2B. (a+b)2=a2+2ab+b2C. a2−b2=(a−b)(a+b)D. (a−b)2=a2−b29.如图折线统计图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是()A. 4:00时气温最低,14:00时气温最高B. 12:00时气温为30℃C. 这一天温差约为9℃D. 气温是24℃的是在6:00和8:00时10.甲地到乙地之间的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由甲地到乙地的行驶时间缩短了1.5小时,设原来火车的平均速度为x千米/小时,则下列方程正确的是()A. 210x −1.8=2101.5xB. 210x+1.8=2101.5xC. 210x +1.5=2101.8xD. 210x−1.5=2101.8x11.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A. 16cmB. 19cmC. 22cmD. 25cm12.若二次根式√2−m有意义,且关于x的分式方程m1−x +2=3x−1有正数解,则符合条件的整数m的和是()A. −7B. −6C. −5D. −4二、填空题(本大题共6小题,共24.0分)13.实数√3−1的相反数是______.14.某种细菌的直径是0.0000005厘米,用科学记数法表示为______ 厘米.15.如图,△ABC≌△DEF,∠B=40°,∠D=60°,则∠F=______.16.如图,△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,AB=16,BC=12,△ABC的面积为70,则DE=_________17.若a=2,a+b=3,则a2+ab=______ .若x+y=3,xy=1,则x2+y2=______ .18.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF//BC交AC于M,若CM=3,则CE2+CF2=______.三、计算题(本大题共1小题,共10.0分)19.计算(1)(8x2y−4x4y3)÷(−2x2y)(2)(3x−2)(2x+3)−(x−1)2.四、解答题(本大题共7小题,共68.0分))−1−(2019+√3)0.20.计算:√9−(1221.已知:如图,AD//CB,AD=CB.求证:△ADC≌△CBA.22.某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图1、图2)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:(1)求在这次活动中一共调查了多少名学生?(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数.(3)补全两幅统计图.23.先化简:(x+1x−1+1)÷x2+xx2−2x+1+2−2xx2−1,然后从−2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.24.如图,学校有一块三角形空地ABC,为响应沙区创文创卫,美化校园环境的号召,学校计划将这块三角形空地分割成四边形ABDE和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉.经测量,∠EDC=90°,DC=6米,CE=10米,BD=14米,AB=16米,AE=2米.(1)求DE的长;(2)求四边形ABDE的面积.25.定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f(a).例如:a=12,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为21+12= 33,和与11的商为33÷11=3,所以f(12)=3.根据以上定义,回答下列问题:(1)填空:①下列两位数:30,31,33中,“迥异数”为______.②计算:f(23)=______,f(10m+n)=______.(2)如果一个“迥异数”b的十位数字是k,个位数字是2(k+1),且f(b)=11,请求出“迥异数”b.(3)如果一个“迥异数”m的十位数字是x,个位数字是x−4,另一个“迥异数”n的十位数字是x−5,个位数字是2,且满足f(m)−f(n)<8,请直接写出满足条件的x的值.26.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长-------- 答案与解析 --------1.答案:C解析:解:16的平方根是±4,故选:C.根据平方根定义求出即可.本题考查了平方根的应用,注意:一个正数有两个平方根,它们互为相反数.2.答案:A解析:本题主要考查了幂的乘方法则,正确理解法则:幂的乘方,底数不变指数相乘是解题关键.根据幂的乘方乘方法则:幂的乘方,底数不变指数相乘,即可求解.解:(−a3)2=a3×2=a6.故选A.3.答案:B解析:解:√3,π2,√43是无理数,故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;像0.1010010001…,等有这样规律的数.4.答案:B解析:解:(8x3−12x2−4x)÷(−4x)=−2x2+3x+1.故选:B.直接利用整式的除法运算法则计算即可得出答案.此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.5.答案:B解析:本题主要考查了无理数的估算.先分别估算√2和√10的范围,据此找出两个数之间的整数即可. 解:∵1<√2<2,3<√10<4,∴√2与√10之间的整数有2和3,故选B .6.答案:B解析:本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键. 先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.解:A 、∵(14)2+(15)2≠(13)2,∴以13,14,15为边不能组成直角三角形,故本选项不符合题意;B 、∵62+82=102,∴以8,10,6为边能组成直角三角形,故本选项符合题意;C 、∵92+162≠252,∴以9,16,25为边不能组成直角三角形,故本选项不符合题意;D 、∵132+142≠152,∴以13,14,15为边不能组成直角三角形,故本选项不符合题意;故选B .7.答案:A解析:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.分别判断四个选项的正确与否即可确定真命题.解:A、对顶角相等为真命题;B、两直线平行,同位角相等,故为假命题;C、a2=b2,则a=±b,故为假命题;D、若a>b,则−2a<−2b,故为假命题;故选:A.8.答案:C解析:[分析]图形(1)中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2−b2;图形(2)阴影部分是一个长是(a+b),宽是(a−b)的长方形,面积是(a+b)(a−b);这两个图形的阴影部分的面积相等.[详解]解:∵图(1)中阴影部分的面积为:a2−b2,图(2)中阴影部分的面积为:(a+b)(a−b),而两个图形中阴影部分的面积相等,∴a2−b2=(a+b)(a−b).故选C.[点评]此题主要考查了平方差公式的几何背景,解题关键点是熟练掌握两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9.答案:D解析:本题考查了折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况,如气温变化图;根据观察图象的横坐标,可得时间,根据观察图象的纵坐标,可得气温.解:A.由横坐标看出4:00时气温最低,14:00时气温最高,故A正确;B.由纵坐标看出12:00时气温为30℃,故B正确;C.由纵坐标看出这一天温差约为9℃;故C正确;D.由横坐标看出气温是24℃的还有在0:00时,故D错误;故选D.10.答案:D解析:解:设原来火车的平均速度为x千米/小时,则动车运行速度为1.8x千米/小时,根据题意,得:210x −1.5=2101.8x,故选:D.根据:原来火车行驶210千米所需时间−1.5=动车行驶210千米所需时间,列方程即可.本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.答案:B解析:解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.利用线段的垂直平分线的性质即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.12.答案:D解析:本题考查二次根式有意义的条件、分式方程的解法,以及分式方程产生增根的条件等知识,理解正数解,整数m的意义是正确解答的关键.根据二次根式√2−m有意义,可得m≤2,解出关于x的分式方程m1−x +2=3x−1的解为x=m+52,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.解:去分母得,−m+2(x−1)=3,解得,x=m+52,∵关于x的分式方程m1−x +2=3x−1有正数解,∴m+52>0,∴m>−5,又∵x=1是增根,当x=1时,m+52=1,即m=−3∴m≠−3,∵√2−m有意义,∴2−m≥0,∴m≤2,因此−5<m≤2且m≠−3,∵m为整数,∴m可以为−4,−2,−1,0,1,2,其和为−4,故选D.13.答案:1−√3解析:解:√3−1的相反数是1−√3,故答案为:1−√3.根据只有符号不同的两个数互为相反数,可得答案.本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.14.答案:5×10−7解析:解:0.0000005=5×10−7,故答案为:5×10−7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.答案:80°解析:本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.根据全等三角形的性质求出∠E的度数,根据三角形内角和定理计算即可.解:∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°−∠D−∠E=80°,故答案为:80°.16.答案:5解析:本题考查角平分线的性质,以及三角形的面积,掌握角平分线的性质是解题关键.首先过点D作BC 的高DF,得出DF=DE,然后根据三角形的面积求解即可.解:如图,过点D作DF⊥BC,垂足为F,∵BD为∠ABC的平分线,DE⊥AB,∴DF=DE,∵S△ABC=S△ABD+S△CBD,△ABC的面积为70,AB=16,BC=12,∴12×16DE+12×12DF=70,即14DE=70,解得DE=5.故答案为5.17.答案:6;7解析:解:a2+ab=a(a+b)=2×3=6,x2+y2=(x+y)2−2xy=32−2×1=9−2=7,故答案为:6;7.根据因式分解和完全平方公式,即可解答.本题考查了因式分解和完全平方公式,解决本题的关键是熟记因式分解−提公因式法和完全平方公式.18.答案:36解析:解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,又∵EF//BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=3,EF=6,由勾股定理可知CE2+CF2=EF2=36,故答案为36.根据角平分线的定义、外角定理推知∠ECF=90°,然后在直角三角形ECF中利用勾股定理求CE2+ CF2的值即可.本题考查了直角三角形的性质,平行线的性质,以及角平分线的定义,证明出△ECF是直角三角形是解决本题的关键.19.答案:解:(1)原式=8x2y÷(−2x2y)−4x4y3÷(−2x2y)=−4+2x2y2;(2)原式=6x2+5x−6−x2+2x−1=5x2+7x−7.解析:本题考查了整式的混合运算,掌握多项式的乘除法运算以及完全平方公式是解题的关键.(1)根据多项式除以单项式进行计算即可;(2)根据多项式的乘法以及完全平方公式进行计算即可.20.答案:解:原式=3−2−1=0.解析:直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.答案:证明:∵AD//CB,∴∠ACB=∠CAD,在△ABC和△CDA中,{CB=AD∠ACB=∠CAD AC=CA ,∴△ADC≌△CBA(SAS).解析:本题考查了平行线的性质和全等三角形的判定;熟练掌握三角形全等的判定方法是解题的关键.先由平行线证出∠ACB=∠CAD,再由已知条件和公共边即可证明△ABC≌△CDA.22.答案:解:(1)被调查的学生数为4020%=200(人);(2)“教师”所在扇形的圆心角的度数为(1−15%−20%−10%−70200×100%)×360°=72°;(3)如图,补全图.解析:本题主要考查了统计图,熟练掌握统计图的特征.(1)通过对比条形统计图和扇形统计图可知:喜欢的职业是公务员的有40人,占样本的20%,所以被调查的学生数即可求解;(2)各个扇形的圆心角的度数=360°×该部分占总体的百分比,乘以360度即可得到“教师”所在扇形的圆心角的度数;(3)找出两个统计图中共同的已知量,就可以求出教师、其它所占的百分比,以及教师、医生的人数,将图形补充完整即可.23.答案:解:(x+1x−1+1)÷x2+xx2−2x+1+2−2xx2−1=x+1+x−1x−1⋅(x−1)2x(x+1)+2(1−x)(x+1)(x−1) =2xx−1⋅(x−1)2x(x+1)−2x+1=2x−4x+1;满足−2≤x≤2的整数有:−2、−1、0、1、2但x=−1、0、1时,原式无意义,∴x=−2或2,∴当x=2时,原式=0.解析:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=2代入计算即可求出值.24.答案:解:(1)∵∠EDC=90∘,∴在RtΔEDC中,DC=6米,EC=10米,ED=√EC2−DC2=√102−62=8米;答:DE的长为8米;(2)如图,连接BE,在Rt△EBD中,BD=14米,ED=8米,∴BE2=BD2+ED2=142+82=260(平方米),∵AB=16米,AE=2米,∴AB2+AE2=162+22=260(平方米),∴AB2+AE2=BE2,∴△ABE是直角三角形,∠A=90°,∴四边形ABDE的面积=SΔABE+SΔBDE,=12AB⋅AE+12BD⋅ED=12×16×2+12×14×8,=72(平方米),答:四边形ABDE的面积为72平方米.解析:本题主要考查的是勾股定理及其逆定理,直角三角形的判定及性质,三角形的面积的有关知识.(1)直接利用勾股定理进行求解即可;(2)连接BE,利用勾股定理求出BE2,然后利用勾股定理的逆定理得到△ABE是直角三角形,∠A=90°,然后利用四边形ABDE的面积=SΔABE+SΔBDE求解即可.25.答案:(1)①31;② 5;m+n;(2)∵f(10m+n)=m+n,“迥异数”b的十位数字是k,个位数字是2(k+1),且f(b)=11,∴k+2(k+1)=11,∴k=3,∴b=10×3+2×(3+1)=38;(3)∵f(m)−f(n)<8,∴x+x−4−(x−5+2)<8,解得x<9,∵x−4>0,x−5>0,∴x>5,∴5<x<9,且x为正整数,∴x=6,7,8,当x=6时,m=62,n=12;当x=7时,m=73,n=22(不合题意舍去);当x=8时,m=84,n=32.综上所述:x为6或8.解析:本题考查了新定义运算,考查了整式的混合运算,能理解“迥异数”定义是本题的关键.(1)①由“迥异数”的定义可得;②根据定义计算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根据题意“迥异数”的定义和f(m)−f(n)<8可列出不等式,可求出5<x<9,再对x的取值逐一验证即可求x的值.解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”,∴“迥异数”为31,故答案为31;②f(23)=(23+32)÷11=5,f(10m+n)=(10m+n+10n+m)÷11=m+n,故答案为:5,m+n;(2)见答案.(3)见答案.26.答案:解:(1)结论:BQ=CP.理由:如图1中,作PH//AB交CO于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,∵∠OPQ=∠OCP=60°,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(2)成立:PC=BQ.理由:作PH//AB交CO的延长线于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠POH=60°+∠CPO,∠QPO=60°+∠CPQ,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.∵∠OPC=15°,∠OCB=∠OCP+∠POC,∴∠POC=45°,∴CE=EO,设CE=EO=a,则FC=FP=2a,EF=√3a,在Rt△PCE中,PC=√PE2+CE2=√(2a+√3a)2+a2=(√6+√2)a,∵PC+CB=4,∴(√6+√2)a+√2a=4,解得a=4√2−2√6,∴PC=4√3−4,由(2)可知BQ=PC,∴BQ=4√3−4.解析:(1)结论:BQ=CP.如图1中,作PH//AB交CO于H,可得△PCH是等边三角形,只要证明△POH≌△QPB即可;(2)成立:PC=BQ.作PH//AB交CO的延长线于H.证明方法类似(1);(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.设CE=EO=a,则FC= FP=2a,EF=√3a,在Rt△PCE中,PC=√PE2+CE2=√(2a+√3a)2+a2=(√6+√2)a,根据PC+CB=4,可得方程(√6+√2)a+√2a=4,求出a即可解决问题;此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
重庆市2019-2020学年八年级上学期期末数学试题C卷

重庆市2019-2020学年八年级上学期期末数学试题C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 若点P(,)满足,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限2 . 下列计算中,正确的是()A.B.C.D.3 . 下列各数中,是有理数的是()A.πB.1.2C.D.4 . 在平面直角坐标系中,函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5 . 在方差计算公式中,数字和分别表示()A.数据的个数和方差B.数据的平均数和个数C.数据的个数和平均数D.数据的方差和平均数6 . 一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)7 . 如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点.作△ABC的外接圆⊙O,则的长等于()A.B.C.D.8 . 如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方9 . 若一次函数的图像与直线平行,且过点,则此一次函数的解析式为()A.B.C.D.10 . 某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a吨,另有从城区流入库池的待处理污水(新流入污水按每小时b吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求恰好用5个小时将污水处理完毕,则需同时开动的机组数为()A.6台B.7台C.8台D.9台二、填空题11 . 不等式y+3>4变形为y>1,这是根据不等式的性质____,不等式两边同时加上___12 . 若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为________.13 . 实数a,b在数轴上的位置如图所示,则化简的结果是________。
2019-2020学年重庆市沙坪坝区八年级(上)期末数学试卷 (解析版)

2019-2020学年重庆市沙坪坝区八年级(上)期末数学试卷一、选择题1.9的平方根是()A.±3B.3C.﹣3D.±2.计算(x3)2的结果是()A.x5B.x6C.x8D.x93.在实数,,,π中,无理数是()A.B.C.D.π4.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为(3ab+2b)平方米,宽为b米,则这块空地的长为()A.(3a+2)米B.(3ab+b)米C.(3ab+3b)米D.(3ab2+2b2)米5.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4B.4和5C.5和6D.6和76.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.5,6,77.下列命题中,真命题是()A.对顶角不一定相等B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等D.等腰三角形是轴对称图形8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b29.如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.310.甲乙两地铁路线第约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为x千米/时,根据题意,可得方程()A.B.C.D.11.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC 的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm12.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣4二、填空题(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上)13.实数﹣的相反数是.14.有一种球状细菌,直径约为0.0000015cm,那么0.0000015用科学记数法表示为.15.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=°.16.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=4,DC=5,则△ABD 的面积为.17.若x+y=5,且(x+3)(y+3)=26,则x2+3xy+y2=.18.如图,△ABC中,∠ACB=90°,AC∥BD,BC=BD,在AB上截取BE,使BE=BD,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,BC=7,BG=4,则AB=.三、解答题:(本大题2个小题,每小题8分,共16分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)(﹣1)0+3﹣2+(2)×﹣÷20.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.四、解答题:(本大题5个小题,每小题10分,共50分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)22.我市教育行政部门为了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中的信息,回答下列问题:(1)该校初二学生总人数为,扇形统计图中的a的值为,扇形统计图中“活动时间为4天”的扇形所对圆心角度数为;(2)请把条形统计图补充完整.23.先化简:(+x﹣1)÷,然后在﹣3,﹣1,1,3中选择一个合适的数,作为x的值代入求值.24.如图,小区有一块四边形空地ABCD,其中AB⊥AC.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A作了垂直于BC的小路AE.经测量,AB=CD=4m,BC=9m,AD=7m.(1)求这块空地ABCD的面积;(2)求小路AE的长.(答案可含根号)25.对任意一个三位数P,将它任意两个数位上的数字对调后得到一个首位不为0的新的三位数q(q可以与P相同),记q=,在所有可能的情况中,当|a﹣2b+c|最小时,我们称此时的q是p“幸福快乐数”,并规定:K(p)=a2﹣2b2+c2.例如:318按上述方法可得新数有381、813、138,因为|3﹣2×8+1|=12,|8﹣2×1+3|=9,|1﹣2×3+8|=3,而3<9<12,所以138是318的“幸福快乐数”,此时K(318)=12﹣2×32+82=47.(1)计算:K(168),K(243):(2)若m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n,若m+n是13的倍数时,求K(n)的最大值.五、解答题:(本大题1个小题,共12分.解答应写出文字说明、证明过程或演算步骤). 26.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E在AC 边上.(1)如图1,连接BE,若AE=2,,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转α0(0<α<1800),旋转过程中,直线EF分别与直线AC、BC交于点M、N,当△CMN是等腰三角形时,直接写出α的值;(3)如图3,将△CEF绕点C顺时针旋转,使得点B、E、F在同一条直线上,点P为BF的中点,连接AE.猜想AE、CF和BP之间的数量关系并证明.参考答案一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是()A.±3B.3C.﹣3D.±【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.解:±,故选:A.2.计算(x3)2的结果是()A.x5B.x6C.x8D.x9【分析】根据幂的乘方的法则进行计算.解:根据幂的乘方法则,得:(x3)2=x3×2=x6.故选:B.3.在实数,,,π中,无理数是()A.B.C.D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:在实数,,,π中,无理数是π.故选:D.4.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为(3ab+2b)平方米,宽为b米,则这块空地的长为()A.(3a+2)米B.(3ab+b)米C.(3ab+3b)米D.(3ab2+2b2)米【分析】直接利用整式的除法运算法则计算得出答案.解:由题意可得,这块空地的长为:(3ab+2b)÷b故选:A.5.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4B.4和5C.5和6D.6和7【分析】根据最接近整数,进而得出其范围.解:∵<<,∴的值在两个连续整数之间,这两个连续整数是:4和5.故选:B.6.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.5,6,7【分析】根据勾股定理的逆定理逐个判断即可.解:A、22+32≠42,即以2、3、4为边不能组成直角三角形,故本选项不符合题意;B、32+42=52,即以3、4、5为边能组成直角三角形,故本选项符合题意;C、42+52≠62,即以4、5、6为边不能组成直角三角形,故本选项不符合题意;D、52+62≠72,即以5、6、7为边不能组成直角三角形,故本选项不符合题意;故选:B.7.下列命题中,真命题是()A.对顶角不一定相等B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等D.等腰三角形是轴对称图形【分析】根据对顶角相等、等腰三角形的性质、平行线的性质判断即可.解:A、对顶角相等,本选项说法是假命题;B、等腰三角形的两个底角相等,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、等腰三角形是轴对称图形,本选项说法是真命题;8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a ﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.9.如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.3【分析】用气温26℃出现的天数除以总天数10即可得.解:由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,10.甲乙两地铁路线第约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为x千米/时,根据题意,可得方程()A.B.C.D.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:C.11.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC 的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm【分析】根据线段垂直平分线的性质即可求解.解:由画图可知:DE是AB的垂直平分线,∴AF=BF,AG=BG,∵△GBC的周长为14cm,即BC+BG+CG=14cm,∴BC+AC=14cm,∵△ABC的周长为26cm,即AB+BC+AC=26cm,∴AB=12cm,∴BF=6cm.故选:A.12.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣4【分析】根据二次根式有意义,可得m≤2,解出关于x的分式方程的解为x=,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.解:去分母得,﹣m+2(x﹣1)=3,解得,x=,∵关于x的分式方程有正数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣3∴m≠﹣3,∵有意义,∴2﹣m≥0,∴m≤2,因此﹣5<m≤2且m≠﹣3,∵m为整数,∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,故选:D.二、填空题(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上)13.实数﹣的相反数是.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣的相反数是.故答案为:.14.有一种球状细菌,直径约为0.0000015cm,那么0.0000015用科学记数法表示为 1.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015用科学记数法表示为1.5×10﹣6.故答案为:1.5×10﹣6.15.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=40°.【分析】根据全等三角形的性质求出∠E,根据三角形内角和定理计算,得到答案.解:∵△ABC≌△DEF,∴∠E=∠B=120°,∴∠D=180°﹣∠E﹣∠F=40°,故答案为:40.16.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=4,DC=5,则△ABD 的面积为10.【分析】过点D作DE⊥AB交BA延长线于点E,利用角平分线的性质得出DE=DC,进而利用三角形的面积公式解答即可.解:过点D作DE⊥AB交BA延长线于点E,∵∠ABD=∠DBC,DC⊥BC,DE⊥AB,∴CD=DE=5,∴△ABD的面积=,故答案为:10.17.若x+y=5,且(x+3)(y+3)=26,则x2+3xy+y2=27.【分析】先根据多项式乘以多项式法则展开,再把x+y=5代入,根据完全平方公式可得x2+3xy+y2=(x+y)2+xy,即可求出答案.解:∵x+y=5,(x+3)(y+3)=xy+3(x+y)+9=26,∴xy+3×5+9=26,∴xy=2,∴x2+3xy+y2=(x+y)2+xy=25+2=27.故答案为:27.18.如图,△ABC中,∠ACB=90°,AC∥BD,BC=BD,在AB上截取BE,使BE=BD,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,BC=7,BG=4,则AB=.【分析】根据∠BEH=∠BDG,又∠DBC=∠ABF=90°,可得:∠EBH=∠DBG,再根据AAS即可证明△EBH≌△DBG,根据全等三角形的性质BH=BG=4,∠EBH=∠BDG,然后再证明△ABC≌△HDB得到得到AC=BH,在直角△ABD中,利用勾股定理即可求解.解:∵∠ACB=90°,AC∥BD,∴∠CBD=∠ACB=90°,∵BF⊥AB,∠DBC=90°,∴∠DBC=∠ABF=90°,∴∠DBC﹣∠CBF=∠ABF﹣∠CBF∴∠EBH=∠DBG,∵BE=BD,∴∠BEH=∠BDG,∴△EBH≌△DBG(ASA),∴BH=BG=4,∠EBH=∠BDG,∵∠ACB=∠DBC=90°,BD=BC,∴△ABC≌△HDB(AAS),∴AC=BH=4,∴AB===,故答案为:.三、解答题:(本大题2个小题,每小题8分,共16分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)(﹣1)0+3﹣2+(2)×﹣÷【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质化简得出答案.解:(1)原式=1+﹣2=﹣;(2)原式=3﹣=2.20.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.【分析】求出BC=DF,根据平行线的性质得出∠B=∠D,根据全等三角形的判定定理AAS推出即可.【解答】证明:∵BF=DC,∴BF﹣FC=DC﹣FC,即BC=DF,∵AB∥DE,∴∠B=∠D,在△ABC和△EDF中∴△ABC≌△EDF(AAS).四、解答题:(本大题5个小题,每小题10分,共50分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【分析】(1)首先利用完全平方公式进行计算,再合并同类项即可;(2)首先计算多项式乘法,再合并同类项即可.解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.22.我市教育行政部门为了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中的信息,回答下列问题:(1)该校初二学生总人数为200,扇形统计图中的a的值为20,扇形统计图中“活动时间为4天”的扇形所对圆心角度数为108°;(2)请把条形统计图补充完整.【分析】(1)从两个统计图可得,“4天”的有60人,占调查人数的30%,可求出调查人数;计算出“6天”的40人所占200人的百分比即可求出a的值,样本中“4天”占30%,因此圆心角占360°的30%,可求出度数;(2)求出“3天”“5天”的人数,即可补全条形统计图.解:(1)60÷30%=200人,40÷200=20%,360°×30%=108°,故答案为:200,20,108°;(2)200×15%=30人,200×25%=50人,补全条形统计图如图所示:23.先化简:(+x﹣1)÷,然后在﹣3,﹣1,1,3中选择一个合适的数,作为x的值代入求值.【分析】原式通分并利用同分母分式的加法法则计算得到最简结果,再将x的值代入计算即可求出值.解:原式=÷=•=,由题意得:x≠﹣3,x≠﹣1,x≠3,当x=1时,原式==﹣2.24.如图,小区有一块四边形空地ABCD,其中AB⊥AC.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A作了垂直于BC的小路AE.经测量,AB=CD=4m,BC=9m,AD=7m.(1)求这块空地ABCD的面积;(2)求小路AE的长.(答案可含根号)【分析】(1)作辅助线,构建高线DG,利用勾股定理计算DG的长和AC的长,根据面积和可得结论;(2)利用三角形的面积公式求解即可.解:(1)过D作DG⊥AC于G,∵AB⊥AC,∴∠BAC=90°,∵BC=9,AB=4,∴AC===,设CG=x,则AG=﹣x,由勾股定理得:DG2=AD2﹣AG2=CD2﹣CG2,∴=42﹣x2,x=,∴CG==,∴DG===,∴这块空地ABCD的面积=S△ABC+S△ACD==+=2+14答:这块空地ABCD的面积是(2+14)m2;(2)S△ABC=,4×=9×AE,∴AE=m.25.对任意一个三位数P,将它任意两个数位上的数字对调后得到一个首位不为0的新的三位数q(q可以与P相同),记q=,在所有可能的情况中,当|a﹣2b+c|最小时,我们称此时的q是p“幸福快乐数”,并规定:K(p)=a2﹣2b2+c2.例如:318按上述方法可得新数有381、813、138,因为|3﹣2×8+1|=12,|8﹣2×1+3|=9,|1﹣2×3+8|=3,而3<9<12,所以138是318的“幸福快乐数”,此时K(318)=12﹣2×32+82=47.(1)计算:K(168),K(243):(2)若m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n,若m+n是13的倍数时,求K(n)的最大值.【分析】(1)根据题意,写任意两个数位上的数字对调后得到的所有新数,然后计算每个数中|a﹣2b+c|的值,确定最小为“幸福快乐数”,再由K(p)=a2﹣2b2+c2公式进行计算便可;(2)根据题意找出s、s′,根据“1≤x≤y≤9”即可得出x、y的可能值,进而可找出s的“幸福快乐数”和K(s)的值,取其最大值即可.解:(1)168任意两个数位上的数字对调后得到的新三位数是618,186,861,,∵3<6<12∴168的“幸福快乐数”为861∴K(168)=82﹣2×62+12=﹣7243任意两个数位上的数字对调后得到的新三位数为423,234,342.,,.∵0<3=3∴243的“幸福快乐数”为234.∴K(243)=2;(2)∵m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n∴n=100y+10x+8,m+n=100x+10y+8+100y+10x+8=100(x+y)+10(x+y+1)+6=110(x+y)+16=105(x+y)+13+5(x+y)+3∵m+n是13的倍数,又105(x+y)+13是13的倍数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果是13的倍数,则原数能被13整除.∴=整数;符合条件的整数只有7∴x+y=6∵1≤x≤y≤9,x、y都是正整数,∴n有可能是:608、518、428、338、248、158∵|6﹣2×0+8|=14,|5﹣2×1+8|=11,|4﹣2×2+8|=3,五、解答题:(本大题1个小题,共12分.解答应写出文字说明、证明过程或演算步骤). 26.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E在AC 边上.(1)如图1,连接BE,若AE=2,,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转α0(0<α<1800),旋转过程中,直线EF分别与直线AC、BC交于点M、N,当△CMN是等腰三角形时,直接写出α的值;(3)如图3,将△CEF绕点C顺时针旋转,使得点B、E、F在同一条直线上,点P为BF的中点,连接AE.猜想AE、CF和BP之间的数量关系并证明.【分析】(1)利用勾股定理求出AB=AC=5,求出EC=EF=3即可解决问题.(2)分三种情形分别画出图形,利用等腰三角形的性质求解即可.(3)结论:CF+AE=BP.如图3中,在BE上取一点D,使得AD=AE.利用全等三角形的性质以及等腰直角三角形的性质求解即可.解:(1)如图1中,在Rt△ABE中,AB===5,∴AC=AB=5,∴EF=EC=AC﹣AE=3,∵∠CEF=90°,EC=EF=3,∴CF===3.(2)①如图2﹣1中,当CM=CN时,α=∠MCE=∠ECN=∠ACB=22.5°.如图2﹣2中,当NM=NC时,α=∠MCN=45°.如图2﹣3中,当CN=CM时,∠NCE=∠BCM=67.5°,α=∠ACE=45°+67.5°=112.5°.综上所述,满足条件的α的值为22.5°或45°或112.5°.(3)结论:CF+AE=BP.理由:如图3中,在BE上取一点D,使得AD=AE.∵∠BAC=∠BEC=90°,∴A,B,C,E四点共圆,∴∠AEB=∠ACB=45°,∵AD=AE,∴∠ADE=∠AED=45°,∴∠DAE=90°,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE.∴△BAD≌△CAE(SAS),∴BD=EC=EF,∵BP=BF=(2EF+DE),CF=EF,DE=AE,∴BP=(CF+AE),∴CF+AE=BP.。
《试卷3份集锦》重庆市2019-2020年八年级上学期期末复习检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( )A .13B .14C .15D .16 【答案】C【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C .考点:多边形内角与外角.2.如图,一次函数y kx b =+的图象与x 轴,y 轴分别相交于,A B 两点,O 经过,A B 两点,已知22AB =,则,k b 的值分别是( )A .1-,2B .1-,2-C .1,2D .1,2-【答案】A 【解析】由图形可知:△OAB 是等腰直角三角形,22AB =A ,B 两点坐标,利用待定系数法可求k 和b 的值.【详解】由图形可知:△OAB 是等腰直角三角形,OA=OB ,∵22AB =222OA OB AB +=,即(2222OA =, ∴OA=OB=2,∴A 点坐标是(2,0),B 点坐标是(0,2),∵一次函数y kx b =+的图象与x 轴、y 轴分别相交于A 、B 两点,∴将A ,B 两点坐标代入y kx b =+, 得202k b b +=⎧⎨=⎩解得:12k b =-=,,故选:A .【点睛】本题主要考查了图形的分析运用和待定系数法求解析式,找出A ,B 两点的坐标是解题的关键. 3.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( ) A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限【答案】A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子: (1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.4.在平面直角坐标系中,点P 的坐标为(22+a ,1),则点P 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据平方数非负数判断出点P 的横坐标是正数,再根据各象限内点的坐标特征解答.【详解】解:∵20a ≥,∴222a +≥,∴点P 的横坐标是正数,∴点P (22+a ,1) 所在的象限是第一象限.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.下列图形中有稳定性的是()A.平行四边形B.长方形C.正方形D.直角三角形【答案】D【分析】根据三角形具有稳定性解答.【详解】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:D.【点睛】本题考查了三角形具有稳定性,是基础题,需熟记.6.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC【答案】D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选B.7.在△ABC中,∠C=∠B,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是( )A.∠B B.∠A C.∠C D.∠B或∠C【答案】B【分析】根据三角形的内角和等于180°可知,∠C 与∠B 不可能为100°,根据全等三角形的性质可得∠A 为所求角.【详解】解:假设=100C B ∠=∠,=200C B ∠+∠,与=180C B A ∠+∠+∠矛盾,∴假设不成立,则100A ∠=,故答案为B.【点睛】本题考查了全等三角形的基本性质和三角形内角和定理,满足内角和定理的前提下找到对应角是解题关键.8.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是( )A .0.1B .0.2C .0.3D .0.4 【答案】A【分析】根据第1~4组的频数求得第5组的频数,再根据=频数频率总数即可得到结论. 【详解】解:第5组的频数为:401210684----=,∴第5组的频率为:40.140=, 故选:A .【点睛】此题主要考查了频数与频率,正确掌握频率求法是解题关键.9.如图,在△ABC 中,AB =AC ,AD 、CE 分别是△ABC 的中线和角平分线,当∠ACE =35°时,∠BAD 的度数是( )A .55°B .40°C .35°D .20°【答案】D 【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【详解】∵CE 是∠ACB 的平分线,∠ACE =35°,∴∠ACB =2∠ACE =70°,∵AB =AC ,∴∠B =∠ACB =70°,∴∠ADB =90°,∴∠BAD =90°﹣∠B =20°,故选D .【点睛】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.10.下列式子不正确的是( )A .235a a a =B .()222ab a b =C .()010a a =≠D .()235a a =【答案】D【分析】利用同底数幂的乘法运算法则、零次幂性质、积的乘方运算法则以及幂的乘方运算法则逐一计算,然后再加以判断即可.【详解】A :235a a a =,选项正确;B :()222ab a b =,选项正确;C :()010a a =≠,选项正确;D :()236a a =,选项错误;故选:D.【点睛】本题主要考查了整数指数幂与运算,熟练掌握相关方法是解题关键.二、填空题11.如图,有一块四边形草地ABCD ,90B ∠=︒,4,3,12,13AB m BC m CD m DA m ====.则该四边形草地的面积是___________.【答案】236m【分析】连接AC ,根据勾股定理求出AC ,根据勾股定理的逆定理求出△CAD 是直角三角形,分别求出△ABC 和△CAD 的面积,即可得出答案.【详解】连结AC ,∵∠B =90°,AB =4m ,BC =3m ,∴AC =2234+=5(m ),S △ABC =12×3×4=6(m 2), 在△ACD 中,∵AD =13m ,AC =5m ,CD =12m ,∴AD 2=AC 2+CD 2,∴△ACD 是直角三角形,∴S △ACD =12×5×12=30(m 2). ∴四边形ABCD 的面积=S △ABC +S △ACD =6+30=36(m 2)故答案为:236m .【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC 和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.12.如图,已知AB AD =,请你添加一个条件使ABC ADE ∆∆≌__________.【答案】AC=AE 或∠ADE=∠ABC 或∠C=∠E (答案不唯一)【分析】根据图形可知证明△ABC ≌△ADE 已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】解:∵∠A=∠A ,AB=AD ,∴添加条件AC=AE ,此时满足SAS ;添加条件∠ADE=∠ABC ,此时满足ASA ;添加条件∠C=∠E ,此时满足AAS ,故答案为:AC=AE 或∠ADE=∠ABC 或∠C=∠E (答案不唯一).【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.13.若关于x的不等式组31123124xx x a+⎧->⎪⎪⎨+-⎪-<⎪⎩有4个整数解,那么a的取值范围是_____.【答案】87a-≤<-【分析】不等式组整理后,根据4个整数解确定出a的范围即可.【详解】解:不等式组整理得:12xx a-⎩-⎧⎨><,解得:1<x<-a-2,由不等式组有4个整数解,得到整数解为2,3,4,5,∴5<-a-2≤6,解得:-8≤a<-7,故答案为:-8≤a<-7【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.如图,在△ABC 中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是4,则图中阴影部分图形的面积为__________.【答案】1【分析】由平移的性质结合已知条件易得,四边形ACFD是平行四边形,且CF=AD=4,这样结合∠B=90°,AB=10即可求得阴影部分的面积了.【详解】∵△DEF是由△ABC沿BC方向平移4个单位长度得到的,∴AD∥CF,且AD=CF=4,∴四边形ACFD是平行四边形,∵∠B=90°,AB=10,∴S平行四边形ACFD=CF·AB=4×10=1.故答案为:1.【点睛】熟悉“平移的性质,并能结合已知条件得到四边形ACFD是平行四边形,CF=4”是解答本题的关键.15.若m+n=1,mn=2,则11m n+的值为_____.【答案】1 2【解析】1112m nm n mn++==16.如图,A点的坐标为(0,4),B点的坐标为(4,2),C点的坐标为(6,2),D点的坐标为(4,2)-,小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是_____________.【答案】(2,0)或(5,3)【分析】分点A的对应点为C或D两种情况考虑:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心.此题得解.【详解】解:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示,∵B点的坐标为(4,2),D点的坐标为(4,2-),∴E点的坐标为(2,0);②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示,∵B点的坐标为(4,2),C点的坐标为(6,2),∴M点的坐标为(5,3).综上所述:这个旋转中心的坐标为(2,0)或(5,3).故答案为:(2,0)或(5,3).【点睛】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.17.已知2+xx y的值为4,若分式2+xx y中的x、y均扩大2倍,则2+xx y的值为__________.【答案】1【分析】首先把分式2+xx y中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式2+xx y中的x、y均扩大2倍得:224222x xx y x y=++=2×4=1,故答案为:1.【点睛】本题考查了分式的基本性质,关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题18.如图,点F、C在BE上,BF CE=,A D∠=∠,B E∠=∠.求证:AB DE=.【答案】证明见解析.【分析】由BF CE=可得,BC=EF,从而可利用AAS证得△ABC≌△DEF,从而得出AB=DE.【详解】证明:BF CE=,BF CF CE CF∴+=+即BC EF=,在ABC∆和DEF∆中,A DB EBC EF∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABC DEF∴∆≅∆AB DE∴=.【点睛】本题考查的是全等三角形的判定,本题的关键是掌握全等三角形的判定方法. 19.如图,正比例函数1y 的图象和一次函数2y 的图象交于点()A 1,2-,点B 为一次函数2y 的图象与x 轴负半轴交点,且ABO 的面积为1.()1求这两个函数的解析式.()2根据图象,写出当120y y <<时,自变量x 的取值范围.【答案】 (1)1 y 2x =-,2 y x 3=+;(2) x 1>-.【解析】()1根据题意,可以求得点B 的坐标,从而可以得到这两个函数的解析式; ()2根据题意和函数图象可以直接写出当120y y <<时,自变量x 的取值范围.【详解】解:()1设正比例函数1y kx =,正比例函数1y 的图象过点()A 1,2-,()2k 1∴=⨯-,得k 2=-,即正比例函数1y 2x =-,设一次函数2y ax b =+,一次函数2y 的图象过点()A 1,2-,点B 为一次函数2y 的图象与x 轴负半轴交点,且ABO 的面积为1, OB 232⨯∴=,得OB 3=, ∴点B 的坐标为()3,0-,{a b 23a b 0-+=∴-+=,得{a 1b 3==,即一次函数2y x 3=+; ()2由图象可得,当120y y <<时,自变量x 的取值范围是x 1>-.【点睛】考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.如图,已知等腰三角形ABC 中,AB=AC ,点D,E 分别在边AB 、AC 上,且AD=AE ,连接BE 、CD ,交于点F.(1)求证:∠ABE =∠ACD ;(2)求证:过点A 、F 的直线垂直平分线段BC .【答案】 (1)证明详见解析(2) 证明详见解析【分析】(1)证得△ABE ≌△ACD 后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【详解】(1)在△ABE 和△ACD 中,AB AC A A AE AD ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ACD ,∴∠ABE=∠ACD ;(2)连接AF .∵AB=AC ,∴∠ABC=∠ACB ,由(1)可知∠ABE=∠ACD ,∴∠FBC=∠FCB ,∴FB=FC ,∵AB=AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC .【点睛】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.21.在ABC ∆方格纸中的位置如图1所示,方格纸中的每个小正方形的边长为1个单位长度.(1)图1中线段AB 的长是___________;请判断ABC ∆的形状,并说明理由.(2)请在图2中画出DEF ∆,使DE ,EF ,DF 2810.(3)如图3,以图1中ABC ∆的AB ,AC 为边作正方形ABPR 和正方形ACQD ,连接RD ,求RAD ∆的面积.【答案】(1)AB=25ABC 为直角三角形;(2)见解析;(3)5【分析】(1)根据勾股定理求出AB 、BC 、AC 的长,即可判断△ABC 的形状;(2)根据点D 的位置和三边的长度,利用勾股定理找到格点画图图形;(3)由题意可知△RAD 为直角三角形,直角边的长度分别为AB ,AC 的长,即可算出RAD ∆的面积.【详解】解:(1)AB=25ABC 为直角三角形,理由是:2242+52221+5BC=5,∵222=25=AB AC BC +,∴△ABC 为直角三角形;(2)如图,DEF ∆即为所画三角形:(3)∵∠BAC=90°,∠BAR=∠CAD=90°,∴∠RAD=90°,∵ AR=AB=25,AD=AC=5,∴1=2552RAD S ⨯⨯△=5. 【点睛】此题主要考查了勾股定理以及三角形面积求法,利用勾股定理求出各边长是解题关键.22.在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A 2B 2C 2是由△A 1B 1C 1经过怎样的平移得到的?【答案】(1)见解析;(2)见解析.【解析】(1)根据网格结构找出点A 、B 、C 关于MN 的对称点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据平移的性质结合图形解答.【详解】(1)△A 1B 1C 1如图所示:(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位). 23.(1(03983π+;(2)解方程:2490x -=.【答案】(1)4;(2)32x =±. 【分析】(1)分别计算算术平方根、立方根和零次幂,将结果相加减即可;(2)依次移项、系数化为1、两边直接开平方即可得出答案.【详解】解:(1)原式=321+-=4;(2)2490x -=移项得:249x =,系数化为1得:294x =, 两边直接开平方得:32x =±. 【点睛】本题考查求立方根,零指数幂和平方根方程.(1)中能根据定义分别计算是解题关键;(2)注意不要忘掉负值.24.已知△ABC 中,∠A=2∠B ,∠C=∠B+20°求△ABC 的各内角度数.【答案】∠A=80°;∠B=40°;∠C=60°.【分析】先设∠B=x o , 再用x 表示出∠A 与∠C, 根据三角形内角和定理求出各角的度数即可得出正确的答案.【详解】解: 在ΔABC 中, ∠A=2∠B ,∠C=∠B+20°,设∠B = x o , 则∠A=2 x o , ∠C= x o +20o ,∠A+∠B+∠C=180o ,得x+(x+20)+2x=180,解得x=40∴∠A=80o , ∠B=40o , ∠C=60o .故答案为:∠A=80o , ∠B=40o , ∠C=60o【点睛】本题考查的是三角形内角和定理, 熟知三角形的内角和是180度是解答此题的关键.25.已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a+8b ﹣41,且c 是△ABC 中最长的边,求c 的取值范围.【答案】5<c <1【分析】由a 2+b 2=10a+8b-41,得a ,b 的值,然后利用三角形的三边关系求得c 的取值范围即可.【详解】解:∵满足a 2+b 2=10a+8b-41,∴a 2-10a+25+b 2-8b+16=0,∴(a-5)2+(b-4)2=0,∵(a-5)2≥0,(b-4)2≥0,∴a-5=0,b-4=0,∴a=5,b=4;∴5-4<c<5+4,∵c是最长边,∴5<c<1.【点睛】考查了配方法的应用、非负数的性质及三角形的三边关系,解题的关键是对方程的左边进行配方,难度不大.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若一个三角形的两边长分别是2和3,则第三边的长可能是( )A .6B .5C .2D .1【答案】C【解析】根据三角形的三边关系求得第三边的取值范围解答即可.【详解】解:设第三边长x .根据三角形的三边关系,得1<x <1.故选:C .【点睛】本题主要考查三角形三边关系的知识点,已知三角形的两边长,则第三边的范围为大于两边差且小于两边和.2.下列各组数是勾股数的是( )A .6,7,8B .1,2,3C .3,4,5D .5,5,9【答案】C【分析】直接根据勾股数的概念进行排除选项即可.【详解】A 、2226+7=858≠,故不符合题意;B 、2221+2=53≠,故不符合题意;C 、2223+4=25=5,故符合题意;D 、2225+5=509≠,故不符合题意;故选C .【点睛】本题主要考查勾股数,熟练掌握勾股数的概念及勾股定理是解题的关键.3.如图,在一个单位面积为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,……是斜边在x 轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2 (1,-1),A 3(0,0),则依图中所示规律,点A 2019的横坐标为( )A .1010B .1010-C .1008D .1008-【答案】D 【解析】先观察图像找到规律,再求解.【详解】观察图形可以看出A 1--A 4;A 5---A 8;…每4个为一组,∵2019÷4=504 (3)∴A 2019在x 轴负半轴上,纵坐标为0,∵A 3、A 7、A 11的横坐标分别为0,-2,-4,∴A 2019的横坐标为-(2019-3)×=-1.∴A 2019的横坐标为-1.故选:D .【点睛】本题考查的是点的坐标,正确找到规律是解题的关键.4.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.5.下列命题中为假命题的是( )A .无限不循环小数是无理数B .代数式 12x x -- 1C .若22x y a a >,则x > yD .有三个角和两条边分别相等的两个三角形一定全等【答案】D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A . 无限不循环小数是无理数,故本选项是真命题;B . 代数式 12x x -+-中根据二次根式有意义的条件可得1020x x -≥⎧⎨-≥⎩解得:2x ≥∵1x -和2x -的值都随x 的增大而增大∴当x=2时,12x x -+-的值最小,最小值是1,故本选项是真命题; C . 若22x y a a>,将不等式的两边同时乘a 2,则x y >,故本选项是真命题; D . 有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题; 故选D .【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.6.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC 为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个【答案】A 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰△ABC 底边;②AB 为等腰△ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有2个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有4个.故选:C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.若22(3)16x m x +-+是完全平方式,则m 的值等于( )A .1或5B .5C .7D .7或1-【答案】D【分析】根据完全平方公式,首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【详解】解:∵多项式22(3)16x m x +-+是完全平方式,∴222(3)16(4)x m x =x +-+±,∴2(3)8m =-± 34m =-±解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.下列计算正确的是A .2193-⎛⎫= ⎪⎝⎭B 2=-C .()021-=-D 2=【答案】A 【分析】对各项分别进行负整数指数幂、 算术平方根、 零指数幂、 绝对值的化简等运算, 然后选出正确选项即可 .【详解】解:A 、2193-⎛⎫= ⎪⎝⎭,故本选项正确;B 2=,故本选项错误;C 、()021-=,故本选项错误;D =故选:A.【点睛】本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.9.如图,直线l1、l2的交点坐标可以看作方程组()的解.A.x2y22x y2-=-⎧⎨-=⎩B.y x1y2x2=-+⎧⎨=-⎩C.x2y12x y2-=-⎧⎨-=-⎩D.y2x1y2x2=+⎧⎨=-⎩【答案】A【分析】首先利用待定系数法求出l1、l2的解析式,然后可得方程组.【详解】解:设l1的解析式为y=kx+b,∵图象经过的点(1,0),(0,-2),∴b20k b=-⎧⎨=+⎩,解得:b2 k2=-⎧⎨=⎩,∴l1的解析式为y=2x-2,可变形为2x-y=2,设l2的解析式为y=mx+n,∵图象经过的点(-2,0),(0,1),∴n102m n=⎧⎨=-+⎩,解得:n11m2=⎧⎪⎨=⎪⎩,∴l2的解析式为y=12x+1,可变形为x-2y=-2,∴直线l1、l2的交点坐标可以看作方程组x2y22x y2-=-⎧⎨-=⎩的解.故选:A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.10.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944x x+=+-B.4848944+=+-x xC.48x+4=9 D.9696944+=+-x x【答案】A【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:484x+,逆流航行时间为:484x-,∴可得出方程:4848944x x+=+-,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.二、填空题11.若多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,则m=_____.【答案】﹣7或1【分析】利用完全平方公式得到9x2﹣2(m+1)xy+4y2=(3x±2y)2,则﹣2(m+1)xy=±12xy,即m+1=±6,然后解m的方程即可.【详解】∵多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,∴9x2﹣2(m+1)xy+4y2=(3x±2y)2,而(3x±2y)2=9x2±12xy+4y2,∴﹣2(m+1)xy =±12xy ,即m+1=±6,∴m =﹣7或1.故答案为﹣7或1.【点睛】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b )(a ﹣b )=a 2﹣b 2.也考查了完全平方公式.12.点P (﹣3,4)到x 轴的距离是_____.【答案】1【分析】根据点的坐标表示方法得到点P 到x 轴的距离是纵坐标的绝对值,即|1|,然后去绝对值即可.【详解】点P (﹣3,1)到x 轴的距离是:|1|=1,故答案为:1.【点睛】本题主要考查点到x 轴的距离,掌握点到x 轴的距离是纵坐标的绝对值,是解题的关键.13.若不等式组841,.x x x m +>-⎧⎨<⎩的解集是3x <,则m 的取值范围是________. 【答案】3m ≥【分析】先解第一个不等式得到3x <,由于不等式组的解集为3x <,根据同小取小得到3m ≥. 【详解】解:841x x x m +>-⎧⎨<⎩①②解①得3x <,∵不等式组的解集为3x <,∴3m ≥.故答案为:3m ≥【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.14.如图,在△ABC 中,∠A =90°,AB =25,AC =5,以BC 为斜边作等腰Rt △BCD ,连接AD ,则线段AD 的长为_____.【答案】3102【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,则四边形AEDF 是矩形,先证明△BDE ≌△CDF (AAS ),可得DE =DF ,BE =CF ,以此证明四边形AEDF 是正方形,可得∠DAE =∠DAF =45°,AE =AF ,代入AB =25,AC =5可得BE 、AE 的长,再在Rt △ADE 中利用特殊三角函数值即可求得线段AD 的长.【详解】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,则四边形AEDF 是矩形,∴∠EDF =90°,∵∠BDC =90°,∴∠BDE =∠CDF ,∵∠BED =∠CFD =90°,BD =DC ,∴△BDE ≌△CDF (AAS ),∴DE =DF ,BE =CF ,∴四边形AEDF 是正方形∴∠DAE =∠DAF =45°,∴AE =AF ,∴25﹣BE =5+BE ,∴BE =5, ∴AE =35, ∴AD =2AE =310, 故答案为:3102.【点睛】本题考查了全等三角形的综合问题,掌握矩形的性质、正方形的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.15.已知:如图,点E F 、分别在等边三角形ABC 的边CB AC 、的延长线上,,BE CF FB =的延长线交AE 于点G ,则AGB ∠=_______.【答案】60【分析】利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=BC ,∠ABE=∠BCF=120°,然后结合已知条件可证△ABE ≌△BCF ,得到∠E=∠F ,因为∠F+∠CBF=60°,即可求出AGB ∠得度数.【详解】解:∵△ABC 是等边三角形,∴AB=BC∴∠ACB=∠ABC=60º,∴∠ABE=∠BCF=120°,在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF (SAS);∴∠E=∠F ,∵∠GBE=∠CBF ,∠F+∠CBF=60°∴AGB ∠=∠GBE+∠B=60°,故答案为60°.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,线段垂直平分线的性质等知识点.在证明两个三角形全等时,一定要找准对应角和对应边.16.若等腰三角形的两边长为10,6,则周长为______.【答案】26或1【分析】题目给出等腰三角形有两条边长为10和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若10为腰长,6为底边长,符合三角形的两边之和大于第三边,∴周长=10+10+6=26;(2)若6为腰长,10为底边长,符合三角形的两边之和大于第三边,∴周长=6+6+10=1.故答案为:26或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去. 17.如图,在ABC ∆若中,AD 是BC 边上的高,AE 是BAC ∠平分线.若38,70,B C ∠=︒∠=︒则DAE ∠=_____【答案】16︒【分析】根据直角三角形内角和定理求出∠BAC ,根据角平分线的定义求出∠BAE ,结合图形计算即可.【详解】∵38,70,B C ∠=︒∠=︒∴72BAC =︒∠∵AE 是BAC ∠平分线∴36BAE ∠=︒∵AD 是BC 边上的高,38B ∠=︒∴52BAD =︒∠∴523616DAE =︒-︒=︒∠故答案为:16︒.【点睛】本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键.三、解答题18.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC =90°,∠CED =45°,BE =2DE =23,CD =6.(1)求AB 的长;(2)求AC 的长.【答案】(16;(232+36 【分析】(1)根据等腰直角三角形的判定和性质即可得到结论;(2)过点D 作DH ⊥AC ,根据等腰直角三角形的性质和勾股定理分别求出EH 和CH 即可.【详解】解:(1)∵∠BAC =90°,∠CED =45°,∴∠AEB =∠CED =45°,∴△ABE 是等腰直角三角形,∵BE =23, ∴AB =22BE =6; (2)过点D 作DH ⊥AC 交AC 于H ,∵∠CED =45°,DH ⊥EC ,DE =132BE ,∴EH =DH =22DE =6, 又∵CD =6,∴CH =22CD DH -=362-=322, ∵AE =AB =6, ∴AC =CH+EH+AE =326323662+++=.【点睛】此题主要考查的是等腰直角三角形的性质和勾股定理,根据已知条件构造出直角三角形是解题关键.19.先化简:2222211x x x x x -÷-+,然后从1-,0,1,2四个数中选取一个你认为合适的数作为x 的值代入求值.【答案】2x,选2x =,则原式1=. 【分析】先将除法转化为乘法进行约分化简,再选取合适的x 的值代入计算即可.【详解】2222211x x x x x -÷-+ 22(1)1(1)(1)x x x x x x-+=⨯+- 2x=∵x≠0,1,-1,∴2x=,∴原式2=1 2 =.【点睛】本题考查了分式的化简求值,要注意,取合适的数代入求值时,要特注意原式及化简过程中的每一步都有意义.20.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.【答案】-7<x≤1.数轴见解析.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:3(2)421152x xx x--≥⎧⎪⎨-+<⎪⎩①②解不等式①,得x≤1解不等式②,得x>-7∴不等式组的解集为-7<x≤1.在数轴上表示不等式组的解集为故答案为-7<x≤1.【点睛】本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.21.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;(2)用三角板作AC边上的高BD.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)根据角平分线与垂直平分线的作图方法进行作图即可;(2)利用直角三角板,一条直角边与AC重合,另一条直角边过点B,进行作图即可.【详解】如图所示:【点睛】此题主要考查了复杂作图,关键是掌握角平分线和线段垂直平分线的基本作图方法.22.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=94,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.【答案】(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年重庆市沙坪坝区八年级(上)期末数学试卷一、选择题1.9的平方根是()A.±3B.3C.﹣3D.±2.计算(x3)2的结果是()A.x5B.x6C.x8D.x93.在实数,,,π中,无理数是()A.B.C.D.π4.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为(3ab+2b)平方米,宽为b米,则这块空地的长为()A.(3a+2)米B.(3ab+b)米C.(3ab+3b)米D.(3ab2+2b2)米5.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4B.4和5C.5和6D.6和76.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.5,6,77.下列命题中,真命题是()A.对顶角不一定相等B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等D.等腰三角形是轴对称图形8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b29.如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.310.甲乙两地铁路线第约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为x千米/时,根据题意,可得方程()A.B.C.D.11.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC 的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm12.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣4二、填空题(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上)13.实数﹣的相反数是.14.有一种球状细菌,直径约为0.0000015cm,那么0.0000015用科学记数法表示为.15.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=°.16.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=4,DC=5,则△ABD 的面积为.17.若x+y=5,且(x+3)(y+3)=26,则x2+3xy+y2=.18.如图,△ABC中,∠ACB=90°,AC∥BD,BC=BD,在AB上截取BE,使BE=BD,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,BC=7,BG=4,则AB=.三、解答题:(本大题2个小题,每小题8分,共16分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)(﹣1)0+3﹣2+(2)×﹣÷20.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.四、解答题:(本大题5个小题,每小题10分,共50分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)22.我市教育行政部门为了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中的信息,回答下列问题:(1)该校初二学生总人数为,扇形统计图中的a的值为,扇形统计图中“活动时间为4天”的扇形所对圆心角度数为;(2)请把条形统计图补充完整.23.先化简:(+x﹣1)÷,然后在﹣3,﹣1,1,3中选择一个合适的数,作为x的值代入求值.24.如图,小区有一块四边形空地ABCD,其中AB⊥AC.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A作了垂直于BC的小路AE.经测量,AB=CD=4m,BC=9m,AD=7m.(1)求这块空地ABCD的面积;(2)求小路AE的长.(答案可含根号)25.对任意一个三位数P,将它任意两个数位上的数字对调后得到一个首位不为0的新的三位数q(q可以与P相同),记q=,在所有可能的情况中,当|a﹣2b+c|最小时,我们称此时的q是p“幸福快乐数”,并规定:K(p)=a2﹣2b2+c2.例如:318按上述方法可得新数有381、813、138,因为|3﹣2×8+1|=12,|8﹣2×1+3|=9,|1﹣2×3+8|=3,而3<9<12,所以138是318的“幸福快乐数”,此时K(318)=12﹣2×32+82=47.(1)计算:K(168),K(243):(2)若m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n,若m+n是13的倍数时,求K(n)的最大值.五、解答题:(本大题1个小题,共12分.解答应写出文字说明、证明过程或演算步骤). 26.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E在AC 边上.(1)如图1,连接BE,若AE=2,,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转α0(0<α<1800),旋转过程中,直线EF分别与直线AC、BC交于点M、N,当△CMN是等腰三角形时,直接写出α的值;(3)如图3,将△CEF绕点C顺时针旋转,使得点B、E、F在同一条直线上,点P为BF的中点,连接AE.猜想AE、CF和BP之间的数量关系并证明.参考答案一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是()A.±3B.3C.﹣3D.±【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.解:±,故选:A.2.计算(x3)2的结果是()A.x5B.x6C.x8D.x9【分析】根据幂的乘方的法则进行计算.解:根据幂的乘方法则,得:(x3)2=x3×2=x6.故选:B.3.在实数,,,π中,无理数是()A.B.C.D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:在实数,,,π中,无理数是π.故选:D.4.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为(3ab+2b)平方米,宽为b米,则这块空地的长为()A.(3a+2)米B.(3ab+b)米C.(3ab+3b)米D.(3ab2+2b2)米【分析】直接利用整式的除法运算法则计算得出答案.解:由题意可得,这块空地的长为:(3ab+2b)÷b故选:A.5.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4B.4和5C.5和6D.6和7【分析】根据最接近整数,进而得出其范围.解:∵<<,∴的值在两个连续整数之间,这两个连续整数是:4和5.故选:B.6.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.5,6,7【分析】根据勾股定理的逆定理逐个判断即可.解:A、22+32≠42,即以2、3、4为边不能组成直角三角形,故本选项不符合题意;B、32+42=52,即以3、4、5为边能组成直角三角形,故本选项符合题意;C、42+52≠62,即以4、5、6为边不能组成直角三角形,故本选项不符合题意;D、52+62≠72,即以5、6、7为边不能组成直角三角形,故本选项不符合题意;故选:B.7.下列命题中,真命题是()A.对顶角不一定相等B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等D.等腰三角形是轴对称图形【分析】根据对顶角相等、等腰三角形的性质、平行线的性质判断即可.解:A、对顶角相等,本选项说法是假命题;B、等腰三角形的两个底角相等,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、等腰三角形是轴对称图形,本选项说法是真命题;8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a ﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.9.如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.3【分析】用气温26℃出现的天数除以总天数10即可得.解:由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,10.甲乙两地铁路线第约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为x千米/时,根据题意,可得方程()A.B.C.D.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:C.11.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC 的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm【分析】根据线段垂直平分线的性质即可求解.解:由画图可知:DE是AB的垂直平分线,∴AF=BF,AG=BG,∵△GBC的周长为14cm,即BC+BG+CG=14cm,∴BC+AC=14cm,∵△ABC的周长为26cm,即AB+BC+AC=26cm,∴AB=12cm,∴BF=6cm.故选:A.12.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣4【分析】根据二次根式有意义,可得m≤2,解出关于x的分式方程的解为x=,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.解:去分母得,﹣m+2(x﹣1)=3,解得,x=,∵关于x的分式方程有正数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣3∴m≠﹣3,∵有意义,∴2﹣m≥0,∴m≤2,因此﹣5<m≤2且m≠﹣3,∵m为整数,∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,故选:D.二、填空题(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上)13.实数﹣的相反数是.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣的相反数是.故答案为:.14.有一种球状细菌,直径约为0.0000015cm,那么0.0000015用科学记数法表示为 1.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015用科学记数法表示为1.5×10﹣6.故答案为:1.5×10﹣6.15.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=40°.【分析】根据全等三角形的性质求出∠E,根据三角形内角和定理计算,得到答案.解:∵△ABC≌△DEF,∴∠E=∠B=120°,∴∠D=180°﹣∠E﹣∠F=40°,故答案为:40.16.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=4,DC=5,则△ABD 的面积为10.【分析】过点D作DE⊥AB交BA延长线于点E,利用角平分线的性质得出DE=DC,进而利用三角形的面积公式解答即可.解:过点D作DE⊥AB交BA延长线于点E,∵∠ABD=∠DBC,DC⊥BC,DE⊥AB,∴CD=DE=5,∴△ABD的面积=,故答案为:10.17.若x+y=5,且(x+3)(y+3)=26,则x2+3xy+y2=27.【分析】先根据多项式乘以多项式法则展开,再把x+y=5代入,根据完全平方公式可得x2+3xy+y2=(x+y)2+xy,即可求出答案.解:∵x+y=5,(x+3)(y+3)=xy+3(x+y)+9=26,∴xy+3×5+9=26,∴xy=2,∴x2+3xy+y2=(x+y)2+xy=25+2=27.故答案为:27.18.如图,△ABC中,∠ACB=90°,AC∥BD,BC=BD,在AB上截取BE,使BE=BD,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,BC=7,BG=4,则AB=.【分析】根据∠BEH=∠BDG,又∠DBC=∠ABF=90°,可得:∠EBH=∠DBG,再根据AAS即可证明△EBH≌△DBG,根据全等三角形的性质BH=BG=4,∠EBH=∠BDG,然后再证明△ABC≌△HDB得到得到AC=BH,在直角△ABD中,利用勾股定理即可求解.解:∵∠ACB=90°,AC∥BD,∴∠CBD=∠ACB=90°,∵BF⊥AB,∠DBC=90°,∴∠DBC=∠ABF=90°,∴∠DBC﹣∠CBF=∠ABF﹣∠CBF∴∠EBH=∠DBG,∵BE=BD,∴∠BEH=∠BDG,∴△EBH≌△DBG(ASA),∴BH=BG=4,∠EBH=∠BDG,∵∠ACB=∠DBC=90°,BD=BC,∴△ABC≌△HDB(AAS),∴AC=BH=4,∴AB===,故答案为:.三、解答题:(本大题2个小题,每小题8分,共16分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)(﹣1)0+3﹣2+(2)×﹣÷【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质化简得出答案.解:(1)原式=1+﹣2=﹣;(2)原式=3﹣=2.20.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.【分析】求出BC=DF,根据平行线的性质得出∠B=∠D,根据全等三角形的判定定理AAS推出即可.【解答】证明:∵BF=DC,∴BF﹣FC=DC﹣FC,即BC=DF,∵AB∥DE,∴∠B=∠D,在△ABC和△EDF中∴△ABC≌△EDF(AAS).四、解答题:(本大题5个小题,每小题10分,共50分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【分析】(1)首先利用完全平方公式进行计算,再合并同类项即可;(2)首先计算多项式乘法,再合并同类项即可.解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.22.我市教育行政部门为了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中的信息,回答下列问题:(1)该校初二学生总人数为200,扇形统计图中的a的值为20,扇形统计图中“活动时间为4天”的扇形所对圆心角度数为108°;(2)请把条形统计图补充完整.【分析】(1)从两个统计图可得,“4天”的有60人,占调查人数的30%,可求出调查人数;计算出“6天”的40人所占200人的百分比即可求出a的值,样本中“4天”占30%,因此圆心角占360°的30%,可求出度数;(2)求出“3天”“5天”的人数,即可补全条形统计图.解:(1)60÷30%=200人,40÷200=20%,360°×30%=108°,故答案为:200,20,108°;(2)200×15%=30人,200×25%=50人,补全条形统计图如图所示:23.先化简:(+x﹣1)÷,然后在﹣3,﹣1,1,3中选择一个合适的数,作为x的值代入求值.【分析】原式通分并利用同分母分式的加法法则计算得到最简结果,再将x的值代入计算即可求出值.解:原式=÷=•=,由题意得:x≠﹣3,x≠﹣1,x≠3,当x=1时,原式==﹣2.24.如图,小区有一块四边形空地ABCD,其中AB⊥AC.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A作了垂直于BC的小路AE.经测量,AB=CD=4m,BC=9m,AD=7m.(1)求这块空地ABCD的面积;(2)求小路AE的长.(答案可含根号)【分析】(1)作辅助线,构建高线DG,利用勾股定理计算DG的长和AC的长,根据面积和可得结论;(2)利用三角形的面积公式求解即可.解:(1)过D作DG⊥AC于G,∵AB⊥AC,∴∠BAC=90°,∵BC=9,AB=4,∴AC===,设CG=x,则AG=﹣x,由勾股定理得:DG2=AD2﹣AG2=CD2﹣CG2,∴=42﹣x2,x=,∴CG==,∴DG===,∴这块空地ABCD的面积=S△ABC+S△ACD==+=2+14答:这块空地ABCD的面积是(2+14)m2;(2)S△ABC=,4×=9×AE,∴AE=m.25.对任意一个三位数P,将它任意两个数位上的数字对调后得到一个首位不为0的新的三位数q(q可以与P相同),记q=,在所有可能的情况中,当|a﹣2b+c|最小时,我们称此时的q是p“幸福快乐数”,并规定:K(p)=a2﹣2b2+c2.例如:318按上述方法可得新数有381、813、138,因为|3﹣2×8+1|=12,|8﹣2×1+3|=9,|1﹣2×3+8|=3,而3<9<12,所以138是318的“幸福快乐数”,此时K(318)=12﹣2×32+82=47.(1)计算:K(168),K(243):(2)若m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n,若m+n是13的倍数时,求K(n)的最大值.【分析】(1)根据题意,写任意两个数位上的数字对调后得到的所有新数,然后计算每个数中|a﹣2b+c|的值,确定最小为“幸福快乐数”,再由K(p)=a2﹣2b2+c2公式进行计算便可;(2)根据题意找出s、s′,根据“1≤x≤y≤9”即可得出x、y的可能值,进而可找出s的“幸福快乐数”和K(s)的值,取其最大值即可.解:(1)168任意两个数位上的数字对调后得到的新三位数是618,186,861,,∵3<6<12∴168的“幸福快乐数”为861∴K(168)=82﹣2×62+12=﹣7243任意两个数位上的数字对调后得到的新三位数为423,234,342.,,.∵0<3=3∴243的“幸福快乐数”为234.∴K(243)=2;(2)∵m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n∴n=100y+10x+8,m+n=100x+10y+8+100y+10x+8=100(x+y)+10(x+y+1)+6=110(x+y)+16=105(x+y)+13+5(x+y)+3∵m+n是13的倍数,又105(x+y)+13是13的倍数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果是13的倍数,则原数能被13整除.∴=整数;符合条件的整数只有7∴x+y=6∵1≤x≤y≤9,x、y都是正整数,∴n有可能是:608、518、428、338、248、158∵|6﹣2×0+8|=14,|5﹣2×1+8|=11,|4﹣2×2+8|=3,五、解答题:(本大题1个小题,共12分.解答应写出文字说明、证明过程或演算步骤). 26.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E在AC 边上.(1)如图1,连接BE,若AE=2,,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转α0(0<α<1800),旋转过程中,直线EF分别与直线AC、BC交于点M、N,当△CMN是等腰三角形时,直接写出α的值;(3)如图3,将△CEF绕点C顺时针旋转,使得点B、E、F在同一条直线上,点P为BF的中点,连接AE.猜想AE、CF和BP之间的数量关系并证明.【分析】(1)利用勾股定理求出AB=AC=5,求出EC=EF=3即可解决问题.(2)分三种情形分别画出图形,利用等腰三角形的性质求解即可.(3)结论:CF+AE=BP.如图3中,在BE上取一点D,使得AD=AE.利用全等三角形的性质以及等腰直角三角形的性质求解即可.解:(1)如图1中,在Rt△ABE中,AB===5,∴AC=AB=5,∴EF=EC=AC﹣AE=3,∵∠CEF=90°,EC=EF=3,∴CF===3.(2)①如图2﹣1中,当CM=CN时,α=∠MCE=∠ECN=∠ACB=22.5°.如图2﹣2中,当NM=NC时,α=∠MCN=45°.如图2﹣3中,当CN=CM时,∠NCE=∠BCM=67.5°,α=∠ACE=45°+67.5°=112.5°.综上所述,满足条件的α的值为22.5°或45°或112.5°.(3)结论:CF+AE=BP.理由:如图3中,在BE上取一点D,使得AD=AE.∵∠BAC=∠BEC=90°,∴A,B,C,E四点共圆,∴∠AEB=∠ACB=45°,∵AD=AE,∴∠ADE=∠AED=45°,∴∠DAE=90°,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE.∴△BAD≌△CAE(SAS),∴BD=EC=EF,∵BP=BF=(2EF+DE),CF=EF,DE=AE,∴BP=(CF+AE),∴CF+AE=BP.。