放射物理学
放射物理学

缺点:半影大,需定时换源;环境污染
医用直线速加器
原理:利用微波电场沿直线加速电子然后发射, 或打靶产生X线发射,治疗肿瘤的装置。
特点:
1、可产生不同能量的X线 (4~25MV) 2、可产生不同能量的电子线 (3~25MV) 3、照射野均匀性好,剂量率稳定 4、可作为X刀使用 5、安全性好
X线的能谱:X线的光子强度与光子能量的关系。
X线有两种成分: ① 特征辐射X线(单能谱) ② 韧致辐射X线(连续谱,
X线的主要成分)。
从最大能量(最高管电压值)以下,在
任一能量处光子均有一定的强度,并在 一定的能量处强度最大。
X线的平均能量(光子强度最大处)约等 于最高能量的1/4~1/3, X线机及加速器 上所标称的能量是其产生X线的最高能量。
(3)碰撞损失与辐射损失
碰撞损失:由电离激发而引起,用单位长 度的能量损失来量度(dE/dx),在低能时发 生,主要产生热。
辐射损失:由特征辐射和韧致辐射引起的, 在高能范围发生,主要产生X射线,γ射 线
损失比=碰撞损失/辐射损失=816mev/T.Z
T-电子动能,Z—原子序数
2、光子射线与物质的相互作用
(2)临床应用 肿瘤量=处方量×PDD 即处方量=肿瘤量÷PDD
4、组织空气比(TAR) 定义:射线中心轴上,相同深度处在体膜 中吸收剂量与在空气中吸收剂量之比
TAR=Da水/Da空气
旋转治疗时,靶区为中心,源皮距不断 改变,不能用百分深度剂量来表示吸收 剂量,改用TAR表示在同一个位置,不 同散射条件,两种情况下的剂量比,不 受距离的影响。
放射物理学基础

高能电子束剂量学特点
高能电子线的百分深度剂量分布大致为四 部分:剂量建成区,高剂量坪区,剂量跌落区 和X射线污染区。
中心轴百分深度剂量曲线
特点:
1、表面剂量高,并随能量增加而增加。 2、剂量建成效应不明显。 3、具有有限的射程,一般等于E/2值, 可以有效的保护靶区后深部的正常组织。
用途:
主要用于治疗表浅或偏心的肿瘤和 浸润的淋巴结
1、腔内照射 2、组织间插植照射 3、管内照射 4、表面施源器照射
三、放射物理学有关名词及概念
放射源(S) 一般规定为放射源前表面 的中心,或产生辐射的靶面中心。
照射野 射线束经准直后垂直通过模体的 范围。
临床剂量学中规定模体内50%等剂量线 的延长线交于模体表面的区域定义为照射野 的大小
参考点 规定模体表面下射野中心轴 上某一点作为剂量计算或测量参考的点。 400kV以下X射线参考点取在模体表面,对 高能X(γ)射线参考点取在模体表面下射 野中心轴上最大剂量点位置
能量和照射野的选择
常用能量 4~25Mev
能量与治疗深度的关系 E = 3d+2~3Mev
照射野 电子束射野≥靶区横径的1.18倍
近距离照射剂量学
剂量学特点 放射源周围的剂量分布按照与放射
源之间的距离的平方而下降,即平方反 比定律。 基本特征 肿瘤剂量 高而不均匀,而邻 近正常组织受量低
近距离治疗的主要特点
肺剂量 双 双肺 肺VV2300≤≤2280%%
心脏 V40≤40~50% 肝脏 (60%体积)≤30Gy 骨髓 ≤45Gy 脑干 ≤54Gy
放射防护常识
基本原则
1.放射实践的正当化
任何伴有电离辐射的实践所获得的利益必须大于所付出 的代价。 2.放射防护的最优化 任何电离辐射的实践,应当避免不必要的照射。在谋求 最优化时,应以最小的防护代价,获取最佳的防护效果, 不能追求无限地降低剂量。 3.个人剂量限值 所有实践带来的个人受照剂量必须低于当量剂量限值标准。
放射治疗技术 物理学基础

• 3、60钴γ射线的百分深度剂量及影响因 素
• 4、高能电子线的临床剂量学
• 5、等剂量曲线的分布及影响因素 • 6、人体曲面和不均匀组织的修正 • 7、临床处方剂量的计算方法
PPT学习交流
35
物理半影
80%和20%等剂量曲线间的侧向距离
PPT学习交流
• 5、等剂量曲线的分布及影响因素 • 6、人体曲面和不均匀组织的修正 • 7、临床处方剂量的计算方法
PPT学习交流
27
高能X射线相关概念
• 放射源 • 照射野中心轴 • 照射野 • 参考点 • 源皮距(SSD) • 源轴距(SAD)
PPT学习交流
28
百分深度剂量
• 定义:照射野中心轴上,体模内深度d处的吸收剂 量率Dd与参考深度do处的吸收剂量率Ddo之比。
PPT学习交流
7
一、高能X射线的物理特性 (一)穿透作用 (二)电离作用 (三)荧光作用 (四)热作用 (五)干涉、衍射、反射、折射作用
PPT学习交流
8
(一)穿透作用
X射线透视和摄影的物理基础
PPT学习交流
9
(二)电离作用
X射线损伤和治疗的物理基础
PPT学习交流
10
(三)荧光作用
X射线透视的物理基础
PPT学习交流
22
一、常用放射线的物理特性 二、放射线射野剂量学
PPT学习交流
23
常用射线的物理剂量特性
PPT学习交流
24
• 1、放射线的临床剂量学原则
• 2、高能X射线的百分深度剂量及影响因 素
• 3、60钴γ射线的百分深度剂量及影响因 素
• 4、高能电子线的临床剂量学
放射的名词解释

放射的名词解释放射,是一个科学术语,广泛应用于不同领域,如物理学、医学、地球科学以及工程学等。
放射可指物质或能量向外传播的过程,其背后的原理和应用十分多样。
本文将以放射的不同含义为线索,探讨其在不同领域中的意义和应用。
一、物理学领域中的放射现象在物理学领域,放射是指物质或能量由一个点向其周围空间传播的过程。
这种传播过程可以是波动性的,如光波的传播,也可以是粒子性的,如α粒子、β粒子的放射。
放射现象是由原子核或原子中的粒子释放出来,并以高速度经空间传播的过程。
放射现象是研究原子核结构、放射性衰变和核反应的重要科学基础。
二、医学领域中的放射技术在医学领域,放射技术是一种常见的诊断和治疗手段。
医学放射技术主要利用了不同类型的辐射源,如X射线、γ射线和β射线等,通过对人体组织的透视和成像,对疾病的诊断和治疗进行有效的观察和干预。
放射技术在医学影像学中广泛应用,如X射线透视、计算机断层扫描、磁共振成像等,为医生提供了重要的诊断依据。
此外,放射技术在肿瘤治疗中也发挥着重要作用,如放疗和核医学治疗等。
三、地球科学领域中的放射现象在地球科学领域,放射现象表现为自然界中的地球放射和宇宙射线。
地球放射是指地球内部放射性物质的辐射,如地壳中的铀、钍、钾等元素的衰变释放出的辐射。
这种放射现象不仅为地质勘探和矿产资源调查提供了重要手段,还对环境和人类健康产生着影响。
宇宙射线则是指来自宇宙空间的高能粒子辐射,这种放射现象能够穿透地球大气层,对大气层研究和宇航员健康监测有着重要意义。
四、工程学领域中的放射技术在工程学领域,放射技术广泛应用于物质检测、材料分析、工业无损检测等领域。
工程放射技术通过利用辐射源,对材料或产品进行检测和分析,以达到质量控制和安全评估的目的。
例如,射线检测技术可以用于工业产品的内部缺陷检查,如焊接接头的质量、钢铁材料的厚度等。
这些应用展示了放射技术在工程领域中的广泛用途和重要性。
综上所述,放射在不同领域中都有不同的含义和应用。
放射物理与防护学教学设计

放射物理与防护学教学设计一、教学目标本课程旨在使学生掌握以下知识和技能:1.理解放射物理学的基本概念和原理,包括放射线、放射性核素等;2.了解放射源的产生、转化和衰变规律;3.掌握放射线的物理量和单位,如剂量、剂量率、比活度等;4.了解辐射生物效应和辐射防护的基本原理;5.掌握辐射监测和控制技术的基本方法;6.掌握防护措施的选择、使用和评价的方法。
二、教学内容1.放射物理学的基本概念和原理;2.放射源的产生、转化和衰变规律;3.放射线的物理量和单位;4.辐射生物效应和辐射防护的基本原理;5.辐射监测和控制技术的基本方法;6.防护措施的选择、使用和评价的方法。
三、教学方法以讲授为主,结合案例分析、课堂讨论、实验演示、防护设备展示等形式,加强理论和实践的联系,提高学生的学习兴趣和参与度。
四、教学时间安排本课程为选修课,总学时为32学时,按照如下安排开展:时间教学内容第1-2周放射物理学基本概念第3-4周放射源的产生、转化和衰变规律第5-6周放射线的物理量和单位第7-8周辐射生物效应和辐射防护第9-12周实验演示和防护设备展示第13-16周辐射监测和控制技术五、教学资源1.教材:《放射物理与辐射防护》(第二版),作者:李克鹏等,中国原子能出版社;2.实验设备:γ射线源、测量仪器、防护设备等;3.网络资源:辐射监测和控制技术的相关论文和报告、防护措施评价方法等。
六、教学评估采用考试和平时成绩相结合的方式进行评估,其中:1.考试占总成绩的70%;2.实验和防护设备展示成绩占总成绩的20%;3.课堂表现和出勤情况占总成绩的10%。
七、教学效果预期通过本课程的学习,学生将能够全面、系统地掌握放射物理学和辐射防护的基本知识和技能,学会选择和使用防护设备,掌握辐射监测和控制的基本方法,能够在工作中做好辐射防护和安全管理的工作。
《放射治疗物理学》讲义教案放射治疗物理学目录.doc

放射治疗物理学目录第一章放射治疗物理基础第一节原子和原子核性质一、一些基本概念二、原子核的大小和质量三、原子核结合能四、原子核的自旋与磁矩五、原子核和核外电子的能级第二节射线与物质的相互作用一、基木粒子的种类和物理特性二、核的稳定性和衰变类型三、放射性度量和放射性核素衰减规律四、常见类型射线与物质的相互作用及定量表达第二章临床放射生物学概论第一节电离辐射对生物体的作用一、辐射生物效应的时间标尺二、电离辐射的直接作用和间接作用第二节电离辐射的细胞效应一、辐射诱导的DNA损伤及修复二、细胞死亡的概念三、细胞存活曲线四、细胞周期时相与放射敏感性五、氧效应及乏氧细胞的再氧合六、再群体化笫三节电离辐射对肿瘤组织的作用一、肿瘤的增殖动力学二、在体实验肿瘤的放射生物学研究中得到的一些结论第四节正常组织及器官的放射效应一、正常组织的结构组分二、早期和晚期放射反应的发生机制三、正常组织的体积效应第五节肿瘤放射治疗的基本原则一、照射范围应包括肿瘤二、要达到基本消灭肿瘤的目的三、保护邻近正常组织和器官四、保护全身情况及精神状态良好第六节提高肿瘤放射敏感性的措施一、放射源的选择二、利用时间-剂量-分割关系三、使肿瘤细胞再分布四、利用氧效应第七节肿瘤放射治疗中生物剂量等效换算的数学模型一、“生物剂量”的概念二、放射治疗屮生物剂量等效换算的数学模型三、外推反应剂量(ERD)概念第三章常用放射治疗设备第一节X线治疗机一、X线的发生二、X线机的一般结构三、X线质的改进四、X射线治疗机的改进第二节医用加速器一、概述二、医用电子直线加速器的加速原理三、医用电子直线加速器的结构四、质子放疗系统第三节远距离^Co治疗机一、叫20源的产生与衰变二、远距离治疗机的一般结构三、60Co治疗机种类四、60Co治疗机的半影种类五、垂直照射相邻照射野的设计六、60c°v射线的优缺点七、6°C0源更换八、Y刀第四节远距离控制的近距离治疗机一、H DR后装治疗设备的组成二、现代后装机具有的优点第五节理想放射源条件一、理想的剂量分布二、能杀灭乏氧细胞三、能杀灭非增殖期细胞(Go期)第六节模拟定位设备一、模拟定位机二、C T模拟定位机三、磁共振模拟机四、P ET-CT模拟机第七节体位固定装置一、一般的头颈部支持系统二、乳腺体位辅助托架三、热塑面网(罩)和体罩四、真空成形固定袋(真空袋)第八节放射治疗局域网络一、局域网络的配置二、放射治疗科网络的信息交换三、L ANTIS系统四、科室网络的安全维护第四章辐射剂量学的基本概念第一节辐射剂量学基本定义一、照射量二、比释动能三、吸收剂量四、有关辐射场的几个基本定义第二节各辐射量Z间的关系一、高能光子在介质中的能量转移和吸收二、电子平衡三、照射量和比释动能的关系四、比释动能和吸收剂量的关系五、吸收剂量和照射量的关系第三节空腔理论一、阻止本领二、阻止本领和吸收剂量的关系三、Bragg-Gray空腔理论四、Spencer-Attix 理论五、空腔理论住电离室剂量测量中的应用第五章射线的测量第一节电离室一、电离室基本原理二、指形电离室三、电离室的工作特性以、特殊电离室五、电离室测量吸收剂量的原理第二节热释光剂量计一、原理二、热释光剂量讣的种类三、热释光剂量计使用四、热释光剂量计的刻度第三节胶片剂量计一、原理二、应用第四节半导体剂量计一、原理二、Mapcheck半导体剂量仪第五节场效应管一、原理二、M OSFET探测器的特性第六节剂量的标定一、射线质的测定二、射线吸收剂量的标定第六章光子照射剂量学第一节原射线与散射线一、原射线二、散射线第二节平方反比定律第三节百分深度剂量一、照射野及有关名词定义二、百分深度剂量第四节射野输出因子和模体散射因子一、射野输出因子二、模体散射校正因子第五节组织空气比一、组织空气比定义二、源皮距对组织空气比的影响三、射线能量、组织深度和射野大小对组织空气比的彫响四、反向散射因子五、组织空气比与百分深度剂量的关系六、不同源皮距百分深度剂量的计算一一组织空气比法七、旋转治疗屮的剂量计算八、散射空气比第六节组织最大比一、组织模体比和组织最大剂量比二、散射最大剂量比第七节等剂量线一、等剂量线二、射野离轴比第八节组织等效材料一、组织替代材料二、组织替代材料间的转换三、模体四、剂量准确性要求第九节人体曲而和组织不均匀性的修正一、均匀模体和人体之间的差别二、人体曲面的校正第十节不均匀组织(骨、肺)校正一、射线衰减和散射的修正二、不均匀组织屮的吸收剂量三、组织补偿第十一节楔形野剂量学一、楔形野等剂量分布与楔形角二、楔形因子三、一楔合成四、楔形板临床应用方式及其计算公式五、动态楔形野第十二节不规则射野剂量学第十三节临床剂量计算一、处方剂量二、加速器剂量计算三、钻-60剂量计算四、离轴点剂量计算一一Day氏法第七章电子线照射剂量学第一节电子线中心轴深度剂量分布一、中心轴深度剂量曲线的基木特点二、有效源皮距及平方反比定律三、彫响电子线百分深度剂量的因素四、电子线的输出因子第二节电子线剂量学参数一、电子线的射程二、电子线能量参数三、电子线的离轴比四、电子线的均整度、对称性及半影五、电子线的等剂量线分布特点第三节电子线的一般照射技术一、电子线处方剂量ICRU参考点二、能量和照射野的选择三、射野形状及铅挡技术四、电子线的补偿技术五、电子线的斜入射修正六、电子线的组织不均匀修正和边缘效应七、电子线的射野衔接技术第四节电子线的特殊照射技术一、电子线旋转照射技术二、电子线全身皮肤照射三、电子线术中照射第八章近距离放射治疗剂量学第一节近距离放疗概述一、近距离放射治疗的设备和相关技术二、近距离放疗的常用核素第二节近距离放疗的剂量计算一、单个粒子源的剂量计算方法二、临床多粒子源植入的扰动影响三、组织异质情况下的剂量修正第三节近距离放疗的临床应用和剂量体系一、粒子源植入治疗的临床应用二、粒子源植入的临床剂量体系第九章中子近距离照射剂量学第一节钿中子与制中子相对生物学效应一、钢屮子二、^cf的相对生物效应(RBE)三、屮子近距离治疗的优势第二节钏中子治疗技术一、'叱彳中子后装治疗机(中子刀)简介二、中子刀适应症及禁忌症第三节钿中子治疗的剂量分布一、模体二、确定漩Cf中子束、Y射线吸收剂量分布的探测器三、确定^Cf中子、Y吸收剂量分布的理论方法第四节中子的防护一、中子后装机的辐射防护性能二、患者的辐射防护三、医护人员的辐射防护四、公众的辐射防护五、安全管理第十章临床常用技术和应用第一节挡块一、挡块的厚度二、低熔点铅技术三、挡块制作第二节组织补偿一、组织填充物二、组织补偿器三、电子束的补偿技术第三节多叶准直器一、多叶准直器的基本结构二、多叶准直器的安装位置第四节楔形野一、楔形板二、楔形角与楔形因子三、一楔合成四、动态楔形野第五节独立准直器第十一章临床常用放疗方案第一节放疗临床对剂量学的要求一、提高治疗比二、实现临床剂量学四原则第二节照射技术和射野设计原理一、体外照射技术的分类及其优缺点二、射线及其能量的合理选择三、高能X射线的射野设计原则四、相邻野设计五、不对称射野笫三节临床常见肿瘤放射治疗方案一、鼻咽癌常规照射野设计二、肺癌常规照射野设计三、食管癌常规照射野设计第十二章三维适形放射治疗及调强放射治疗第一节三维适形放疗的发展过程第二节3DCRT工作流程、计划工具一、体模制作二、计划CT扫描与数据传输三、轮廓勾画四、计划设计和评价五、计划验证六、三维适形放疗的临床应用第三节立体定向放射外科和立体定向放射治疗一、立体定向放射外科二、立体定向放射治疗笫以节调强放射治疗一、IMRT的工作流程和基本概念二、IMRT实施方法三、IMRT的优点四、IMRT的可能潜在问题五、IMRT的剂量验证第五节 调强放射治疗的临床应用举例一、 鼻咽癌的调强放射治疗二、 前列腺癌的调强放射治疗三、 肺癌的调强放射治疗第十三章治疗计划系统和治疗计划评估 第一节治疗计划系统概念和历史简介一、 治疗计划系统概念二、 治疗计划系统的发展历史三、 两维和三维治疗计划系统的比较 第二节治疗计划的剂量学原则及靶区剂量规定一、 肿瘤致死剂量与正常组织耐受剂量二、 临床剂量学四项原则 第三节外照射靶区剂量学规定治疗目的 参考点和坐标系 体积的定义 対剂量报告的一般性建议 剂量归一点 吸收剂量二、四、五、八、第六节近距离放射治疗剂量算法近距离治疗特点近距离治疗类型和放射源空间重建近距离主耍剂量计算方法192Ir 放射源的数学模型 近距离照射的剂量优化第七节外照射剂量计算算法一、 剂量计算算法的临床实现进程二、 剂量计算算法第八节 治疗计划系统的设计和体系结构一、 基本组成二、 单个治疗计划工作站系统三、 多工作站系统四、 辅助部件五、 第三方软件六、 治疗计划系统的发展七、 系统说明书二、 四、五、八 第四节TPS 中的图像和图像处理技术一、 放射治疗计划中使用的图像技术二、 图像处理第五节治疗计划设计过程体位固定治疗计划设计放射治疗计划评估治疗计划的验证治计划的执行调强放射治疗的TPS 剂量验证 二、 四、 五、 六、第九节治疗计划系统的验收一、验收内容二、与剂量无关的项目三、外照射野光子剂量计算四、电子线剂量计算五、后装治疗六、数据传输第十节治疗计划系统的质量保证一、系统文件和人员培训二、系统定期QA项目三、患者治疗计划检查第十四章放射治疗的质量保证QA和质量控制QC 第一节QA和QC的目的及重要性第二节放射治疗对剂量准确度的要求一、靶区剂量的确定二、对剂量准确度的要求三、影响剂量准确性的因素第三节外照射治疗物理质量保证内容一、外照射治疗机、模拟机和辅助设备二、等中心及指示装置三、照射野特性的检查四、剂量测量和控制系统五、治疗计划系统六、治疗安全第四节近距离治疗QA内容一、放射源二、污染检查三、遥控后装机QA四、治疗的质量控制第五节QA、QC的管理要求一、部门QA的主要内容二、国家QA的主要内容第十五章发展中的图像引导放射治疗第一节三维适形放射治疗第二节调强放射治疗第三节图像引导放射治疗一、放射治疗实施前影像二、治疗室内图像引导和投照三、图像引导放射治疗四、4维放射治疗第四节剂量引导放疗和循变放疗一、剂量引导放射治疗二、循变放射治疗第十六章放射防护第一节电离辐射的生物效应一、放射损伤机理二、放射生物效应的类型三、影响放射生物效应的主要因素四、辐射对组织、器官的损伤效应第二节放射防护目的与标准一、放射防护的目的二、放射防护应遵守的三项基本原则三、人工照射类型四、放射防护标准第三节外照射防护基本措施一、工作场所区域划分二、减少外照射剂量的三项措施第四节医用电离辐射防护一、医院的防护职责二、医疗照射的正当性判断三、医疗照射的防护最优化四、医疗照射的指导水平与剂量约束章名为小三宋体加粗节名为小四宋体加粗正文为五号宋体加粗一、加粗(一)加粗有必要时1.加粗有必要时(1)a.(a)数字为timenewman公式为(1-1)。
放射物理学基础一(ppt)
优点
可获得准确照射. 工作人员隔室操作,比较安全. 放射源微型化. 高活度放射源形成高剂量率治疗. Hale Waihona Puke 微机控制.放射治疗物理学基础
➢ 近距离后装治疗机
组成:①放射源 ②施源器 ③源室及放射源驱动元 ④治疗计划系统
放射治疗物理学基础
➢ 体内照射与体外照射的区别
放射源强度
放射治疗物理学基础
➢钴 - 60 治 疗 机
结构:①放射源
②源客器及防护机头
③遮线照装置
④准直器
⑤支持系统及其附属电子设备
钴-60γ线的特点:
与深部x线机(200~400kv)相比的优点: ①穿透力强 ②保护皮肤 ③骨和软组织有同等的吸收剂量 ④旁向散射小 ⑤经济可靠
钴 - 60 半 影 问 题
放射治疗物理学基础
三种常见体外照射设备的特点比较
能量 穿透力 皮肤剂量 骨吸收剂量 旁向散射 经济、维修
照射野 防护
X线机
低 弱 高 高 大 价格低 维护方便 小 容易
6 0CO远距离治疗机
高,单能 较强
低 和软组织相同
较小 价格较低 维护方便
中等 定期换源 防护难
直线加速器
高,可调 强 低
和软组织基本相同 小
几何半影 穿射半影 散射半影
放射治疗物理学基础
➢ 加速器
X线和电子束的产生
电源
脉冲调制器
电子枪 磁控管
加速管
偏转磁铁 电子束 打靶 高能X线
放射治疗物理学基础
➢ 加速器
分类 电子感应加速器 电子直线加速器 电子回旋加速器
放射治疗物理学基础
➢ 电子直线加速器的特点
能量高,可调控,剂量率高. 穿透力强. 皮肤剂量低:6MvX最大剂量点在皮下1.5cm. 骨和软组织吸收基本相等. 旁向散射小. 价格昂贵. 维护难,对水、电、湿度要求高. 射野可以较大,可达40×40cm.
放射物理学基本知识2019.8.7
X(γ)射线的临床剂量学
百分深度剂量(PDD)的概念 是指模体内照射野中心轴上任一深度d处的吸收剂量(Dd) 与参考点深度吸收剂量(D0)之比的百分数,即:
百分深度剂量的定义示意图
影深度剂量的因素
3.照射面积 当照射野面积增大时,同一深度的百分深度剂量随之加大。
但当照射野面积很大时,照射野边缘的散射线对中心轴上的 剂量贡献减少,此时百分深度剂量随面积增加变缓,并逐渐 达到饱和。 4.源皮距
在同一深度下,射线能量、照射面积不变的情况下,源皮 距离越小,百分深度剂量越小;源皮距越大,百分深度剂量 也越高。
影响百分深度剂量的因素
2、照射野 照射野较小时,因相当数量的电子被散射出照射野,中心轴百
分深度剂量随深度增加而迅速减小。 当照射野增大时,较浅部位中心轴上电子的散射损失被照射野
边缘的散射电子补偿逐渐达到平衡,百分深度剂量不在随射野 的增加而变化。
影响百分深度剂量的因素
3、源皮距 对于较低能量的电子東,可以忽略SSD的影响。但对能量高于
正电 粒子
电子
质子
重粒子
间接致电离辐射
直接致电离辐射
粒子射线
电子线(线) 粒子 中子
负π介子 质子
光子射线
X 射线 射线
线性能量传递(LET)
单位轨迹上能量传递的水平
低LET射线: X射线 (<10kev/μm) 射线
电子线 高LET射线: 中子 (≥10kev/μm) 粒子
负π介子
目录
1898年居里夫人发现放射性元素镭并用于肿瘤的治疗
治疗前
治疗后
临床放射物理学基础PPT课件
❖ 百分深度剂量 ❖ 建成效应 ❖ 等剂量曲线
❖ 半影 ❖ 几何半影 ❖ 穿射半影 ❖ 散射半影
精选ppt课件最新
8
放射源(S)
射线源
在没有特别说明的情况下,一 般指放射源的前表面的中心,或 产生射线的靶面中心。
精选ppt课件最新
9
射野中心轴/射线中心轴
射线束的中心对称轴线。
临床上一般用放射源S穿过照 射野中心的连线作照射野中心 轴。
❖ 射线能量高,皮肤剂量低,最大剂量点(Dm)深度 大约为该射线能量值的1/4。
❖ 随着射线能量增加,Dm点的位置下移,皮肤表面 剂量下降,深部剂量增加。
❖ 放射源与皮肤距离固定时,百分深度剂量随射线 能量、照射野面积的增大而增大。
❖ 固定野照射时,应将病灶前缘放在Dm点之后,限 束器距照射野皮肤表面应>5cm。
17
等剂量曲线
等剂量曲线
❖射线束在一定组织深部中心轴处的剂量最高,远离中心轴则逐渐减弱, 把不同深度但相同剂量的各点连成一线称为等剂量曲线。 ❖模体中百分深度剂量相同的点连接起来即成等剂量曲线。 ❖射线能量越高,等剂量曲线越趋平坦,对治疗有利。 ❖用来描述吸收剂量的二维或三维分布。 ❖能够直观地给出整个照射野在二维方向上模体对放射线的吸收情况。
❖ 靶皮距(FSD):靶面到皮肤的距离(肿瘤深度 )。
精选ppt课件最新
13
放射源
射 野 中 心 轴 照 射野
肿瘤中心点
源 皮 距
源 瘤 距
靶 皮 距
❖ 放射源(S) ❖ 射野中心轴(SA) ❖ 照射野(A) ❖ 参考点 ❖ 校准点 ❖ 肿瘤中心点(C) ❖ 源皮距 (SSD) ❖ 源瘤距 (STC) ❖ 源轴距 (SAD) ❖ 靶皮距 (Dc)
放射物理学基础ppt课件
模拟定位机
• X线模拟定位机:是用来模拟加速器或60Co治 疗机机械性能的专用X线诊断机。
• 作用:模拟各类治疗机实施治疗时的照射部位 及范围,进行治疗前定位。
• CT模拟机:是利用CT获取患者图像并进行三 维重建,同时将图像传给放射治疗计划系统, 进而对肿瘤实现精确定位的专用CT机。
8
近距离后装治疗机
• 现代后装治疗机主要包括:治疗计划系 统和治疗系统。
• 现代近距离治疗的特点: • 放射源微型化,程控步进电机驱动; • 高活度放射源形成高剂量率治疗; • 微机计划设计。
9
*辐射源种类和照射方式 辐射源种类
1.放射性同位素放出的α、β、γ射线 2.X 线治疗机和各类加速器产生的不同 能量的 X 线 3.各类加速器产生的电子束、质子束、 中子束、负π介子束以及其他重粒子束。
14
康普顿效应:
• 随着入射光子能量
的增加 ( 200kV-2
MV),光子与轨道
上电子相撞,光子
将部分能量转移给
电子,使电子快速
前进(反冲电子),
而光子本身则以减
低之能量,改变方
向,继续前进(散射
光子),这种现象叫
做康普顿效应。
15
电子对效应:
• 入射光子能量大 于1.02MV时, 光子可以与原子 核相互作用,使 入射光子的全部 能量转化成为具 有一定能量的正 电子和负电子, 这就是电子对效 应。
如60Coγ射线。
21
• *半价层 (Half Value layer,HVL):是指置 于X射线束通过的路径上,使其照射量减少 一半所需某种物质的厚度。
• *照射野:射线束经准直器后垂直通过模体 的范围,用模体表面的截面大小表示照射野 的面积。临床剂量学规定,模体内50%同等 剂量曲线的延长线交于模体表面的区域定义 为照射野的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光子能量在图(a)点释放出次级电子的 损失,即光子的能量转移,以比释动能来 度量;沿径迹(b)的损失,即光子的能 量被介质所吸收,以吸收剂量来度量 从上述论述中可以看出,比释动能和吸收 剂量显然在概念上是两个完全不同的物理 量,前者是 入射光于在作用点(a)处释 放给次级电子的 总动能,后者为次级电 子沿其径迹(b)释放给介质的能量。
半导体剂量仪
半导体剂量仪使用的探测器实际上是一种特殊的 PN型二级管。界面两边很小的PN结区域里形成 静电场和电位差。类似于空气电离室灵敏体积中 的情况,两个导电电极之间存在有绝缘层(PN 型中的阻挡层)。当探测器受到电离辐射照射时, 会产生新的载流子(电子和空穴对),在电场作 用下,它们很快分离并分别被“拉”到正极和负 极,形成脉冲信号。因此有的学者将半导体探测 器 称为“固体电离室
同体积的半导体探测器,要比空气电离室 的灵敏度高18000倍左右。这样的半导体 探头可以做得 非常小(0.3—0.7mm3),除 常规用于测量剂量梯 度比较大的区域, 如剂量建成区、半影区的剂量分布和用于 小野剂量分布的测量外,近十年来,半导 体探测器越来越被广泛用于患者治疗过程 中的剂量监测
放射物理学有关的名词
射线质(Radiation quality):电离辐射穿 透物质的本领 放射源(Source):放射源前表面的中心, X射线靶面中心,电子束出射窗或散射箔 的位置 射野中心轴(Beam axis):射线束的中 心对称轴,临床上一般用放射源穿过照射 野中心的连线作为射野中心轴
模体(Phantom):用于模拟射线在人体 组织或器官中因散射和吸收所引起的变化, 即模拟射线与人体组织相互作用的物理过 程。分为标准模体(Standard phantom), 均匀模体(Homogeneous phantom), 人体模体(Human phantom)和组织填充 模体(Bolus)
放射性核素 钴60 镭226
射线种类 γ(β) γ(αβ)
射线能量 1.17Mev 1.33Mev 0.83MeV半衰期 Leabharlann .27a 1590a铯137
铱192 碘125
γ
γ γ
0.662KeV
360KeV 28KeV
33a
74d 59.6d
3.外照射,放射线必须经过皮肤和正常组 织才能到达肿瘤,受限于皮肤和正常组织 的耐受剂量,要选择不同的能量和采用多 射野技术 4.由于距离平方反比定律,导致近距离照 射,离放射源越远,剂量越低,剂量均匀 性远差于外照射,照射时要注意处方剂量 点选择,避免出现剂量过高或过低的情况
间接致电离辐射在放射治疗中主要指X(γ)辐 射,X(γ)光子进入介质,经与介质相互作用 损失能量,分为两步。 如图(a)入射光子将其部分或全部能量转移给 介质而释放出次级电子; 其次如图(b)获得光子转移能量的大部分次级 电子再与介质原子中的电子作用,以使原子电离 或激发的形式损失其能量,即被介质所吸收;而 少数次级电子与介质原子的原子核作用,发生轫 致辐射产生X射线。
吸收剂量测量的常用方法
电离室法 热释光剂量仪 胶片剂量测定法 半导体剂量仪
电离室法
如图两个互相平行的电极之间充满空气,虚线所 包括范围,称为电离室灵敏体积。当电离辐射, 如X或γ射线射入电离室的灵敏体积内,经与其 中的空气介质相互作用,产生次级电子。这些电 子在其运动径迹上使空气中的原子电离,产生一 系列正负离子对。 在灵敏体积内的电场作用下,电子、正离子分 别向两极漂移,引起相应极板的感应电荷量发生 变化,从而在外接电路中形成电离电流。在电子 平衡条件下,测量到的电离电荷,理论上应为次 级电子所产生的全部电离电荷量。
2
国际单位贝克勒尔(Bq),此前使用的活 度单位是居里(Ci) 1 Ci=3.71010 Bq
辐射量和单位
照射量(Exposure) 照射量 D dQ dm X(γ)辐射在质量为dm的空气中释放的全部次 级电子完全被空气阻止时,在空气中形成的同一 种符号的离子总电荷的绝对值(不包括次级电子 韧致辐射而产生的电离)。 照射量是用以衡量X(γ)辐射致空气电离程度 的一个量,不能用于其它类型辐射和其他物质。 X的单位为C/kg,未定义专用名。曾用伦琴为单 位。1 R=2.58110-4 C/kg
用于做剂量建成区,近距离治疗放射源周 围的剂量分布,患者剂量监测和剂量对比 等
胶片剂量测定法
胶片在剂量学中的应用主要有三个方面: 检查射野的平坦度和对称性 获取临床常用剂量学数据,如高能X(γ)射线的离 轴比、电子束的百分深度剂量和离轴比 验证剂量分布,如相邻射野间剂量分布的均匀性、 治疗计划系统剂量计算的精确度。 测量时应保持胶片与模体紧密贴合,以免空气间 隙造成不规则的花斑和条纹
半价层
半价层HVL(Half value layer) 临床上使用的半价层定义为使入射X(γ) 射线光子的强度或注量率减低一半时所需 要的某种材料吸收体的厚度。
半价层的测量
400KV以下X射线质的测定
中低能X射线,通常用半价层来表示通过X 射线光子束贯穿某种介质时的减弱程度来 定义和确定
高能X射线能量的测定
各类加速器产生的高能X射线能谱是连续 谱,最大能量可以认为与加速器电子打靶 前的能量相同。 高能X射线的射线质通常用电子的标称加 速电位表示,单位为MV。 当前,从剂量学角度考虑,对高能X射线 质的确定,通常的做法是用辐射质指数I (Quality index)来表示。
热释光剂量仪
热释光剂量计的基本原理,根据固体能带理论, 具有晶体结构的固体,因含有杂质,造成晶格缺 陷,称为“陷阱”。当价带上的电子获得电离辐 射的能量,迁跃到导带,不稳定而落入“陷阱”。 如对该物质加热,会使电子重新回到价带上,并 将电离辐射给予的能量,以可见光的形式辐射出 去。发光强度与“陷阱”所释放的电子数成正比, 而电子数又与物质吸收辐射能量有关。经过标定, 可测量吸收剂量。常用的热释光材料为氟化锂 (TLD-100),其有效原子序数为8.2,与软组织 (Z=7.4)比较接近,适合临床应用。
半导体探测器的一个主要缺陷是,高能辐 射轰击硅晶体,会使其晶格发生畸变,导 致探头受损,灵敏度下降
射线质的确定
400KV以下X射线质的测定 高能X射线能量的测定 高能电子束能量的测定 加速器能量的常规监测
电离辐射质的确定
电离辐射质(Radiation quality) 放射治疗常用的电离辐射X(γ)射线及高 能电子线,通常用能量来对其描述。由于 规定及测定较为困难,在临床上对辐射能 量的关心,主要集中在射线穿透物质的本 领上。 因此,电离辐射质定义为电离辐射穿透物 质的本领。
热释光材料的剂量响应与其受辐照和加热历史 有关,在使用前必须退火。如LiF在照射前要经 过1小时400℃高温和24小时80℃低温退火。它 的剂量响应,一般在10Gy以前呈线性变化,大 于10Gy则出现超线性现象。其灵敏度基本不依 赖于X(γ)射线光子的能量,但对于低于10MeV的 电子束,灵敏度下降5%~10%。热释光材料的 剂量响应依赖于许多条件,因此校准要在相同条 件,如同一读出器,近似相同的辐射质和剂量水 平下进行,经过严格校准和对热释光材料的精心 筛选,测量精度可达到95%~97%。
模体表面平均能量 E0 2.33 R50 模体表面的最大可几能量
Ep,0 C1 C2 Rp C3 R
2 p
C1=0.22MeV,C2=1.98MeV/cm C3=0.0025MeV/cm2 不同深度处的平均能量 Ez E0 (1 z Rp ) 仅对能量低于10MeV和高能量小深度成立
吸收剂量(Absorbed dose) 吸收剂量 D dE dm 即电离辐射给予质量为dm的介质的平均授 予能。 单位为J/kg,专用名为戈瑞Gray(Gy)。 1 Gy=1 J/kg 1Gy=100cGy 拉德(rad), 1Gy=100 rad
比释动能(kinetic energy released per unit mass,Kerma) 比释动能 K dEtr dm 即不带电粒子在质量为dm的介质中释放的 全部带电粒子的初始动能之和。 K的单位为J/kg,专用名戈瑞(Gy)。
保持源探测器距离不变,分别以水模体中 20cm与10cm处的组织模体比(TPR)的 比值表示。 保持源模体表面距离不变,以水模体中 20cm和10cm处的百分深度剂量(PDD) 的比值表示。
高能电子束能量的测定
加速器产生的高能电子束,在电子引出窗 以前,能谱相对较窄,基本可认为是单能。 电子束引出后,经过散射箔,监测电离室, 进入模体,能谱逐渐变宽。临床上关心模 体表面,和模体中特定深度处的能量的定 义和表示方法。
放射物理学
兰州大学第一医院放疗科 祁宁
放射物理学
电离辐射的剂量测量 X(γ)线剂量学 基础知识 高能电子束剂量学 近距离治疗剂量学 放射治疗计划设计的物理原理 X(γ)刀及其放射物理原理 了解知识 适形、调强及重粒子放疗
放射治疗的质量保证与质量控制
执行质量保证的必要性 靶区剂量的确定和临床对剂量准确性的影 响 放射治疗过程及其对剂量准确性的影响 临床方面的QA 物理技术方面的QA 质量保证组织及内容
电离辐射的剂量测量
辐射量和单位 吸收剂量测量的常用方法 射线质的确定
辐射量和单位
放射性活度(Activity) 放射性活度 A dN dt 是指一定量的放射性核素在一个很短的时 间间隔内发生的核衰变数除以该时间间隔。 t 任一时刻的放射性活度 A A0e 其中A与A0分别是t与t0时刻的放射性活度。 半衰期 T1 ln 2 0.693
加速器能量的常规监测
加速器X射线 每月或修理后监测TPR20/TPR10 或PDD20/PDD10的变化 加速器电子线 每月或修理后监测R90的变化