2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式教学案(教师版).doc
2020年上海新高一新教材数学讲义-专题14 函数(学生版)

专题14 函数(函数的概念,函数的表示方法)知识梳理一、函数的概念1.函数定义:定义一:如果在某个变化过程中有两个变量x ,y ,对于x 在某个范围D 内的每一个确定的值按照某种对应法则f , 都有唯一的值与它对应,那么y 就是x 的函数,记作()y f x =,x 叫做自变量,x 的取值范围D 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域. 定义二:非空数集A 到非空数集B 的一个对应关系f :A B →,使A 中每一个元素在B 中都有唯一确定的元素和它对应,那么对应关系f :A B →叫做A 到B 的函数,记作()y f x =,其中x A ∈,y B ∈,x 叫做自变量,x 的取值范围A 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合C 叫做函数的值域.(一般有C B ⊆)注意:1、函数定义中要求对定义域中的任何一个x ,在值域中有且只有一个y 值和它对应;但并不要求对于值域中的每一个y 也只能有一个x 和它相对应,即函数的对应法则可以是1对1,也可以多对1,但不可以1对多(即定义域中一个x 对应值域中一个以上的y ). 2、定义域与值域都必须是非空数集.3、定义域的表示方法有:集合表示法、区间表示法 2.函数的三要素: 定义域 、 值域 和 对应关系 .确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
3.相等函数:如果两个函数的 定义域 和 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。
如果函数y x =和1y x =+,其定义域与值域完全相同,但不是相等函数,看两个函数是否相等,关键是看定义域和对应关系) 4.函数的表示法:表示函数的常用方法有: 解析法 、 图象法 、 列表法 .函数解析式的求法主要包含: 配凑法 、 待定系数法 、 换元法 、 赋值法(方程组法) . 5.函数的定义域、值域:在函数()y f x x A =∈,,中,x 叫做自变量,x 的取值范围A 叫做函数的 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{()f x |x A ∈}叫做函数的 值域 .(1)函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);①限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;①实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。
高中数学复习学教案第讲函数的解析式与表示方法

高中数学复习教案第一讲函数的解析式与表示方法一、教学目标:1. 理解函数的概念,掌握函数的解析式及其表示方法。
2. 能够求解简单函数的解析式,并能运用函数的解析式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 函数的概念及定义。
2. 函数的解析式及其表示方法。
3. 求解简单函数的解析式。
4. 函数解析式在实际问题中的应用。
三、教学重点与难点:1. 重点:函数的概念,函数的解析式及其表示方法。
2. 难点:求解复杂函数的解析式,以及运用函数解析式解决实际问题。
四、教学方法:1. 采用讲授法,讲解函数的概念、解析式及其表示方法。
2. 利用案例分析法,分析实际问题中的函数解析式。
3. 开展小组讨论,引导学生主动探究函数解析式的求解方法。
五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的表示方法。
2. 新课讲解:讲解函数的解析式及其表示方法,举例说明。
3. 案例分析:分析实际问题中的函数解析式,引导学生运用函数解析式解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
六、课后作业:1. 复习本节课的内容,整理笔记。
2. 完成课后练习题,巩固函数解析式的求解方法。
3. 思考实际问题中的函数解析式,尝试运用所学知识解决问题。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况等。
2. 课后作业:检查学生作业完成情况,评估学生对函数解析式的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,考察学生的合作能力。
八、教学资源:1. 教材:《高中数学教材》相关章节。
2. 课件:制作课件,辅助讲解函数的解析式与表示方法。
3. 练习题:搜集相关练习题,巩固学生对函数解析式的掌握。
九、教学进度安排:1. 第一课时:讲解函数的概念、解析式及其表示方法。
2. 第二课时:分析实际问题中的函数解析式,开展小组讨论。
十、教学反思:在教学过程中,关注学生的学习反馈,及时调整教学方法,提高教学效果。
2019-2020学年高中数学新教材必修一第3章 3.1.1 第2课时 函数的表示方法

28
①当点F在BG上,即x∈[0,2]时,y=12x2; ②当点F在GH上,即x∈(2,5]时,y=x+2x-2×2=2x-2; ③当点F在HC上,即x∈(5,7]时,y=S五边形ABFED=S梯形ABCD-SRt△CEF =12(7+3)×2-12(7-x)2 =-12(x-7)2+10.
栏目导航
综合①②③,得函数的解析式为 12x2,x∈[0,2],
y=2x-2,x∈2,5], -12x-72+10,x∈5,7].
29
栏目导航
图像如图所示.
30
栏目导航
31
求函数解析式的常用方法 1待定系数法:若已知fx的解析式的类型,设出它的一般形 式,根据特殊值确定相关的系数即可. 2换元法:设t=gx,解出x,代入fgx,求ft的解析式即可. 3配凑法:对fgx的解析式进行配凑变形,使它能用gx表示 出来,再用x代替两边所有的“gx”即可.
栏目导航
25
[解] (1)法一(换元法):令t= x +1,则t≥1,x=(t-1)2,代入 原式有f(t)=(t-1)2-2(t-1)=t2-4t+3,f(x)=x2-4x+3(x≥1).
法二(配凑法):f( x +1)=x+2 x +1-4 x -4+3=( x +1)2- 4( x+1)+3,
因为 x+1≥1, 所以f(x)=x2-4x+3(x≥1).
栏目导航
(2)设f(x)=ax+b(a≠0), 则f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b. 又f(f(x))=4x+8, 所以a2x+ab+b=4x+8,
a2=4,
a=2, a=-2,
即ab+b=8, 解得b=83
栏目导航
47
当堂达标 固双基
高考第一轮复习函数的解析式

高考第一轮复习函数的表示方法★知识梳理一、函数的三种表示法:图象法、列表法、解析法1.图象法:就是用函数图象表示两个变量之间的关系;2.列表法:就是列出表格来表示两个变量的函数关系;3.解析法:就是把两个变量的函数关系,用等式来表示。
二、分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
★热点考点题型探析考点1:用图像法表示函数例1.(广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量出水量蓄水量甲乙丙(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) .[解析]由图甲知,每个进水口进水速度为每小时1个单位,两个进水口1个小时共进水2个单位,3个小时共进水6个单位,由图丙知①正确;而由图丙知,3点到4点应该是有一个进水口进水,出水口出水,故②错误;由图丙知,4点到6点可能是不进水不出水,也可能是两个进水口都进水,同时出水口也出水,故③不一定正确。
从而一定不正确...的论断是(2)训练1.(湖北)函数|1|||ln--=xey x的图象大致是( )[解析] D;当1≥x时,1)1(=--=xxy,可以排除A和C;又当21=x时,23=y,可以排除B考点2:用列表法表示函数[例2] (北京)已知函数()f x,()g x分别由下表给出的值为;满足[()][g x g>的值是[解题思路]这是用列表的方法给出函数,就依照表中的对应关系解决问题。
[解析]由表中对应值知[(1)]f g=(3)1f=;x 1 2 3()f x 1 3 1x 1 2 3()g x 3 2 1时间11时间21时间034665当3=x 时,[(3)](1)1,[(3)](1)3f g f g f g ====,不满足条件, 训练2(江苏改编)二次函数c bx ax y ++=2(x ∈R )的部分对应值如下表:则不等式0<++c bx ax 的解集是[解析] )3,2(-;由表中的二次函数对应值可得,二次方程02=++c bx ax 的两根为-2和3,又根据)2()0(-<f f 且)3()0(f f <可知0>a ,所以不等式02<++c bx ax 的解集是)3,2(-考点3:用解析法表示函数掌握求函数的解析式的一般常用方法:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; 例3.已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f 方法一:换元法令)(12R t t x ∈=+,则21-=t x ,从而)(955216)21(4)(22R t t t t t t f ∈+-=+-⋅--= 所以)(95)(2R x x x x f ∈+-=方法二:配凑法因为9)12(5)12(410)12(564)12(222++-+=+-+==+-=+x x x x x x x f 所以)(95)(2R x x x x f ∈+-= 方法三:待定系数法因为)(x f 是二次函数,故可设c bx ax x f ++=2)(,从而由564)12(2+-=+x x x f 可求出951=-==c b a 、、,所以)(95)(2R x x x x f ∈+-=训练3.已知211(1)1f x x+=-,求()f x 的解析式.分析:可用换元法,配凑法求()f x 解析式. 解法一:令11t x +=(1)t ≠,则11x t =-,代入得:2()(1)1f t t =--, 即2()2(1)f x x x x =-≠.解法二:22211111111(1)(2)(1)2(1)x x x x x f x x x x x x x x-+-+++==⋅=⋅-=+-+, 又111x+≠,2()2(1)f x x x x ∴=-≠. 点评:解法一是换元法,已知[()]f g x 的解析式且()g x 存在反函数时,可用换元法.一般步骤为:(1)令()g x t =,并求出t 的取值范围(即的()g x 值域);(2)解出()x t ϕ=;(3)将()g x t =,()x t ϕ=同时代入函数[()]f g x 并化简;(4)以x 代t 且写出x 的取值范围(即t 的取值范围).例4.已知二次函数()y f x =的最小值等于4,且(0)(2)6f f ==,求()f x 的解析式. 分析:给出函数特征,可用待定系数法求解.解法一:设2()(0)f x ax bx c a =++>,则26,426,4 4.4c a b c ac b a⎧⎪=⎪⎪++=⎨⎪-⎪=⎪⎩解得2,4,6.a b c =⎧⎪=-⎨⎪=⎩故所求的解析式为2()246f x x x =-+.解法二:(0)(2)f f =Q ,∴抛物线()y f x =有对称轴1x =.故可设2()(1)4(0)f x a x a =-+>. 将点(0,6)代入解得2a =.故所求的解析式为2()246f x x x =-+.解法三:设()() 6.F x f x =-,由(0)(2)6f f ==,知()0F x =有两个根0,2, 可设()()6(0)(2)F x f x a x x =-=--(0)a >,()(0)(2)6f x a x x ∴=--+, 将点(1,4)代入解得2a =.故所求的解析式为2()246f x x x =-+.点评:三种解法均是待定系数法,也是求二次函数解析式常用的三种形式:一般式,顶点式,零点式.训练4.二次函数)(x f 满足x x f x f 2)()1(=-+,且1)0(=f 。
函数的表示方法课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册

数值,而且有时误差较大
高中数学
必修第一册
配套江苏版教材
示例 下表是某校高一(1)班三名同学在高一学年六次数学测试的成绩及班级平均分表.
测试序号
姓名
1
2
3
4
5
6
小伟
98
87
91
92
88
95
小城
90
76
88
75
86
80
小磊
68
65
73
72
75
82
班级平均分
88.2
78.3
85.4
高中数学
必修第一册
配套江苏版教材
例6 某镇响应“绿水青山就是金山银山”的号召,因地制宜地将该镇打造成“生态水果特色镇”.经调
研发现:某珍稀水果树的单株产量W(单位:千克)与施用肥料x(单位:千克)满足如下关系:
配套江苏版教材
3.分段函数的图象
分段函数有几段,它的图象就由几条曲线组成,在同一直角坐标系中,根据每段的定义区间和表达式依次
画出图象,要注意每段图象的端点是空心点还是实心点.
示例 已知函数f(x)=1+
−
(-2<x≤2).
2
(1)用分段函数的形式表示f(x);(2)画出f(x)的图象;(3)写出函数f(x)的值域.
高中数学
必修第一册
配套江苏版教材
+ 1 2 , ≤ −1,
例5 已知函数f(x)= 2 + 2, −1 < < 1, 若f(a)>1,则实数a的取值范围是(
C )
1
, ≥ 1,
1
高三数学函数的表示

x
f x
a2
c b2
ax
b x
(4) 已知f(x)是定义在 6,6上 的奇函数, 它在 0,3 上
是一次函数,在 3,6上是二次函数,且当 x 3,6
时,f x f 5 3 ,f 6 2 ,求f(x)的解析式。
函数的表示 高三备课组
1、函数的表示有:解析式、图象法、表 格法。注意相互转化(数形结合)
2、函数解析式:函数的解析式就是用数学运算符号 和括号把数和表示数的字母连结而成的式子叫解析 式,解析式亦称“解析表达式”或“表达式”,简 称“式”。
求函数解析式的方法:
(1定义法 (2)变量代换法 (3)待定系数法
(x 5)2 3, x 6,3
f
x 1 3来自x,x
3,3
(x 5)2 3, x 3,6
二.关于定义域
D 6,1 1,0
;单创:/roll/2019-10-14/doc-iicezuev2144522.shtml
;
;
于是,带她去看,说明病史后,老中医什么都没说,只是揭开自己的白大褂,她看见,他只有一条腿。 (17)他说,人活着,不是靠双腿,靠的是一颗完整的心,我只有一条腿,活得好好的,你还比我多半条腿呢,怕什么? (18)从那以后,她常常去老中医那里,不是看病,而是疗心。 (19)再后来,父母给她装了假肢,搬了家,学了钢琴,当了钢琴老师,成了现在的自己。 (20)说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事。 (21)是啊,如果不是偶然看见,在我心里,在我眼里,她依旧是那个只会撒娇、娇弱漂亮的公主,而此 刻,我似乎看见,那些她曾经受过的伤害和遭遇,凝聚成一股钢铁般的力量,让她坚强。 (22)再后来,她
函数概念及其表示课件-2025届高三数学一轮复习

四、教材升华:
例6、(多选)如图,∆0是边长为2的正三角形,记∆0位于直线
= (t > 0)左侧的图形的面积(), 则下列说法正确的是(C D)
、 = 1时,()的值最大.
、 ≥ 2时,()的值最大为 3.
3
、当1 < ≤ 2时() = −
( − 2)2 + 3
和给定锐角A的Rt∆ABC的面积s是角A的邻边长的函数s =
= tanA)
1
1
2
分析:E= mv , v > 0, s = m 2 , > 0,
2
2
1
1
2
E= mv , v > 0, 与s = m 2 , > 0, 定义域和对应关系都相同,
2
2
所以是同一个函数。
三、回归教材:
练习1、下列各组中的函数是否是同一个函数?
∈ , = ()是否为函数?
分析: 2 = −, �� ∈ (−∞, 0], 当 = −1时,
2 = 1, = ±1. ∴ = ()不是函数.
(2)∀
∈ , = ()是否为函数?
分析: = − 2 , ∈ (−∞, +∞), 任意的都有唯一的与之对应
2.3.1 函数的概念
及其表示
第三章 函数的概念与性质
一、知识框图:(课前自主学习)
函数的概念
函数
的概
念及
其表
示
函数的定义域
函数的值域
函数的表示法
二、概念解读:
1.函数:
一般地,设A,B是非空实数集,如果对于集合A中的任意一个数,按照
某种确定的对应关系,在集合B中都有唯一确定的数和它对应,那么就称
高考数学一轮复习总教案:2.1函数的概念及表示法

第二章 函 数高考导航 考试要求重难点击 命题展望1.了解构成函数的三要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际生活中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单运用.4.理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.5.会运用函数的图象理解和研究函数的性质.6.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.7.理解指数函数的概念及其单调性,掌握指数函数通过的特殊点.8.理解对数的概念及其运算性质,知道用换底公式能将一般对数化成自然对数或常用对数;了解对数在简化运算中的作用.9.理解对数函数的概念及其单调性,掌握对数函数通过的特殊点.10.了解指数函数y =ax 与对数函数y =logax (a >0且a≠1)互为反函数.11.了解幂函数的概念,结合函数y =x , y =x2, y =x3 ,y =x 1, y =21x 的图象,了解它们的变化情况.12.结合二次函数的图象,了解函数的零点与方程的根的联系,判断一元二次方程根的存在性和根的个数.13.根据具体函数图象,能够用二分法求相应方程的近似解. 14.了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 15.了解指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型的广泛应用. 本章重点:1.函数的概念及其三要素; 2.函数的单调性、奇偶性及其几何意义;3.函数的最大(小)值;4.指数函数与对数函数的概念和性质;5.函数的图象及其变换;6.函数的零点与方程的根之间的关系;7.函数模型的建立及其应用. 本章难点:1.函数概念的理解;2.函数单调性的判断;3.函数图象的变换及其应用;4.指数函数与对数函数概念的理解及其性质运用;5.研究二次函数的零点与一元二次方程的根的关系;6.函数模型的建立及求解.高考对函数的考查,常以选择题和填空题来考查函数的概念和一些基本初等函数的图象和性质,解答题则往往不是简单地考查概念、公式和法则的应用,而是常与导数、不等式、数列、三角函数、解析几何等知识及实际问题结合起来进行综合考查,并渗透数学思想方法,突出考查函数与方程、数形结合、分类与整合、化归与转化等数学思想方法.知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f(x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f(x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f(x)=(t -1)2+(t -1)+1=t2-t +1,所以f(x)=x2-x +1. (2)由f(x)+2f(-x)=3x2+5x +3,x 换成-x ,得f(-x)+2 f(x)=3x2-5x +3,解得f(x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f(x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f(x x+-11)=2211x x +-,求f(x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3). (2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4]. 【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待. 【变式训练2】已知函数f(2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l.即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( ) 【解析】由题意得y =10x(2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0.所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C.总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式
教学案(教师版)
一、课前检测
1.若函数()f x 满足2(1)2f x x x +=-,则f
= . 答案:6-
2.已知()()()23,2f x x g x f x =++=,则()g x = . 答案:21x -
3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 答案:()123f x x =-
或()21f x x =-+
二、知识梳理
求函数解析式的题型有:
1.已知函数类型,求函数的解析式:待定系数法;
解读:
2.已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;
解读:
3.已知函数图像,求函数解析式;
解读:
4.()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; 解读:
5.应用题求函数解析式常用方法有待定系数法等.
解读:
三、典型例题分析
例1 设2211(),f x x x x
+=+
,求()f x 的解析式. 答案:()22f x x =-
变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式. 答案:()2sin 1f x x =-
变式训练2:设33221)1(,1)1(x
x x x g x x x x f +=++=+, 求)]([x g f . 答案:()22f x x =-,()33g x x x =-,642[()]692f g x x x x =-+-
小结与拓展:配凑法
例2 设23)1(2+-=+x x x f ,求)(x f 的解析式. 答案:2()56f x x x =-+
变式训练1:已知21lg f x x ⎛⎫+=
⎪⎝⎭,求)(x f 的解析式. 答案:2()lg 1f x x =-
变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式. 答案:2()21f x x x =++
小结与拓展:换元法
例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,
求()f x 的解析式; 答案:()27f x x =+
变式训练1:已知12()3f x f x x ⎛⎫+=
⎪⎝⎭
,求)(x f 的解析式. 答案:1()2f x x x =-
例4.图中的图象所表示的函数的解析式为( B ) A. |1|23-=x y (0≤x ≤2) B. |1|2
323--=x y (0≤x ≤2) C. |1|23--=x y (0≤x ≤2)。