2014—2015学年沪科版七年级数学下册习题精选8.3完全平方公式与平方差公式(4)
沪科版七年级下册数学:8.3 完全平方公式和平方差公式 (共14张PPT)

10000 800 16
=10816
2 1982
21982 200 22
40000 800 4
39204
12
思考:
a b c2
解 a b c2 a b c2
a b2 2a bc c2
a2 2ab b2 2ca b c2
b
直接求:总面积=(a+b)(a+b)
间接求:总面积=a2+ab+ab+b2 a (a+b)2=a2+2ab+b2
a
b
完全平方公式 (a+b)2= a2 +2ab+b2
公式特点:
1、左边为两数和的平方; 2、右边为三项,其中两项为左边两数的平方的和, 另一项为两数乘积的2倍
3、公式中的a,b可以表示数,也可以是代数式
1
x
2
6
1
x
3
y
2
6
1
x
2
2
1
x
3
y
3
y
2
6 6
1 x2 xy 9 y2
(2)
0.2a
1Leabharlann b220.2a 1 b2
2
2
0.2a
1 2
b
0.2a
1
b
2
0.2a2
2 2
0.2a
1
b
1
b
2
2 2
0.04a2 0.2ab 1 b2 4
变式2:
11042
11042 100 42
a b2
a ba b
a2 ab ab b2
初中数学沪科版七年级下册-8.3-完全平方公式与平方差公式-同步分层作业(含解析)

8.3 完全平方公式与平方差公式简记为:“首平方,尾平方, 积的 2 倍放中间”两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍.这两个公式叫做完全平方公式.公式特征:1. 积为二次三项式;2. 积中的两项为两数的平方;3. 另一项是两数积的 2 倍,且与原式中间的符号相同;4. 公式中的字母 a ,b 可以表示数、单项式和多项式.注意:1. 项数、符号、字母及其指数2. 不能直接应用公式进行计算的式子,可能需要先添括号,变形成符合公式的形式才行。
3. 弄清完全平方公式和平方差公式的区别(公式结构特点及结果)常用结论:a 2 +b 2 = (a + b)2 - 2ab = (a - b)2 + 2ab ,4ab = (a + b)2 - (a - b)2.平方差公式:(a + b)(a − b) = a 2 − b 2两数和与这两数差的积,等于它们的平方差.紧紧抓住“一同一反”这一特征,在应用时,只有两个二项式的积才有可能应用平方差公式;不能直接应用公式的,要经过适当变形才可以应用基础过关练一、单选题1.已知非负实数,,a b c 满足24,0a b a b c +=-+<,则下列结论一定正确的是( )A .()2222a b a ab b +=++B C .()()224a b a b ab -=+-D 二、填空题11.如图,用四个长为a ,宽为b 的长方形大理石板不重叠地拼成一个大正方形拼花图案,正中间留下的空白区域恰好是一个小正方形,当拼成的这个大正方形的边长比中间小正方形的边长多6时,大正方形的面积+=12.已知x y13.化简:(x-14.定义:若三个正整数培优提升练三、解答题19.问题呈现:借助几何图形探究数量关系,是一种重要的解题策略,图1,图2是用边长分别为a,b的两个正方形和边长为a,b的两个长方形拼成的一个大正方形,利用图形可以推导出的乘法公式分别是图1________图2________;(用字母a,b表示)数学思考:利用图形推导的数学公式解决问题(1)已知7a b +=,12ab =,求22a b +的值;(2)已知()()202420222023x x --=,求()()2220242022x x -+-的值.拓展运用:如图3,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形积分别是1S 和2S .若AB m =,12S S S =+,则直接写出Rt ACF 的面积.(用(1)【知识生成】请用两种不同的方法表示图②中阴影部分的面积(直接用含方法一: ;方法二: ;(2)【得出结论】22(2)()23a b a b a ab b ++=++.(1)根据图(2)的面积关系可以解释的一个等式为______;(2)已知等式2()()()x p x q x p q x pq ++=+++,请你画出一个相应的几何图形加以解释.故选:C .8.C【分析】根据积的乘方、合并同类项、平方差公式、单项式的除法等知识,熟练掌握运算法则是解题的关键.【详解】解:A .()326-=-b b ,故选项错误,不符合题意;B .3332a a a +=,故选项错误,不符合题意;C .()()22224x y x y x y +-=-,故选项正确,符合题意;D .62422÷=a a a ,故选项错误,不符合题意.故选:C .9.D【分析】此题考查了完全平方式.利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:216x mx ++ 是完全平方式,8m ∴=±.故选:D .10.D【分析】本题主要考查了平方差公式在几何图形中的应用,分别表示出两幅图中阴影部分的面积,再关键两幅图阴影部分面积相等即可得到答案.【详解】解:左边一幅图阴影部分面积为22a b -,右边一幅图阴影部分面积为()()a b a b +-,∵两幅图阴影部分面积相等,∴()()22a b a b a b -=+-,故选:D .11.2【分析】本题考查用图象法验证完全平方公式,准确识图列出()22(4)a b b b a a +--=是解题关键.分别表示出每个长方形石板的面积和图中大、小正方形的面积,然后列出等量关系计算求解.【详解】解:每个长方形石板的面积为ab ,中间小正方形的边长为a b -,面积为2()a b -;大正方形的边长为a b +,面积为2()a b +,所以()22(4)a b b b a a +--=;当()()6460a b a b ab +--=⎧⎨=⎩时,解得53a b =⎧⎨=⎩,∴2a b -=,故答案为:2.12.22x y m n x y m n +=+⎧∴⎨-=-⎩或x y m n x y n m+=+⎧⎨-=-⎩解得x m y n =⎧⎨=⎩或x n y m=⎧⎨=⎩.故都有2006200620062006x y m n +=+.21.(1)2x xy +,6;(2)244 24m m -,.【分析】本题考查了整式乘法混合运算,求代数式的值.(1)分别用乘法公式及单项式乘多项式的法则展开,再合并同类项,最后代值求解即可;(2)用平方差公式展开再合并同类项,由已知得26m m -=,然后整体代入求值即可.【详解】解:(1)2()()()()x y x x y x y x y +-++-+222222x xy y x xy x y =++--+-2x xy =+,当2x =-,1y =-时,原式2(2)(2)(1)6=-+-⨯-=;(2)2(2)(2)(4)m n m n n m +-+-22244m n n m=-+-244m m =-,由260m m --=,得26m m -=,原式24()4624m m =-=⨯=.22.(1)()24m n mn +-;()2m n -(2)()()224m n mn m n +-=-(3)6a b -=或6a b -=-.【分析】本题考查了完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.(1)观察图形很容易得出运用大正方形的面积减去四个矩形的面积,即()24m n mn +-,图②中的阴影部分正方形的边长等于m n -,即面积为()2m n -;(2)根据(1)中表示的面积是同一个图形的面积,两个式子相等,即可列出等量关系;(3)由(2)中的等量关系即可求解.【详解】(1)解:方法一:()24m n mn +-;方法二:()2m n -,故答案为:()24m n mn +-;()2m n -;(2)解:代数式()2m n +,()2m n -,mn 之间的等量关系为:。
沪科版数学七年级下册完全平方公式与平方差公式课件(1)

两个数的和(或差)的平方, 等于它们的平方和,加上(或减去 )它们的积的2倍。
完全平方公式 的图形理解
完全平方和公式:
b ab b²
(a+b)²
a a² ab
ab
(a b)2 a2+2ab+b2
完全平方公式 的图形理解
完全平方差公式:
b ab b²
a
a² ab
(a-b)²
ab
(a b)2 a2 ab ab b2
a2 2ab b2
(a+b)2= a2 +2ab+b2
公式特点: (a-b)2= a2 - 2ab+b2
1、结果是三项式; 2、积中有两项为两数的平方和; 3、另一项是两数积的2倍,且与乘式中
间的符号相同。
首平方,尾平方, 积的2倍在中央
例1 运用完全平方公式计算:
(a+b)2
(a-b)2
算一算:
(a+b)2=(a+b) (a+b) = a2 +ab +ab +b2 = a2 +2ab+b2
(a-b)2 =(a-b) (a-b) = a2 - ab - ab +b2 = a2 - 2ab+b2
§8.3完全平方公式
完全平方公式的数学表达式:
((aa++bb))22== aa22 ++2ba2b++2ba2b ((aa--bb))22== aa22 -+b2a2 b-+2ba2b
2
4
解:原式=( 3 x2y 1)2
2
4
9 x4y2 3 x2y 1
8.3完全平方公式与平方差公式2015(19)

4 3 9 m n 2 (6)( ) 2 3 2 2 m mn n 4 3 9
试试身手吧
5.(2m+3n)2
6.(3x-7y)2
应用 1、直接应用 (1) (2x+3)2 (3) (4x2-9y2)2 2、灵活应用 (1)(-x+2y)2 (3)(x+y)2-(x-y)2 (5)(2x+y-3z)2
习题包
A:(3x-1)2=(3x)2-2(3x)( )+( )2 =9x2-6x+1 B: (x+2)2=x2-kx+4 那么 k的值是( ) A.-2 B.2 C.-4 D.4 C:不论x为何值(x+a)2=x2+x+a2则常数a等于 ( ). A.2 B.-2 C.1/2 D.-1/2 D:若m2+km+36是一个完全平方式,则常数 k=_________.
第一数与第二数乘积的2倍 少乘了一个2 ; 应改为: (2a−1)2= (2a)2−2•2a•1+1; (2) 少了第一数与第二数乘积的2倍 (丢了一项); 应改为: (2a+1)2= (2a)2+2•2a•1 +1; (3) 第一数平方未添括号, 第一数与第二数乘积的2倍 错了符号; 第二数的平方 这一项错了符号; 应改为: (a−1)2=(a)2−2•(a )•1+12;
(a b)(a b) a b
2 2
概括总结
平方差公式 (a b)(a b) a b
2 2
平方差公式的特征: ( 1 )等号左边是两个 数 ( 字母 ) 的和乘以这两 个数(字母)的差. (2)等号右边是这两 个数(字母)的平方差.
8.3平方差公式与完全平方公式讲解与例题

8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x+2y)2=x2+2·x·2y+(2y)2=x2+4xy+4y2;(2)(2a-5)2=(2a)2-2·2a·5+52=4a2-20a+25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,S Ⅰ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a -b )2=a 2-2ab +b 2几何意义的阐释.正方形Ⅰ的面积可以表示为(a -b )2,也可以表示为S Ⅰ=S 大-S Ⅱ-S Ⅳ+S Ⅲ,又S 大,S Ⅱ,S Ⅲ,S Ⅳ分别等于a 2,ab ,b 2,ab ,所以SⅠ=a 2-ab -ab +b 2=a 2-2ab +b 2.从而验证了完全平方公式(a -b )2=a 2-2ab +b 2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a +b )2-4ab ,空白正方形的面积也等于它的边长的平方,即(a-b )2,根据面积相等有(a +b )2-4ab =(a -b )2.答案:(a +b )2-4ab =(a -b )22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b 的正方形得到的,所以它的面积等于a 2-b 2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12(b+a )(a -b ),所以梯形的面积和是(a +b )(a -b ),根据阴影部分的面积不变,得(a +b )(a-b )=a 2-b 2.因此验证的一个乘法公式是(a +b )(a -b )=a 2-b 2.答案:(a +b )(a -b )=a 2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204. 4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15.解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65.5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b+a)(-b+a)=a2-b2.②符号变化:(-a+b)(-a-b)=(-a)2-b2=a2-b2.③系数变化:(0.5a+3b)(0.5a-3b)=(0.5a)2-(3b)2.④指数变化:(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用 在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm ,它的面积就增加39 cm 2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm ,根据题意和正方形的面积公式可列出方程(x +3)2=x 2+39,求解即可.解:设原正方形的边长为x cm ,则(x +3)2=x 2+39,即x 2+6x +9=x 2+39,解得x =5(cm). 故这个正方形的边长是5 cm. 7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式: ①a 2+b 2=(a +b )2-2ab ; ②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +ba -b的值即可.答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a +b =2,所以(a +b )2=22,即a 2+2ab +b 2=4.把ab =1代入,得a 2+2×1+b 2=4,于是可得a 2+b 2=4-2=2.。
新沪科版七年级下册初中数学 8.3 完全平方公式与平方差公式 教学课件

(a b)(a b) a2 b b) a2 b2
阅读算式,按要求填写下面的表格
算式
与平方差
公式中a对 应的项
与平方差 公式中b 对应的项
写成“a2-b2”
的形式
(x+5)(x-5)
x
5
x2 52
(2-3x)(2+3x)
2
3x 22 3x2
第八页,共二十七页。
完全平方公式
(a+b)2=a2+2ab+b2 (a−b)2=a2−2ab+b2
首平方,尾平方,首尾两倍中间放
平方差公式和完全平方公式也 称乘法公式。
第九页,共二十七页。
例3 用完全平方公式计算;
(1) (x+2y)2
(2) (2a-5)2
(3) (-2s+t)2
(4) (-3x-4y)2
(2) (3x 5 y)( 3x 5 y ) 9x2 25 y2
(3) (5 y 3x)( 5 y 3x ) 9x2 25 y2
第二十三页,共二十七页。
练一练
(1) (2 a)(a 2) (2) (3a 2b)(3a 2b)
(3) (4k 3)(4k 3) (4) (1 x)( x 1)
这两数的平方差
第十八页,共二十七页。
做一做
下图是一个边长为 a 的大正方形,割去一个边长 为b 的小正方形.小明将绿色和黄色两部分拼成一个
长方形.
问:小明能拼成功吗?
a
a
b
第十九页,共二十七页。
a a
a
b
a-b
b
b
长方形的面积为:____(_a___b_)_(_a___b__)_
沪科版数学七下8.3完全平方公式与平方差公式(共2课时)精品课件

(4) ( m-2 )2 = ( m-2 )( m-2) = m2-4m + 4 .
根据上面的规律,你能直接写出下面式子的答案吗? (a+b)2 = a2 + 2ab + b2 .
完全平方公式的运用
思考:怎样计算 1022,992 更简便呢?
(1) 1022;
(2) 992.
解:原式 = (100 + 2)2 解:原式 = (100-1)2
= 10000 + 400 + 4
= 10000 - 200 + 1
= 10404.
= 9801.
例4 已知 a+b=7,ab=10,求 a2+b2,(a-b)2 的值.
b
直接求:总面积 = (a + b)(a + b)
间接求:总面积 = a2 + ab + ab + b2 a
(a + bቤተ መጻሕፍቲ ባይዱ2 = a2 + 2ab + b2
a
新课讲授
完全平方公式 计算下列多项式的积,你能发现什么规律? (1) ( p + 1 )2 = ( p + 1 )( p + 1 ) = p2 + 2p + 1 .
沪科版数学七下课件
第8章 整式乘法与因式分解
8.3 完全平方公式与平方差公式
(共2课时)
沪科版数学七下课件
第1课时 完全平方公式
沪科版七年级下册数学:8.3完全平方公式与平方差公式

用自己的 语言叙述 你的发现.
③(2m+1)( 2m-1)=4m2-1 =(2m)2-12
④(5y+z)(5y-z)= 25y2 -z2 =(5y)2-z2
想一想:这些计算结果有什么特点?你发现了什么 规律?
两数和与这两数差的积,等于这两数的平方的差.
知识要点
平方差公式:(a+b)(a−b)=a2−b2
• 解:张老汉吃亏了.理由如下:原正 方形的面积为a2,改变边长后面积为(a
+5)(a-5)=a2-25.∵a2>a2-25,∴
张老汉吃亏了.
.下面各式的计算对不对?如果不对,应当怎样改正? (1)(x+2)(x-2)=x2-2; 不对 改正:x2-4
(2)(-3a-2)(3a-2)=9a2-4. 不对 改正方法1:原式=-[(3a+2)(3a-2)] =-(9a2-4) =-9a2+4; 改正方法2:原式=(-2-3a)(-2+3a) =(-2)2-(3a)2 =4-9a2.
平方差 公式
1.符号表示:(a+b)(a-b)=a2-b2
注意
2.紧紧抓住 “一同一反”这一特征, 在应用时,只有两个二项式的积才有 可能应用平方差公式;不能直接应用 公式的,要经过变形才可以应用
1、课后作业:1预习课本例3 2同步练习P47-48
2、课堂作业: P70练习1,2
方形土地租给张老汉种植.第二年,他对张老汉说: “我把这块地的-边减少5米,相邻的另-边增加5米, 继续租给你,租金不变,你也没有吃亏,你看如何?” 张老汉-听,觉得好像没有吃亏,就答应道:“好 吧.”回到家中,他把这事和 邻居们-讲,大家都说:“张 老汉,你吃亏了!”他非常吃惊. 你知道张老汉是否吃亏了吗?