新人教七年级数学上册第二章整式的加减复习学案
数学:第2章《整式的加减》(两课时)复习 精品导学案(人教版七年级上)

数学:第二章《整式的加减》(两课时)复习学案(人教版七年级上)【复习目标】:1. 进一步理解单项式、多项式、整式及其有关概念,准确确定单项式的系数、次数、多项式的项、次数;2.理解同类项概念,掌握合并同类项法则和去括号规律,熟练地进行整式加减。
【重点难点】:整式加减运算【导学指导】一、知识回顾1、______和______统称整式。
(1)单项式:由与的乘积..式子称为单项式。
单独一个数或一个字母也是单项式,如a ,5。
单项式的系数:单式项里的叫做单项式的系数单项式的次数:单项式中叫做单项式的次数(2)多项式:几个的和叫做多项式。
其中,每个单项式叫做多项式的,不含字母的项叫做。
多项式的次数:多项式里的次数,叫做多项式的次数2、同类项:必须同时具备的两个条件(缺一不可):①所含的相同;②相同也相同合并同类项,就是把多项式中的同类项合并成一项。
方法:把各项的相加,而不变。
3、去括号法则法则1:法则2:去括号法则的依据实际是。
4、整式的加减整式的加减的运算法则:如遇到括号,则先 ,再 ;5、本章需要注意的几个问题①整式(既单项式和多项式)中,分母一律不能含有字母。
②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。
④去括号时,要特别注意括号前面的因数。
二、【课堂练习】1、在3222112,3,1,,,,4,,43xy x x y m n x ab x x --+---+,π2b 中,单项式有: 多项式有: ,整式有: .2、已知-7x 2y m是7次单项式则m=3、一种商品每件a 元,按成本增加20%定出的价格是 ;后来因库存积压,又以原价的八五折出售,则现价是 元;每件还能盈利 元。
4.单项式-652y x 的系数是 ,次数是 ; 5.已知-5x m y 3与4x 3y n 能合并,则m n = 。
6、7-2xy-3x 2y 3+5x 3y 2z-9x 4y 3z 2是 次 项式,其中最高次项是 ,最高次项的系数是 ,常数项是 ,是按字母 作 幂排列。
人教版数学七上第二章《整式的加减》复习学案

第二章整式的加减总复习【知识点归纳】一、单项式:对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.二、系数:单项式中的数字因数叫做这个单项式的系数.三、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.四、多项式:几个单项式的和叫做多项式.五、多项式的项:在多项式中,每个单项式叫做多项式的项.其中:-6是常数项.六、常数项:多项式中,不含字母的项叫做常数项.七、多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数.八、降幂排列:把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.升幂排列:把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.九、整式:单项式和多项式统称整式。
十、同类项:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.十一、 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 十二、 去括号法则:a) 括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;b) 括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d十三、 添括号法则a) 添括号后,括号前面是“+”号,括到括号里的各项都不变符号; b) 添括号后,括号前面是“-”号,括到括号里的各项都改变符号. 例:m+2x -y+z -5=m+(2x -y)-(-z+5)十四、 整式的加减:整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项.十五、 代数式的恒等变形:一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.第二章 整式的加减一、选择题(小题3分,共30分)1.下列各式中是多项式的是 ( ) A.21- B.y x + C.3ab D.22b a - 2.下列说法中正确的是( )A.x 的次数是0B.y1是单项式 C.21是单项式 D.a 5-的系数是5 3.如图1,为做一个试管架,在a cm 长的木条上钻了4个圆孔,每个孔直径2cm ,则x 等于 ( )A.58+a cmB.516-a cmC.54-a cmD.58-a cm 4.+-=-+-)()(c a d c b a ( )A. b d -B.d b --C.d b -D. d b +5.只含有z y x ,,的三次多项式中,不可能含有的项是 ( )A.32xB.xyz 5C.37y -D.yz x 241 6.化简 )]72(53[2b a a b a ----的结果是 ( )A.b a 107+-B.b a 45+C.b a 4--D.b a 109-7.一台电视机成本价为a 元,销售价比成本价增加了0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为 ( )A.a )701251(0000++元B.a )251(700000+元C.a )701251(0000-+元D.a )70251(0000++元8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面. ⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A .xy 7- B. xy 7+ C. xy - D .xy +9.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应( )A. -4(x -3)2+(x -3)B. 4(x -3)2-x (x -3)C. 4(x -3)2-(x -3) D . -4(x -3)2-(x -3) 图 1二、填空题(每小题3分,共30分)11.单项式853ab -的系数是 ,次数是 . 12.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.13.当2x =-时,代数式651x x +-的值是 ; 14.计算:22224(2)(2)a b ab a b ab --+= ;16.规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“>”、“=”或“>”).17.根据生活经验,对代数式a b +作出解释: ;18.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费 元.20.观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,……,按此规律写出第13个单项式是______。
第二章整式的加减复习学案2022-2023学年人教版七年级上册数学

第二章 整式的加减复习学案班级:_______________ 姓名:_________________(一)单项式:表示 或 的乘积..式子称为单项式。
单独一个数或一个字母也是单项式,如a ,5。
单项式的系数:单项式里的 叫做单项式的系数。
单项式的次数:单项式中 叫做单项式的次数。
考点1:单项式、系数、次数1.单项式853ab -的系数是 ,次数是 ;2.若单项式233x y 与y x m ||2-的次数相同,m 的值是3.若(a -1)x 2y b 是关于x ,y 的五次单项式,且系数为-2, 则a =______,b =______.(二)多项式:几个 ____ 的和叫做多项式。
其中,每个单项式叫做多项式的 ,不含字母的项叫做 。
多项式的次数:多项式里 的次数,叫做多项式的次数。
多项式的命名:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:3n 4-2n 2+1是一个四次三项式。
(三)整式。
___________和_____________统称整式。
考点2:多项式、次数、整式1、在32221123,3,1,,,,4,,,2,43xy x x y m n x ab x x x x --+----+π2b 中,单项式有__________________________多项式有: ______________ 。
整式-abπr2232ab --a+b2453-+y x a 3b 2-2a 2b 2+b 3-7ab+5系数 次数 项3.代数式7-2xy-3x 2y 3+5x 3y 2z-9x 4y 3z 2是 次 项式,其中最高次项是 ,最高次项的系数是 ,常数项是 。
4.关于x 的多项式(m -1)x 3-2x n +3x 的次数是2,那么m =______,n =_____5.多项式2237583xy y x y x -+-按x 的降幂排列是6.当k =______时,多项式x 2-(3k -4)xy -4y 2-8中只含有三个项.(四)同类项:所含_____________相同,并且相同字母的指数______________也相同的项叫做同类项。
初中数学七年级上学期第二章整式的加减全章复习导学案

要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念例1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1. 多项式:(1)、(4)、(7)、(8)、(9),其中: 3a -是一次二项式;2x y -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。
【总结升华】①分母中出现字母的式子不是整式,故2b a -不是整式;②π是常数而不是字母,故x π是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5m n +其实质为55m n +,1()2a b h +其实质为1122ah bh +. 【变式1】若单项式22a b x y+-与单项式253b y x -的和是单项式,那么3a b -=【答案】15 【变式2】若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =,________n =,这个二次三项式为 。
2019-2020学年七年级数学上册-第二章-整式的加减复习导学案(新版)新人教版

2019-2020学年七年级数学上册 第二章 整式的加减复习导学案(新版)新人教版一、 知识回顾知识点1:单项式、多项式、整式的概念及它们的联系和区别 单项式: 多项式: 整式: 它们的关系可以用图表示: 知识点2 :单项式的系数和次数单项式的系数: 单项式的次数;注意:知识点3 多项式的项、常数项、次数叫做多项式的项。
叫常数项.就是这个多项式的次数。
如多项式12324++-n n n ,它的项有 。
其中 是常数项,43n 这一项次数为4,这个多项式就是 次 项式。
注意:二、题型讲解例1指出下列各式哪些是单项式?哪些是多项式? y x 2,b a -21,522-+y x ,2x ,x2-,29-,1-xy ,m -。
例2指明下列各单项式的次数和系数。
53xyz -,2ab ,h 12.0,2abc -,xy π-。
例3指出下列多项式的项和次数(项用逗号隔开)(1)1522-+-ab b a a (2)124332+-y x xy例4(1)如果b axy -是关于x 、y 的单项式,且系数是2,次数是3,则a=______b=______。
(2)如果()x xy m y x m 3252---是四次三项式,则m=_________。
三、互助提高:1、多项式 13254242+-+-x y x y x n x x 53212-+ 几次几项式多项式的项最高次项一次项系数常数项2、 若02=+a a ,则2009222++a a 的值为__________。
3、 已知单项式y x n 3的次数为5,多项式322261216+--+m y x x y x 的次数为6,求()n m y x n m +单项式的系数和次数之和。
4、 多项式12423232+++-+x x x ax x a 是关于x 的二次多项式,求a a a ++221四、总结提升:1、本节课的收获2、注意的问题五、当堂作业:1 下列单项式中,书写规范的一个是( )A 1aB 2•xC 0.5xyD mn 2112 X 是最大的负整数,多项式x x n ++1(其中n 为自然数)的值为( )A -2B 2C 0D 不能确定3 单项式242ab 是( )次单项式。
人教版七年级数学上第二章2.2整式的加减复习学案

《整式的加减》综合复习学案【知识要点】1、 整式的分类:单项式 ,多项式2、 单项式的系数、次数单项式中的 ________________________ 叫做这个单项式的系数; 单项式中 ______________________________ 叫做这个单项式的次数。
注意:(1)单独一个数或字母也是单项式;(2)单项式的系数不能写成带分数,要写成假分数;(3) __ 是常数,不是字母。
3、 多项式的项数和次数:多项式里, ______________________________________________ 就是这个多项式的次数。
4、 同类项符合 __________________________________________ 这两个条件的项称为同类项。
5、 合并同类项的法则:把系数相加,字母和字母的指数不变。
6、 去括号法则:括号前面是“ + ”号,把括号和它前面的“ +”去掉,括号里各项都不变符号。
括号前面是“一”号,把括号和它前面的“一”去掉,括号里各项都改变符号。
7、 整式的加减步骤如果有括号,就先去括号; 如果有同类项,再合并同类项。
注意:用多项式进行列式时,要用括号把它括起来,作为一个整体来使用。
8、求代数式的值(1) 如果能化简,就先化简,再代入求值。
(2) 代入数字求值时,分数、负数的乘方要加括号。
【尝试训练】1、用代数式表示:比 a 的5%少5的数是 _______________ ;被b 除商为3且余数是12、代数式 -一b 的意义是 _______________________ ;( 1)(a b )22(2) a 2b 2 _____________________3、 单项式-竺)的系数是 ____________ ,次数是 _________ 。
34、 多项式a 3 -3a 2b -3a b 3 ■ b 2是 __________ 次 _____ 项式,按b 的降幕排列为 ______________________________ 。
人教版数学七年级上册第 二章 整式的加减复习教案

第二章 整式的加减(整理与复习)1. 理解单项式、多项式、整式及其相关概念(重点)。
2. 会判断同类项,能熟练运用合并同类项知识进行整式的加减计算和求值(重点)。
3. 在整式的加减运算中,去括号时,能熟练、准确地进行符号变化(难点)。
二、梳理知识方法(一)构建知识结构图⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧整式⎩⎪⎪⎨⎪⎪⎧用字母表示数单项式⎩⎪⎨⎪⎧定义:由数或字母的积组成的式子叫做单项式系数:单项式中的数字因数叫做单项式的系数次数:一个单项式中,所有字母的指数的和叫做单项式的次数多项式⎩⎪⎨⎪⎧定义:几个单项式的和叫做多项式项:组成多项式的每个单项式叫做这个多项式的项,有几项,就叫几项式次数:多项式里,次数最高项的次数叫做多项式的次数常数项:不含字母的项叫做常数项整式的加减⎩⎪⎨⎪⎧同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项合并同类项:把同类项的系数相加,所得的结果作为合并后的项的系数,字母部分不变去括号法则⎩⎪⎨⎪⎧如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项(二)整式1.单项式:如100t 、6a2、2.5x 、vt 、-n ,它们都是__数或字母__的积,像这样的式子叫做单项式,单独的__一个数__或__一个字母__也是单项式。
2.单项式的系数:单项式中的__数字因数__叫做这个单项式的系数。
3.单项式的次数:一个单项式中,所有字母的__指数的和__叫做这个单项式的次数。
注意:(1)当数字与字母相乘时,乘号通常省略不写或简写为“·”,并且数字在前,字母在后,若数字式带分数,要化为__假分数__。
(2)字母与字母相乘时,乘号通常省略不写或者写为“·” (3)除法写成分数的形式。
4.多项式:几个单项式的__和__叫做多项式。
人教版数学七年级上册第二章整式加减复习-教案设计

人教版数学七年级上册第二章整式加减复习-教案设计第二章整式的加减复习题教材分析教材分析(一)地位和作用:本节课是人教版七年级数学第二章的复习课。
本章的主要内容是:单项式、多项式、整式、同类项的概念;用字母列式表示数量关系,合并同类项法则,去括号法则以及整式的加减运算。
通过本节课的学习,熟练掌握整式的加减法运算,为后面学习整式的乘除法和因式分解奠定基础。
(二)教学目标分析知识技能:数学思考:进一步体会用字母表示数的意义,体会“数式通性”,体会蕴含在具体问题中的数学思想和规律.在教与学的过程中,引导学生有条理的思考,培养学生清楚表达思维过程的能力。
问题解决:在正确合并同类项、准确运用去括号时的符号变化规律的基础上,达到可以熟练地进行整式的加减运算.情感态度:让学生在轻松愉快的游戏中再次领悟整式的相关概念,激发学生学习数学兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣。
(三)教学重难点分析学情分析难点:学情分析教法分析本节课在学生已经学习完本章的全部知识后,进行专题复习提高。
七年级学生已经具备了初步分析问题和解决问题的能力;在新的课改理念的指导下如何调动学生的学习热情,让自主学习、合作探究成为课堂教学的主流,教师要鼓励他们大胆尝试,敢于发表自己的看法,从中获得成功的体验。
教法分析教学过程不只是知识的(传)授,(接)受过程,也不是机械的告诉与被告诉的过程,而是一个学习者主动学习的过程.因而,考虑到学生的认知水平,以及本节课要让学生再次领悟整式的相关概念;灵活应用所学知识解决问题;因此,我采用启发、引导、设疑等教学方法,让学生始终处于主动学习的状态,课堂上教师起主导作用,给学生有充分的思考机会,使课堂气氛活泼,有新鲜感。
学法指导学法指导教学过程教学过程游戏环节课前准备:教师提前准备32张卡片,分别写上单项式(15个,其中有三对同类项)、多项式、分式(尚未学习)师生活动:按照老师的指令正确找到自己的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教七年级数学上册第二章整式的加减复习学案第一篇:新人教七年级数学上册第二章整式的加减复习学案第二章整式的加减复习一.【知识回顾】1._________和__________统称整式.⑴单项式:由与的乘积式子称为单项式.单独一个数或一个字母也是单项式,如a,5.单项式的系数:单式项里的叫做单项式的系数单项式的次数:单项式中叫做单项式的次数⑵多项式:几个的和叫做多项式.其中,每个单项式叫做多项式的,不含字母的项叫做.多项式的次数:多项式里的次数,叫做多项式的次数.2.同类项:必须同时具备的两个条件(缺一不可):①所含的相同;②相同也相同;所有的常数项都是同类项.合并同类项,就是把多项式中的同类项合并成一项.方法:把各项的相加,而不变.3.去括号法则法则1: 法则2:去括号法则的依据实际是.4.整式的加减整式的加减的运算法则:如遇到括号,则先,再;5.本章需要注意的几个问题①整式(既单项式和多项式)中,分母一律不能含有字母.②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算.④去括号时,要特别注意括号前面的因数.⑤注意书写规范.如系数应写在字母前面、系数不能是带分数、式子中的“×”往往可省略、“÷”应写成分数线、1a应写成a、-1a应写成-a 等.二.【课堂练习】1.找出下列代数式中的单项式、多项式和整式.﹣3xy,2,2xmx5,7n, 0,x+2, 2(x﹣1),x+57单项式:多项式:整式: 22.单项式﹣x2y2的系数是,次数是.3.若单项式2xmy2的次数是5,则m=.4.指出多项式a3-a2b-ab2+b3-1是几次几项式,最高次项、常数项各是什么?5.如果单项式2xym与﹣3y3xn的和是单项式,则m=,n=6.化简,并将结果按x的降幂排列:⑴(2x4-5x2-4x+1)-(3x3-5x2-3x);⑵-[-(-x+1)]-(x-1);⑶-3(x2-2xy+y2)+(2x2-xy-2y2).7.化简.求值:⑴5ab-2[3ab-(4ab2+ ab)]-5ab2,其中a=1,b=﹣1.⑵5(3x2y-xy2)-(xy2-3x2y),其中x=32, y=3.8.一个多项式加上-2x3+4x2y+5y3后得x3-x2y+3y3,求这个多项式,并求当x=﹣2,y=1 时,这个多项式的值.9.已知A=x-x2+1,B=x2-1+3x,求A-2B的值.10.计算:x-2(1-2x+x2)+3(-2+3x-x2)11.已知ab=3,a+b=4,求3ab-[2a-(2ab-2b)+3]的值.12.已知:(x+2)2+|y+1|=0,求5xy2-2x2y-[3xy2-(4xy2-2x2y)]的值。
13.电影院第1排有a个座位,后面每排都比前一排多1个座位,第2排有多少个座位?第3排呢?用m表示第n排座位数,m是多少?当a=20,n=19时,计算m的值.14.某中学3名老师带18名学生,门票每张a元,有两种购买方式:第一种是老师每人a元,学生半价;第二种是不论老师学生一律七五折,请你帮他们算一下,按哪种方式购买门票比较省钱.【总结反思】第二篇:七年级数学上册《整式的加减》教案整式的加减教学过程:(一)代数式:1.本节重点共两部分,一是对给出的一个具体的代数式,能准确表达出它的数学意义,二是列代数式,即将基本数量关系的语言用代数式来表示。
本节是关于代数的初步知识,在复习中注意以下几点:(1)代数式是什么,并注意和公式、等式区别开来。
(2)一个具体的代数式,能准确用语言表达其意义,并能把简单的与数量有关的词语化为代数式的形式。
(3)会用具体数值代替代数式中的字母,按其代数式指明的运算顺序进行计算。
(4)公式都是由代数式组成的。
2.例题分析:例1.说出下列各组代数式的意义有什么不同:(1)2(a+b),2a+b,a+2b 2a-b2b1222(2)a-,(a-b),()222 解:(1)2(a+b)是a与b的和的2倍。
2a+b是a的2倍与b 的和。
a+2b是a与b的2倍的和。
22b22(2)a-是a与b的一半的差。
212(a-b2)是a与b两数平方差的一半。
2a-b2()是a与b的差的一半的平方。
注意:用语言表达一个代数式的意义,具体说法上没有统一的规定,只要能正确表达即可。
比如2a+b,可以说是a的2倍与b的和,也可以说是2a与b的和。
例2.用代数式表示:(1)甲数与乙数平方的和;(2)甲、乙两数的平方差;(3)甲数与乙数的差的平方。
解:设甲数为x,乙数为y(1)x+y2(2)x2-y2(3)(x-y)2例3.某校大礼堂第一排有座位x个,后面每排比前一排多2个座位,求第n排的座位数。
若该礼堂一共有20排座位,且第一排的座位数也是20个,请您计算该礼堂共有多少座位?分析:找到座位的规律:第一排:x个第二排:x+2个第三排:x+4个第四排:x+6个第五排:x+8个MM第n排:x+(n-1)⨯2个解:由分析可得第n排的座位数:x+2(n-1)第一排有20个座位,共有20排,即a=20,n=20 所以,最后一排座位数:20+2⨯(20-1)=58(个)求整个礼堂中的座位数即做加法: 20+22+24+……+56+58=(20+58)+(22+56)+……+(38+40)=78⨯10=780例4.某地出租汽车收费标准:起步价10元,可乘3千米,3千米到5千米,每千米1.8元,5千米以后,每千米是2.7元。
若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用。
若他支付的费用是19元,请你算出他乘坐的路程。
解:题目中给出他乘坐的路程是超过5千米的,因而前面5千米的费用是固定的,只要能算出后面的费用即可。
前面5km又分成两部分:3千米和2千米前面3千米的费用是10元,紧接着的2千米是3.6元所以前面5千米共花13.6元5千米以后则就是每千米花2.7元,而后面的距离是(x-5)千米因而总费用=13.6+(x-5)×2.7 已知支付的费用是19元,则9=13.6+-⨯(x5)2.71x=7千米注意:列代数式的关键是:一是抓住关键性的词语,如“增加”、“减少”等,或者是2 规律性的内容,如“后面一排都比前面一排多2个座位”,二是要理清运算顺序,如“和的222积”与“积的和”运算顺序是不同的。
如a+b与(a+b),前者是平方和,后者是和的平方。
11x+xy+y2 例5.若x=,y=,求的值。
23x-xy+y211,y=代入代数式中 231111211+++⨯+()262233=得:1111211-⨯+()-+223326 解:将x=19+3+279=18=19-3+24918 注意:在求值过程中,代数式中的运算符号和顺序不能改变,在求值过程中,代数式中字母所代的值应是使代数式有意义的值,如速度、时间、体积、面积均为正值,而在形aa如的式子中,b≠0,才能使有实际意义。
bb(二)整式的加减: 1.知识点简要回顾(1)单项式指的是数与字母积的形式的代数式,即对字母来说只含有乘法运算,因aa1此的形式就不是单项式,但这种就是单项式,因为它的分母中不含有字母,只是b22它的系数。
注意:单独的一个数或单独的一个字母也叫单项式。
单项式中的数字因为叫做单项式的系数,而单项式中的所有字母的指数之和则称之为32单项式的次数。
如-3xy中,-3是系数,其次数是5。
(2)多项式指的是几个单项式的和,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,一个多项式含有几项,就叫几项式。
多项式里,次数最高1232项的次数,就是这个多项式的次数。
如2x+3x-1是二次三项式,-x-3x-2x+32是三次四项式。
(3)单项式、多项式、整式、代数式之间的联系和区别:几个单项式的和组成多项式,单项式和多项式统称为整式。
整式是代数式,但代数式不一定是整式,判断一个代数式是否是整式,就主要看代数式的分母中是否有字母。
(4)多项式的排列方式:降幂排列:一个多项式中,按照一个字母的指数从大到小的顺序排列,叫做按照这个字母的降幂排列。
升幂排列:一个多项式中,按照一个字母的指数从小到大的顺序排列,叫做按照这个字母的升幂排列。
例1.指出下列多项式的次数与项数:2xy-1(1)3(2)a2+2a2b+ab2-b2 解:(1)是二次二项式。
(2)是三次四项式。
例2.将3x3y-y2+5x2+4xy3重新排列。
(1)按x降幂排列。
(2)按y升幂排列。
3232 解:(1)按x降幂排列:3xyx++54xyy-(2)按y升幂排列:5x2+3x3y-y2+4xy3(5)同类项与合并同类项:同类项与合并同类项是整式中非常重要的两个概念。
同类项是指字母相同,并且相同字母的指数也分别相同的项叫同类项。
同类项的定义规定判断同类项的两条标准:一是字母相同,二是相同字母的指数也分别相同,二者缺一不可。
合并同类项是指把同类项合并成一项,合并同类项的方法是把同类项的系数相加,而字母和相同字母的指数都不变。
23.合并同类项:11x-5+9x+1-3x-3x 例解:11x-5+9x+1-3x2-3x=-3x2+17x-4在多项式中只有同类项可合并,不是同类项不可合并。
有人对合并的结果不是一个单项225式感到不习惯,如犯的错误有:2a+3b=5ab,5ab-3ab=2,2x+3x=5x等,产生错误的根源就是没有掌握合并同类项的要点:“系数相加”、“字母和字母的指数不变”。
例4.将a、b看成常数,x、y看成字母,合并同类项:(1)2ax+3by-4ax+3by-2ax(2)3ax2-by2-2ax2+3by2解:这里将a、b看成常数,因而可合并如下:(1)2ax+3by-4ax+3by-2ax=(2a-4a-2a)x+(3b+3b)y=-4ax+6by(2)3ax2-by2-2ax2+3by2=(3a-2a)x2+(-b+3b)y2=ax2+2by2nn+1n+2n+2nn+1 例5.合并同类项:x-2x+x-2x-3x+x解:这里的指数全都是含有字母,但观察同类项只要指数相同即可,不论是数字还是字母都可以。
xn-2xn+1+xn+2-2xn+2-3xn+xn+1=(1-3)xn+(-2+1)xn+1+(1-2)xn+2=-2xn+(-1)xn+1-xn+2(6)整式的加减:整式的加减实际上是对整式实施两个重要的恒等变形:一是合并同类项;另一个是添括号和去括号,整式的恒等变形是整个教学中恒等变形的基础。
整式的加减应该注意以下几个问题:一是观察,就是把同类项看清楚,当项数较多时,可作上记号;二是运用交换律时把项的符号“带走”;三是运用分配律时,符号要分配到每一项,不能漏项,同时要注意项的系数的符号;四是对运算结果要作处理,应该以某一字母作降幂或升幂排列。