地铁车站工程监测方案
武汉地铁车站基坑监测方案

武汉市轨道交通 2 号线18 标洪山广场站基坑工程施工监测方案(版本号V2.0 送审用)上海辉固岩土工程技术有限公司2009年5 月1 工程概况1.1 工程位置武汉市轨道交通2 号线洪山广场站位于洪山广场西侧广场下,洪山广场周围为广场环路。
根据招标设计说明,工程共分为两个标段:18A及18B。
其中,18A标基坑工程为洪山广场站北侧部分,18B标基坑工程为洪山广场站南侧部分。
施工前洪山广场鸟瞰图见图1 。
1.2 工程简况洪山广场站是轨道交通2 号线与规划中的轨道交通4号线的换乘车站,且同期建设,一次建成。
洪山广场站沿2号线方向车站长度约169m沿4号线方向车站长度约155m车站整体呈楔形。
见图2。
车站为地下三层岛式车站。
站台层西侧为2号线轨道线,东侧为4号线轨道线。
2号线与4号线的站台通过换乘通道相连通。
车站共设置1 1个地面出入口、1 8个地面风亭。
18A标基坑大致呈四边形形状,东、西两边长度分别为约90m及80m南、北两边长度分别为约100m及150m 18B标基坑大致亦呈四边形形状,东、西两边长度分别为约74m及81m 南、北两边长度分别为约55m及100m洪山广场站用“盖挖逆作法”设计和施工,施工顺序分为三个阶段。
第一阶段是在现状地面上进行车站主体的围护桩和支承桩的施工。
基坑围护结构由© 1200@1400mm 钻孔灌注桩+©850mn旋喷桩止水帷幕构成。
第二阶段是制作整个车站结构的顶板,为此要将顶板以上的复土剥离。
按设计底板的深度为3〜5米不等,剥离这部分土层的工作从技术、安全方面考虑相当于一个浅型的基坑,所以第二阶段称为“浅基坑(阶段)” 它的围护采用“靠近中南路下穿隧道一侧采用SMW T法桩围护,其余三侧采用放坡围护”的设计。
第三阶段为车站主体施工。
车站顶板埋深: 3.00〜5.09米;车站底板埋深:25.01〜26.20米。
车站主体主要采用盖挖逆作法施工,以钻孔灌注桩为支护结构,另在车站内有多排基础桩与中间钢管混凝土柱复合体作为开挖过程中车站结构体的主要承力体和车站永久结构的一部分。
地铁监测方案

地铁监测方案地铁交通系统的建设和运行对于现代城市来说具有重要的意义。
为了确保地铁运营的安全和有效性,地铁监测方案是必不可少的工具。
本文将介绍一个全面的地铁监测方案,以确保地铁系统的正常运行和乘客的安全。
一、方案背景地铁系统是城市交通的重要组成部分,为了保证乘客的出行安全和提高运行的可靠性,地铁监测方案是必要的。
通过监测地铁系统的各个方面,可以及时发现潜在的故障和问题,并及时采取措施修复。
二、监测设备1. 传感器地铁监测方案中的核心设备是传感器。
传感器可以安装在地铁线路、车辆和车站等位置来监测各个环节的运行情况。
传感器可以收集并传输各种数据,如振动、温度、湿度等,从而提供全面的监测信息。
2. 数据采集系统为了有效地收集和处理传感器传输的数据,需要建立一个数据采集系统。
数据采集系统负责接收传感器的数据,并将其存储和处理。
通过数据采集系统,监测人员可以实时监测地铁系统的状态,并及时作出应对。
三、监测内容1. 线路监测地铁线路作为地铁系统的基础设施,需要进行全面的监测。
通过安装传感器在线路上,可以实时监测线路的运行情况,如振动、温度变化等。
这些数据可以帮助监测人员及时发现线路的异常情况,如裂缝、变形等,并采取相应的维修措施。
2. 车辆监测地铁车辆是运营中最为关键的环节之一,其安全和正常运行至关重要。
通过在车辆上安装传感器,可以监测车辆的运行状态和性能。
例如,传感器可以监测车辆的振动和噪音水平,以及车辆的温度和湿度情况。
这些数据可以帮助监测人员判断车辆的健康状况,并提前预防潜在故障的发生。
3. 车站监测地铁车站是乘客出行的重要场所,因此需要进行全面的监测。
通过在车站安装传感器,可以监测人流量、空气质量、温度等参数。
这些数据可以帮助监测人员及时调整运营策略,确保乘客的安全和舒适。
四、数据分析与应用通过对传感器采集的数据进行分析,可以获取地铁系统的运行状态和趋势,并及时采取相应措施。
监测人员可以借助数据分析工具,对数据进行处理和分析,并生成相关的报告和预警信息。
地铁工程施工监测方案

地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。
1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。
同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。
2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。
将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。
将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。
测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。
3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。
监测方法是在地表埋设测点,用水准仪进行下沉的量测。
根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。
(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。
(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策: 当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。
地铁监测实施方案

地铁监测实施方案一、背景介绍。
地铁作为城市交通系统的重要组成部分,承载着大量的乘客出行需求。
为了确保地铁运营的安全和顺畅,需要对地铁线路、车辆等进行定期监测和检测。
地铁监测实施方案的制定和执行,对于保障地铁运营安全和提高运营效率具有重要意义。
二、监测目标。
1.地铁线路状态监测,对地铁线路进行动态监测,包括轨道变形、轨道几何、轨道表面状态等,以确保线路的安全性和平稳性。
2.车辆状态监测,对地铁列车进行运行状态监测,包括车体振动、轮轨接触状态、车辆牵引系统状态等,以确保车辆的安全运行。
3.设备状态监测,对地铁运营设备进行状态监测,包括信号系统、通信系统、供电系统等,以确保设备的正常运行和故障预警。
三、监测方法。
1.地铁线路状态监测,采用激光测距仪、高精度测量仪等设备,对地铁线路进行定期测量和检测,获取线路的几何参数和表面状态数据。
2.车辆状态监测,采用加速度传感器、应变传感器等设备,对地铁列车进行振动监测和轮轨接触状态检测,获取车辆运行状态数据。
3.设备状态监测,采用远程监测系统、故障预警系统等设备,对地铁运营设备进行状态监测和故障预警,及时发现并处理设备异常情况。
四、监测周期。
1.地铁线路状态监测,对地铁线路进行定期监测,一般每季度进行一次全面检测,每月进行一次简要检测。
2.车辆状态监测,对地铁列车进行定期监测,一般每月进行一次全面检测,每周进行一次简要检测。
3.设备状态监测,对地铁运营设备进行定期监测,一般每周进行一次全面检测,每日进行一次简要检测。
五、监测结果处理。
1.地铁线路状态监测结果,根据监测数据,进行线路状态评估,及时发现并处理线路异常情况,确保线路的安全和平稳运行。
2.车辆状态监测结果,根据监测数据,进行车辆状态评估,及时发现并处理车辆异常情况,确保车辆的安全运行。
3.设备状态监测结果,根据监测数据,进行设备状态评估,及时发现并处理设备异常情况,确保设备的正常运行和故障预警。
六、监测实施方案的意义。
地铁监测实施方案模板

地铁监测实施方案模板一、背景介绍。
地铁作为城市交通的重要组成部分,其安全运行对城市的发展至关重要。
为了保障地铁线路的安全运行,需要对地铁进行定期监测和检测,及时发现和解决潜在问题。
因此,制定地铁监测实施方案至关重要。
二、监测目的。
1. 确保地铁线路的安全运行;2. 及时发现和解决地铁线路存在的问题;3. 为地铁线路的维护和保养提供数据支持。
三、监测内容。
1. 轨道及道岔的检测,包括轨道的平整度、轨道的几何参数、道岔的运行情况等;2. 车辆设备的检测,包括列车的车体、车轮、车门等设备的运行情况;3. 信号系统的检测,包括信号设备的运行情况、信号系统的联锁检测等;4. 供电系统的检测,包括牵引供电系统、辅助供电系统的运行情况;5. 站场设施的检测,包括站台、站房、站台屏蔽门等设施的运行情况。
四、监测方法。
1. 采用现场检测和在线监测相结合的方式,对地铁线路进行全面监测;2. 利用先进的监测设备,对地铁线路进行高精度、高效率的监测;3. 结合数据分析和专业评估,对监测数据进行综合分析和评估。
五、监测周期。
1. 对于地铁新建线路,需在开通前进行全面监测;2. 对于已运营的地铁线路,需按照规定周期进行定期监测;3. 对于地铁线路出现异常情况时,需进行临时监测。
六、监测报告。
1. 对监测数据进行分析和评估,形成监测报告;2. 监测报告应包括监测数据、问题分析、解决方案等内容;3. 监测报告需及时提交相关部门,以供决策参考。
七、监测责任。
1. 地铁运营单位需建立健全监测责任制度,明确监测工作的责任人;2. 监测人员需具备专业的监测技术和丰富的实践经验;3. 监测单位需定期对监测人员进行培训和考核,确保监测工作的质量和效果。
八、监测保障。
1. 地铁监测工作需充分利用先进的监测设备和技术;2. 监测单位需建立健全的监测管理体系,确保监测工作的顺利进行;3. 监测单位需配备专业的监测人员和技术支持,确保监测工作的准确性和及时性。
地铁工程变形监测方案

地铁工程变形监测方案一、项目概述地铁工程建设是城市交通发展的重要组成部分,也是大型公共基础设施建设的关键项目。
在地铁建设和运营过程中,地铁隧道、车站和地下结构的变形监测是一项十分重要的工作。
通过对地铁工程的变形进行定期监测和分析,可以及时发现和处理潜在的安全隐患,保障地铁工程运营的安全和稳定。
本文将就地铁工程变形监测的方案进行详细介绍,包括监测的对象、监测的内容、监测的方法和技术手段等方面,旨在为地铁工程建设和运营提供科学、可靠的变形监测方案。
二、监测对象地铁工程的变形监测对象主要包括地铁隧道、车站和地下结构。
地铁隧道是地铁线路的主要组成部分,其稳定性直接关系到地铁运行的安全和顺畅。
地铁车站是地铁线路的重要节点,其安全稳定性对地铁的客流量和运营效率有着重要的影响。
地下结构主要包括隧道周边的地基土体和基础设施,其变形状态直接关系到地铁工程的整体安全。
三、监测内容地铁工程的变形监测内容主要包括地表沉降、隧道变形、地下水位变化、地铁结构振动等多个方面。
其中,地表沉降是地铁工程建设过程中常见的问题,其变形监测能够及时发现并处理地表沉降造成的安全隐患。
隧道变形是地铁工程变形监测的重点内容,主要包括隧道的收敛变形、开挖变形、压裂变形等多种形式。
地下水位变化是地铁工程变形监测的重要内容之一,其变形监测能够及时发现并处理地下水位引发的地铁工程漏水等安全隐患。
地铁结构振动是地铁运营期间的变形监测内容,主要包括地铁列车行驶和乘客运营等因素引发的地铁结构振动。
四、监测方法地铁工程变形监测的方法主要包括传统监测方法和新兴监测技术两种。
传统监测方法主要包括地表测点监测、隧道地表沉降观测、地下水位监测等。
新兴监测技术主要包括遥感监测、激光测量、地面雷达等技术手段,这些技术手段能够较好地实现地铁工程变形的实时监测和分析。
五、监测技术手段地铁工程变形监测的技术手段主要包括监测系统、传感器设备、数据处理软件等多个方面。
监测系统是地铁工程变形监测的基础设施,其能够通过监测点布设和数据采集实现对不同变形内容的监测。
哈尔滨地铁2号线哈北站监测方案终

哈尔滨地铁2号线哈北站、松北站及松~哈、哈~大、哈~北出入线施工监测项目哈尔滨北站站监测方案中船勘察设计研究院有限公司2016年月日哈尔滨地铁2号线哈北站、松北站及松~哈、哈~大、哈~北出入线监测项目哈尔滨北站站监测方案编制:审核:审定:中船勘察设计研究院有限公司2016年月日目录1工程概况 (3)2监测工作依据与规范 (3)3监测目的及监测内容 (5)3.1监测目的 (5)3.2监测内容 (5)4工程风险分析及监测等级 (6)4.1工程风险分析 (6)4.2应对措施 (7)5监测实施方案 (10)5.1监测点布置与埋设 (10)5.1.1监测点布设原则 (10)5.1.2车站监测点的埋设 (10)5.1.3监测点数量的统计表 (17)5.2基准网的建立 (17)5.2.1 水平位移监测基准网 (18)5.2.2 垂直位移监测基准网 (18)5.2.3 监测基准网复测 (19)5.3监测方法 (19)5.3.1垂直位移监测 (20)5.3.2水平位移监测 (20)5.3.3墙体水平位移(测斜) (21)5.3.4支撑内力监测 (24)5.3.5坑外水位监测 (25)5.3.6建筑物、格构柱倾斜 (26)5.3.7现场巡视 (26)5.4监测频率 (28)5.5监测报警 (29)5.6监测过程预警控制管理 (29)5.6.1预警等级 (30)5.6.2巡视综合预警 (30)5.6.3预警的确定 (30)5.6.4预警的处理 (31)5.7监测消警 (31)6监测信息反馈及资料提交 (31)6.1监测信息反馈 (31)6.2监测资料提交 (32)6.2.1监测信息的报送 (32)6.2.2监测报表的形式和内容 (33)6.3.3成果的报送 (33)6.4.4报送份数 (33)7监测人员及仪器配备 (34)7.1监测人员配备 (34)7.2监测仪器配备 (34)8质量进度保证措施 (35)8.1质量管理目标 (35)8.2实施项目质量管理责任制 (35)8.2.1实行分级管理分级负责制 (35)8.2.2公司项目质量管理职责 (35)8.2.3专业生产部门项目质量管理职责 (35)8.2.4项目经理部质量管理职责 (36)8.3监测成果质量管理 (36)8.4监测成果预警及时性及正确性 (37)8.5进度保证措施 (37)9安全、文明施工措施 (38)9.1安全管理目标 (38)9.2安全施工管理措施 (38)9.3监测应急措施 (39)9.4安全文明管理 (39)9.5劳动保护 (40)10 附件 (41)10.1监测点示意图(附图) (41)哈尔滨地铁2号线哈北站站监测方案1工程概况哈尔滨北站站位于在建哈尔滨北站西南方向,车站沿哈尔滨北站西侧规划路设置,道路规划红线宽60m,周边主要为西侧的规划客运交通枢纽,现状为农田;东北侧为在建哈尔滨北站以及利民大道;南侧现状为农田,规划为商业。
地铁车站工程监测方案

地铁车站工程监测方案背景为了确保地铁车站工程施工安全、顺利并符合要求,建筑工程监测方案必不可少。
在地铁车站工程中,监测方案的作用更加重要,因为这里需要考虑地下、垂直等多个方向的施工及安全问题。
目的地铁车站工程监测方案的主要目的是为了监控地铁车站工程施工中结构变形及地基沉降等情况,预测并避免潜在风险,确保施工安全、顺利及符合要求。
监测方法地铁车站构造监测地铁车站的构造监测一般包括: - 钢结构监测:对于地铁车站的钢结构,需要进行轴力、弯矩、剪力等监测。
- 混凝土结构监测:需要通过测量深度、弯矩、开口等指标来监测混凝土结构的变化情况。
- 土建结构监测:对于地铁车站的基础等土建结构,需要测量应力、沉降、变形等指标来监测。
地铁车站建筑物监测地铁车站建筑物监测一般包括: - 建筑物倾斜监测:对于地铁车站的建筑物,需要进行倾斜监测,以保证建筑物的稳定性。
- 建筑物结构监测:需要测量建筑物的振动等指标,以监测结构的变化情况。
- 消防设备监测:对于地铁车站的消防设备,需要进行监测,以保证其正常运行。
地铁车站环境监测地铁车站环境监测一般包括: - 声波监测:地铁车站环境中噪声指标需要进行监测,以判断是否超过规定标准。
- 空气质量监测:对于地铁车站的空气质量,需要进行监测,以保证车站内部环境的安全性。
- 其他环境参数监测:如光照、湿度等指标需要进行监测,以保证车站内部环境的适宜性。
监测仪器地铁车站工程监测需要使用一些专用的监测仪器,这些仪器需要满足精确、灵敏、实时等要求,一般包括: - 自动化地下水位计 - 摩擦式电缆计 - 倾斜度计 - 水准仪 - 电测支撑器监测频次地铁车站工程监测要求监测频次高,以及时预测并纠正潜在风险。
车站建设中需要进行常规监测,如日、周、月、季度等周期监测,同时还需要建立相应的应急预案,以应对可能出现的问题。
结论地铁车站工程监测方案应该在施工前编制,并根据施工进展情况进行调整与完善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁车站工程监测方案
一、前言
地铁是城市交通系统的重要组成部分,可以有效缓解城市交通拥堵问题,提高城市通行效率。
地铁车站工程作为地铁建设的重要环节,其质量和安全问题直接关系到乘客的出行安
全和乘坐体验。
因此,对地铁车站工程进行有效的监测工作,是保障工程建设质量和安全
的重要手段。
二、监测目标
地铁车站工程监测的主要目标是监测工程施工过程中可能出现的变形、沉降、裂缝等问题,确保建筑结构的稳定性和安全性。
具体监测目标包括但不限于:
1. 地铁车站地下结构的变形监测;
2. 地下水位对工程稳定性的影响监测;
3. 地铁车站建筑结构的沉降监测;
4. 地铁车站周边地面建筑物的裂缝变化监测;
5. 地铁车站施工噪音、振动的监测。
三、监测方法
地铁车站工程监测方法多样,分别针对不同的监测目标制定不同的监测方案。
具体监测方
法包括但不限于:
1. 地下结构的变形监测:使用测斜仪、地下水位仪等设备,对地下结构的变形进行实时监测,并通过数字化技术进行数据处理和分析;
2. 地下水位对工程稳定性的影响监测:使用水位计、渗流计等设备,对地下水位进行实时监测,并结合地下结构变形监测数据进行分析;
3. 地铁车站建筑结构的沉降监测:使用卫星定位系统、测量仪器等设备,对工程建筑结构的沉降进行实时监测,并及时发现异常情况并处理;
4. 地铁车站周边地面建筑物的裂缝变化监测:使用裂缝计、地质雷达等设备,对周边地面建筑物的裂缝进行实时监测,并分析其变化趋势;
5. 地铁车站施工噪音、振动的监测:使用噪音计、振动传感器等设备,对施工现场的噪音和振动进行实时监测,并对限定范围内的噪音和振动进行控制。
四、监测方案
1. 监测设备的选择
针对地铁车站工程的监测目标,选择适合的监测设备和仪器,包括但不限于测斜仪、水位计、卫星定位系统、测量仪器、裂缝计、地质雷达、噪音计、振动传感器等设备;
2. 监测点的设置
根据工程设计要求和实际情况,确定监测点的设置位置,保证监测数据的准确性和全面性;
3. 监测频次和报警值设定
确定监测数据的采集频次和监测数据的处理方式,同时设置报警值,确保异常情况能够及
时发现和处理;
4. 监测数据的处理和分析
对监测数据进行及时归档和分析,发现异常情况立即进行处理,并持续监测,直到工程完工;
5. 监测报告的编制
定期编制监测报告,详细记录监测数据和分析结果,向相关部门和单位汇报监测工作的情况。
五、监测保障措施
1. 监测设备的维护保养
定期对监测设备进行维护保养,确保设备的正常运转和准确性;
2. 监测数据的安全保密
对监测数据进行严格保密,防止数据泄漏和被篡改;
3. 紧急情况的处理
制定紧急情况的处理预案,确保能够及时应对各种紧急情况,并降低可能发生的风险。
六、总结
地铁车站工程监测方案是保障地铁工程建设质量和安全性的重要手段,通过科学合理的监
测方法和方案,可以及时发现和处理地铁车站工程可能出现的问题,保障工程的顺利进行
和最终的质量和安全。
因此,在地铁车站工程建设中,要高度重视监测工作,科学制定监
测方案,保障地铁工程的质量和安全。