基本不等式变形
应用基本不等式的八种变形技巧

因为 a>0,b>0,a+b=2,所以 2≥2 ab,所以 ab≤1,所以
1 1 1 +11+ ≥4(当且仅当 a=b=1 时取等号),所 ≥ 1 . 所以 b ab a 1 1 以a+1b+1的最小值是
4.
变形后使用基本不等式 设 a>1,b>1,且 ab-(a+b)=1,那么( A.a+b 有最小值 2( 2+1) B.a+b 有最大值( 2+1)2 C.ab 有最大值 2+1 D.ab 有最小值 2( 2+1) )
应用基本不等式的八种变形技巧
基本不等式的一个主要功能就是求两个正变量和与积的 最值,即所谓“和定积最大,积定和最小”.但有的题目需 要利用基本不等式的变形式求最值,有的需要对待求式作适 当变形后才可求最值.常见的变形技巧有以下几种:
加上一个数或减去一个数使和或积为定值 4 函数 f(x)= +x(x<3)的最大值是( x-3 A.-4 C.5 B.1 D.-1 )
1 2 y 法二:因为 + =1,所以 x= . x y y- 2 因为 x>0,y>0,所以 y-2>0. y2-y (y-2)2+3(y-2)+2 y 所以 x+y= + y= = = y- 2 y- 2 y- 2
2 2 y-2+ +3≥3+2 2当y-2=y-2,即y=2+ 2 y- 2
已知 a>0,b>0 且
[点拨]
1 1 a+b=2,求a+1b+1的最小值.
由于待求式是一个积的形式,因此需将多项式展开
后将积的最小值转化为和的最小值.
【解】 3 ab+1,
1 1 1 1 1 1 a+b 由题得 a+1 b+1 =ab+a+b+1=ab+ ab +1=
基本不等式完整版

基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。
2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。
3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。
2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4.求最值的条件:“一正,二定,三相等”。
5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。
2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。
3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。
4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。
5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。
基本不等式的变形及应用

基本不等式a 2 b 2 2ab 的变式及应用不等式a 2 b 2 2ab 是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种 常见的变式及应用1十种变式2、应用由于三个不等式中的等号不能同时成立,故■ a 1 .b 1 . c 1 4a 2b 2评论:本解法应用“ ab”观察其左右两端可以发现,对于某一字母左边是2一次式,而右边是二次式,显然,这个变式具有升幕与降幕功能,本解法应用的是升幕功①aba 2b 2 _ a b 2 ② ab ();2a b 、2 2a b 2③( );2 2⑤若b 0,2则a2a b ;b1⑦若a,b R ,(1)24a bab上述不等式中 等号成立的允要条件均为⑥a,bR ,则 1 14a b ab⑧若ab0 ,则 1 2 a 1 b 2a bb 2(a b)(当且仅当an m n⑩(a b c)23(a 2 b 2 c 2(当且仅当a b c 时等号成立)例 1、若 a,b,c R c 2,求证:.a 1. b 1 c 1 4证法一:由变式①得即..a 1HI 二理同b- 2VC- 2 a- 24C- 2b- 2 2④ a b . 2(a 2 b 2)a 2⑨若 m, n R ,a,b R ,则bm 时等号成立)1匕止 因证法二:由变式④得a 1 b 1 2(a 1 b 1)同理:..c 1 1 . 2(c_1一1).a 1 .b 1 、c 1 1 2(a b 2) . 2(c 2) .. 2(a b c 4) .12 5 故结论成立评论:本解法应用“ a b J2(a2b2) ”这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。
证法三:由变式⑩得( a 1 . b 1 、c 1)23(a 1 b 1 c 1) 15故.a 1 .. b 1 ... c 1 4 即得结论评论:由基本不等式a b 2ab易产生2a 2b 2c 2ab 2bc 2ca,两边同时加上a2 b2 c2即得3(a2 b2 c2) (a b c)2,于是便有了变式⑩,本变式的功能可以将平方进行“分拆”与“合并”。
不等式:基本不等式、对勾函数、判别式解法

不等式不等式是高考必考的热点内容,考查的广度和深度是其他章节无法比拟的,任何一份高考试卷中,涉及到不等式内容的考点所占比例超过70%。
一方面,考查不等式的性质、解法、证明以及实际应用;另一方面,与高中阶段的数学各个部分都存在着密切的联系。
因此,对于不等式的学习,应达到多层面,多角度熟练掌握的程度。
第一节 基本不等式1.若a,b ∈R,则a 2+b 2≥2ab ,等号成立的条件:a =b ;证明:当a,b ∈R 时,(a −b)2≥0,展开后即可得到所求不等式及等号成立的条件。
2.基本不等式的变形(包括2个方面)①若a,b ≥0的实数,则a +b ≥2√ab , 等号成立的条件:a =b ; 若a,b ∈R,ab >0则ba +ab ≥2, 等号成立的条件:a =b ;若x ∈R,x >0则x +1x ≥2, 等号成立的条件:x =1;(上述3个不等式,考虑如何证明?)注:上述的a,b 不能仅仅理解为两个参数,它可以是表达式或函数的解析式。
②若a,b ∈R,则a 2+b 2≥(a+b)22≥2ab;等号成立的条件:a =b (注意:不等式的右边是(a +b)2)例题1.已知x,y ∈(0,+∞),且4x +3y =1,求x +y 的最小值及xy 的最小值。
解:x +y =(x +y )(4x +3y )=7+(4yx +3xy)≥7+2√4y x ×3x y=7+4√3,∴x +y 的最小值为:7+4√3;求(xy)min 有两种方法,其一是配式,1xy=112×4x ×3y ≤112(4x +3y2)2=148,∴(xy)max =48;另一种方法是,由4x +3y =1→xy =4y +3x ≥2√3x ×4y =4√3√xy ,∵x,y ∈(0,+∞)→√xy ≥4√3,∴(xy)min =48。
例题2. 已知a√1−b 2+b√1−a 2=1,求证:a 2+b 2=1。
不等式与绝对值不等式的变形

不等式与绝对值不等式的变形不等式在数学中起到了重要的作用,它是比较大小关系的一种数学表示形式。
在解决实际问题中,我们经常会遇到需要将不等式进行变形的情况,以便更好地进行分析和求解。
而绝对值不等式是一类特殊的不等式,其中包含绝对值运算,对于这类不等式的变形也需要一定的技巧和方法。
本文将对不等式与绝对值不等式的变形进行详细介绍。
一、不等式的基本变形方法不等式的基本变形方法包括合并同类项、移项与交换,以下将对其进行详细介绍。
1. 合并同类项在解决不等式问题时,常常需要将具有相同变量的项进行合并以简化计算过程。
例如,对于不等式2x + 3 > 5x - 2,我们可以将2x和5x合并为7x,于是不等式可以变形为7x + 3 > -2。
2. 移项在不等式中,我们可以将含有变量的项从一侧移动到另一侧,从而改变不等式的形式。
例如,对于不等式2x + 3 > 5,我们可以将3移到不等号的另一侧,于是不等式变为2x > 5 - 3,即2x > 2。
3. 交换在不等式问题中,我们可以通过交换不等式两侧的表达式来改变不等式的形式。
例如,对于不等式3x < 7,我们可以将式子两侧的3x和7交换位置,得到7 > 3x。
以上是不等式的基本变形方法,在解决问题时可以根据实际情况选择合适的变形方法进行变形。
下面将介绍绝对值不等式的变形方法。
二、绝对值不等式的变形方法绝对值不等式是含有绝对值运算的不等式,为了求解这类不等式,我们需要将绝对值不等式进行适当的变形。
下面将分别介绍绝对值不等式的两种基本变形方法。
1. 分类讨论法对于含有绝对值的不等式,我们可以根据绝对值内部的表达式的符号进行分类讨论。
例如,对于不等式|3x - 7| < 5,我们可以将3x - 7分别大于0和小于0的情况进行讨论。
当3x - 7 > 0时,不等式可以变形为3x - 7 < 5,解得x < 4。
不等式的简单变形

不等式的简单变形一般是指通过对不等式进行移项、通分、去分母等操作,将不等式转化为更简单的形式,以便于进一步求解或证明不等式的性质。
以下是一些常见的不等式变形方法:
- 移项:将不等式中的某一项从一边移到另一边,需要改变该项的符号。
- 通分:将不等式中的分母化为相同的分母,以便于进行加减运算。
- 去分母:将不等式中的分母去掉,需要将不等式两边同时乘以分母的倒数。
- 合并同类项:将不等式中的同类项合并,以便于简化不等式。
- 取倒数:将不等式的两边同时取倒数,需要注意不等式的符号是否需要
改变。
- 平方:将不等式中的某一项平方,需要注意平方后的结果是否大于0。
《基本不等式》 知识清单

《基本不等式》知识清单一、基本不等式的定义如果 a,b 是正数,那么\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当 a = b 时,等号成立。
其中,\(\frac{a + b}{2}\)叫做正数 a,b 的算术平均数,\(\sqrt{ab}\)叫做正数 a,b 的几何平均数。
基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。
二、基本不等式的推导对于正数 a,b,有:\((\sqrt{a} \sqrt{b})^2 \geq 0\)\(a 2\sqrt{ab} + b \geq 0\)\(a + b \geq 2\sqrt{ab}\)\(\frac{a + b}{2} \geq \sqrt{ab}\)当且仅当\(\sqrt{a} =\sqrt{b}\),即 a = b 时,等号成立。
三、基本不等式的几何解释以长为 a + b 的线段为直径作圆,在直径 AB 上取点 C,使 AC = a,CB = b。
过点 C 作垂直于直径 AB 的弦 DE,连接 AD,DB。
根据圆的性质,可得\(CD =\sqrt{ab}\),而半径\(\frac{a+ b}{2}\)。
因为半径不小于弦长的一半,所以\(\frac{a + b}{2} \geq \sqrt{ab}\),当且仅当 C 为圆心时,等号成立,即 a = b 。
四、基本不等式的变形1、\(a^2 + b^2 \geq 2ab\)(当且仅当 a = b 时,等号成立)推导:\(a^2 + b^2 2ab =(a b)^2 \geq 0\),所以\(a^2 +b^2 \geq 2ab\)2、\(ab \leq (\frac{a + b}{2})^2\)(当且仅当 a = b 时,等号成立)推导:由基本不等式\(\frac{a + b}{2} \geq \sqrt{ab}\),两边平方可得\(ab \leq (\frac{a + b}{2})^2\)3、\(\frac{b}{a} +\frac{a}{b} \geq 2\)(a,b 同号且不为 0,当且仅当 a = b 时,等号成立)推导:\(\frac{b}{a} +\frac{a}{b} \geq 2\sqrt{\frac{b}{a} \times \frac{a}{b}}= 2\)五、用基本不等式求最值1、若两个正数的和为定值,则当这两个数相等时,它们的积取得最大值。
(完整版)基本不等式知识点

基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。