奶制品的生产与销售(数学建模)

合集下载

基于核心素养的数学建模课程的案例研究——以奶制品的生产与销售模型为例

基于核心素养的数学建模课程的案例研究——以奶制品的生产与销售模型为例

基于核心素养的数学建模课程的案例研究*———以奶制品的生产与销售模型为例王天松俞芳(昌吉学院数学系新疆昌吉831100)摘要:数学建模课程是高校数学专业的基础课程之一,本文以奶制品的生产与销售模型教学设计为例,从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程等六个方面介绍数学建模课程的教学案例,最后针对案例给出相应的案例反思。

关键词:数学建模;教学案例;模型;反思中图分类号:G642文献标识码:A文章编号:1672-1578(2021)01-0001-03随着我国教育改革的不断发展,核心素养理念在高校教育改革中的地位愈显突出,逐渐成为目前高校教育改革的一项新的要求。

《数学建模》课程的开设和数学建模竞赛的开展促进了高校数学的教学教改,对学生综合素质的提高起到了积极、有效的作用[1-2]。

本文以奶制品的生产与销售模型教学设计为例,从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程等六个方面介绍数学建模课程的教学设计,最后针对案例给出相应的案例反思[3-5]。

1奶制品的生产与销售模型的教学设计1.1教材分析数学建模是高校数学专业重要的一门专业课程,通过这门课程的学习,应使学生获得数学建模的系统知识、数学思想与思维方法。

对于数学专业学生深刻理解和灵活使用数学知识解决实际问题至关重要,其内容是初步进行科学研究的重要工具,在金融、经济、社会科学等方面有着广泛的应用。

事实上,本课程是学生进行毕业论文写作及科研的阶梯,也为深入理解高等数学打下必要的基础。

本节内容选自姜启源版《数学模型》第四章第一节奶制品的生产与销售,是数学规划模型章节中的第一讲,主要是通过分析两个实际问题讲解线性规划模型(简称LP模型)的建模方法和利用LINGO的求解方法。

这节内容将为后面的模型探索打下坚实的基础,同时为了解LINGO软件的使用提供很好的平台,因此本节内容在该章节中具有重要的地位。

1.2学情分析数学系大四的学生具有一定的数学理论基础,而且具备一定的思维能力、逻辑能力以及综合运用知识的能力。

第06讲 奶制品的生产与销售概要

第06讲 奶制品的生产与销售概要
53.333332 INFINITY
6.666667
80.000000 40.000000
原料最多增加10
时间最多增加53
• 35元可买到1桶牛奶,每天最多买多少? 最多买10桶!
例2 奶制品的生产销售计划 在例1基础上深加工
1桶 牛奶 或 3千克A1 12小时 1千克 获利24元/公斤
2小时,3元 获利16元/公斤 8小时 4公斤A2 1千克 获利32元/千克 0.75千克B2 50桶牛奶, 480小时 2小时,3元
x1 x5 x 2 x6 加工能力 50 3 4 附加约束 4( x1 x5 ) 2( x2 x6 )
x1 x5 100
原料 供应
劳动 时间
x3 0.8x5
2 x5 2 x6 480
x4 0.75x6 非负约束 x1 , x2 ,, x6 0
LINDO 6.1
OBJECTIVE FUNCTION VALUE 3360.000
2)x1+x2<50
3)12x1+8x2<480 4)3x1<100 end DO RANGE (SENSITIVITY) ANALYSIS? No
VARIABLE
X1 X2
VALUE
20.000000 30.000000
线性规划模型
A1,A2每公斤的获利是与各 自产量无关的常数 每桶牛奶加工出A1,A2的数量 和时间是与各自产量无关的常 数 A1,A2每公斤的获利是与相 互产量无关的常数 每桶牛奶加工出A1,A2的数量和 时间是与相互产量无关的常数 加工A1,A2的牛奶桶数是实数
模型求解
x1 x2 50
图解法
影子价格

(生产管理知识)奶制品的生产与销售

(生产管理知识)奶制品的生产与销售

奶制品的生产与销售一、问题提出问题一:加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。

根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元,每公斤A2获利16元。

现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。

试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?问题二:问题1给出的A1,A2两种奶制品的生产条件、利润,及工厂的“资源”限制全都不变。

为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1公斤A1加工成0.8公斤高级奶制品B1,也可以将1公斤A2加工成0.75公斤高级奶制品B2,每公斤B1能获利44元,每公斤B2能获利32元。

试为该厂制定一个生产销售计划,使每天的净利润最大,并讨论一下问题(1)若投资30元可以增加供应一桶牛奶,投资3元可以增加1小时劳动时间,应否做这些投资?若每天投资150元,可赚回多少?(2)每公斤高级奶制品B1,B2的获利经常有10%的波动,对制定的生产销售计划有无影响?若每公斤B1获利下降10%,计划应该变化吗?二、模型假设和符号说明2.1模型假设(1)假设A1,A2两种奶制品每公斤的获利是与它们各自产量无关的常数,每桶牛奶加工出A1,A2的数量和所需的时间是与它们各自的产量无关的常数;(2)假设A1,A2每公斤的获利是与它们相互间产量无关的常数,每桶牛奶加工出A 1,A2的数量和所需的时间是与它们相互间产量无关的常数;(3)假设加工A1,A2的牛奶的桶数可以是任意常数。

数学建模线性规划和整数规划实验

数学建模线性规划和整数规划实验

1、线性规划和整数规划实验1、加工奶制品的生产计划(1)一奶制品加工厂用牛奶生产A1, A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3千克A1产品,或者在乙车间用8小时加工成4千克A2 产品.根据市场需求,生产的A1、A2产品全部能售出,且每千克A1产品获利24元,每千克A2产品获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且甲车间的设备每天至多能加工100 千克A1产品,乙车间的设备的加工能力可以认为没有上限限制.试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: (i)若用35元可以买到1桶牛奶,是否应作这项投资?若投资,每天最多购买多少桶牛奶?(ii)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(iii)由于市场需求变化,每千克A1产品的获利增加到30元,是否应改变生产计划?(2)进一步,为增加工厂获利,开发奶制品深加工技术.用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1可获44元,每千克B2可获32元.试为该厂制订一个生产销售计划,使每天获利最大,并进一步讨论以下问题:(i)若投资30元可增加供应1桶牛奶,投资3元可增加1小时劳动时间,是否应作这项投资?若每天投资150元,或赚回多少?(ii)每千克高级奶制品B1, B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每千克B1的获利下降10%,计划是否应作调整?解:由已知可得1桶牛奶,在甲车间经过十二小时加工完成可生产3千克的A1,利润为72元;在乙车间经八小时加工完成可生产四千克的A2,利润为64元。

利用lingo软件,编写如下程序:model:max=24*3*x1+16*4*x2;s.t.12*x1+8*x2≤480;x1+x2≤50;3*x1≤100;X1≥0,x2≥0end求解结果及灵敏度分析为:Objective value: 3360.000Total solver iterations: 2Variable Value Reduced CostX1 20.00000 0.000000X2 30.00000 0.000000Row Slack or Surplus Dual Price1 3360.000 1.0000002 0.000000 2.0000003 0.000000 48.000004 40.00000 0.000000Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase DecreaseX1 72.00000 24.00000 8.000000X2 64.00000 8.000000 16.00000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 53.33333 80.000003 50.00000 10.00000 6.6666674 100.0000 INFINITY 40.00000 分析结果:1)从结果可以看出在供应甲车间20桶、乙车间30桶的条件下,获利可以达到最大3360元。

数学建模报告数学规划求解模型过程

数学建模报告数学规划求解模型过程

2012——20 13 学年第二学期合肥学院数理系实验报告 课程名称:数学模型实验项目: 数学规划模型求解过程实验类别:综合性□设计性□验证性□专业班级:10级数学与应用数学(1)班姓名: 汪勤学号:1007021004实验地点:35#611 实验时间:2013年4月25日指导教师: 闫老师成绩:一.实验目的:了解线性规划的基本内容及求解的基本方法,学习MATLAB,LINDO,LI NGO求解线性规划命令,掌握用数学软件包求解线性规划问题;了解非线性规划的基本内容,掌握数学软件包求解非线性规划问题。

二。

实验内容:1、加工奶制品的生产计划问题一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。

根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元每公斤A2获利16元。

现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。

试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:(1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?(2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?2、奶制品的生产销售计划问题第1题给出的A1,A2两种奶制品的生产条件、利润及工厂的“资源"限制全都不变。

为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1能获利44元,每千克B2能获利32元。

试为该厂制订一个生产销售计划,使每天的净利润最大,并讨论以下问题:(1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1小时劳动时间,应否作这些投资?若每天投资150元可赚回多少?(2)每公斤高级奶制品B1,B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每公斤B1的获利下降10%,计划应该变化吗?(3)若公司已经签订了每天销售10千克 A1的合同并且必须满足,该合同对公司的利润有什么影响?3、货机装运某架货机有三个货舱:前仓、中仓、后仓。

奶制品的生产与销售 数学模型

奶制品的生产与销售 数学模型

奶制品的生产与销售数学模型
奶制品的生产与销售关系到企业的利润与市场占有率,因此建立数学模型帮助企业进行科学管理非常必要。

首先,我们假设企业每一批生产的奶制品量为x(单位:吨),销售价格为p(单位:元/吨),成本为c(单位:元/吨),则企业的利润为:
利润=(p-c)×x
其次,考虑到销售量的影响因素较多,我们可建立一元函数,将销售量y与各因素之间的关系反映出来,这里以多元线性函数举例:y=a1x1+a2x2+a3x3+…+anxn+b
其中,x1、x2、x3等为各个因素,如广告投入、市场营销、产品质量等,对应的系数a1、a2、a3等为其对销售量y的贡献度,b为常数项。

我们可以通过统计分析、回归分析等手段来确定各项因素的影响程度和系数。

最后,考虑到奶制品行业的季节性和地域性,我们可以建立区域销量模型,将销售量与产品销售区域、季节等因素联系起来,进一步分析和预测销售量。

以上是奶制品生产与销售的数学模型,企业可以根据实际情况进行调整,以达到科学管理、优化运营的目的。

《线性规划问题——奶制品的生产与销售》示范公开课教学PPT课件【高中数学人教版】

《线性规划问题——奶制品的生产与销售》示范公开课教学PPT课件【高中数学人教版】

RIGHTHAND SIDE RANGES
CURRENT ALLOWABLE ALLOWABLE
RHS
INCREASE DECREASE
50.000000 10.000000
6.666667
x2系数范围(48,72)
x1系数由24 3=72增加为 303=90,在允许范围内
3 480.000000 53.333332
X6 0.000000 1.520000
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 3.160000
3) 0.000000 3.260000
4) 76.000000
0.000000
5) 0.000000 44.000000
0.000000
NO. ITERATIONS= 2
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
max 72x1+64x2 st 2)x1+x2<50 3)12x1+8x2<480 4)3x1<100 end

原料无剩余


时间无剩余

加工能力剩余40
OBJECTIVE FUNCTION VALUE
奶制品的生产与销售
1
奶制品的生产与销售
企业生产计划
空间层次
工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划;
车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划。
时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划。

奶制品的加工与生产

奶制品的加工与生产

(P)与(D)的 对应关系:
1 约束条件的系数矩阵是转置关系 且不等号反向 2 约束右端项 3 求max Z 目标函数的系数
求 min W
注:这是对称形式的对偶规划
4.3 奶制品的生产与销售
例1 加工奶制品的生产计划 问题:一奶制品加工厂用牛奶生产A1, A2两种奶制品,1 桶牛奶在设备甲上用12小时加工3公斤A1 ,或在设备乙 上用8小时加工4公斤A2, A1获利24元/公斤 , A2获利16 元/公斤 ,每天供应50桶牛奶,每天总的工作时间480小 时,在设备甲上至多加工100公斤A1 。试制订生产计 划,使每天获利最大. 并进一步讨论以下三个问题: • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
x1 + x2 ≤ 50
12 x1 + 8 x2 ≤ 480
约束条件
劳动时间 加工能力 非负约束
3x1 ≤ 100 x1 , x 2 ≥ 0
线性 规划 模型 (LP)
15




模型求解
x1 + x2 ≤ 50
图解法
约 l2 : 12 x1 + 8 x2 = 480 束 12 x1 + 8 x2 ≤ 480 l4 条 3x1 ≤ 100 l3 : 3x1 = 100 件 c l : x = 0 , l : x = 0 x1 , x 2 ≥ 0 4 1 5 2 目标 函数
y1
y2 y3 y4
⎧9 y1 + 5 y2 + 8 y3 + 7 y4 ≥ 100 ⎪ 8 y + 4 y + 3 y + 6 y ≥ 80 ⎪ 1 2 3 4 ⎨ ⎪ 6 y1 + 7 y2 + 2 y3 + 4 y4 ≥ 70 ⎪ ⎩ y1 , y2 , y3 , y4 ≥ 0 称为对偶变量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加工奶制品的生产计划
问题重述
一奶制品加工厂用牛奶生产1A ,2A 两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤1A ,或者在设备乙上用8小时加工成4公斤2A 。

根据市场需求,生产的1A ,2A 全部能售出,且每公斤1A 获利24元,每公斤2A 获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤1A ,设备乙的加工能力没有限制。

试为该厂制订一个生产计划,使每天获利最大。

问题分析
这个优化问题的目标是使每天的获利最大,要作的决策是生产计划,即每天用多少桶牛奶生产1A ,用多少桶牛奶生产2A (也可以是每天生产多少公斤1A ,多少公斤2A ),决策受到3个条件的限制:原料(牛奶)供应、劳动时间、设备甲的加工能力.按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,就可得到下面的模型。

模型假设
1) 1A ,2A 两种奶制品每公斤的获利是与它们各自产量无关的常数,每桶牛奶加工出1A ,2A 的数量和所需的时间是与它们各自的产量无关的常数;
2) 1A ,2A 每公斤的获利是与它们相互间产量无关的常数,每桶牛奶加工出1A ,2A 的数量和所需的时间是与它们相互间产量无关的常数;
3)加工1A ,2A 的牛奶的桶数可以是任意实数.
模型建立
设每天用1x 桶牛奶生产1A ,用2x 桶牛奶生产2A . 设每天获利为z 元.1x 桶牛奶可生产31x 公斤1A ,获利 24⨯31x ,2x 桶牛奶可生产42x 公斤2A ,获利16⨯42x ,故目标函数为:z=721x +642x .
由题设可以得到如下约束条件:
原料供应: 生产1A ,2A 的原料(牛奶)总量不得超过每天的供应,即1x +2x ≤50桶; 劳动时间: 生产1A ,2A 的总加工时间不得超过每天正式工人总的劳动时间,即121x +82x ≤480小时;设备能力: 1A 的产量不得超过设备甲每天的加工能力,即31x ≤100; 非负约束: 1x +2x 均不能为负值,即1x ≥0,2x ≥0.
综上可得该问题的数学模型为:
max 216472x x z += (1)
S.t.
5021≤+x x (2)
48081221≤+x x (3)
10031≤x (4)
0,021≥≥x x (5)
模型求解
将(1)……(5)式代入lingo 软件进行求解:
max = 72*x1+64*x2;
x1+x2<=50;
12*x1+8*x2<=480;
3*x1<=100;
得到结果如下:
Global optimal solution found.
Objective value: 3360.000
Infeasibilities: 0.000000
Total solver iterations: 2
Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000
Row Slack or Surplus Dual Price 1 3360.000 1.000000 2 0.000000 48.00000 3 0.000000 2.000000 4 40.00000 0.000000
最终结果为20桶牛奶生产A ,30桶牛奶生产B ,所得利润为3360元。

图解法: 这个线性规划模型的决策变量为2维,用图解法既简单,又便于直观地把握线性规划的基本性质.将约束条件(2)~(5)中的不等号改为等号,可知它们是1Ox ,2x 平面上的5条直线,依次记为1L ~5L ,如图1.其中4L ,5L 分别是工2x 轴和1x 轴,并且不难判断,(2)~(5)式界定的可行域是5条直线上的线段所围成的5边形OABCD .容易算出,5个顶点的坐标为:O(0,0),A(0,50),B(20,30),C(100/3,
10),D(100/3,0).
目标函数(1)中的z 取不同数值时,在图1中表示一组平行直线(虚线),称等值线族.如z=0是过O 点的直线,z=2400是过D 点的直线,z=3040是过C 点的直线,….可以看出,当这族平行线向右上方移动到过B 点时,z=3360,达到最大值,所1,5[B 点的坐标(20,30)即为最优解:1x =20, 2x =30.
我们直观地看到,由于目标函数和约束条件都是线性函数,在2维情形,可行域为直线段围成的凸多边形,目标函数的等值线为直线,于是最优解一定在凸多边形的某个顶点取得.推广到n维情形,可以猜想,最优解会在约束条件所界定的一个凸多面体 (可行域)的某个顶点取得.线性规划的理论告诉我们,这个猜想是正确的.。

相关文档
最新文档