一次函数课题学习__选择方案课件
19.3 课题学习 选择方案

19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。
一次函数实施方案选择

一次函数实施方案选择————————————————————————————————作者:————————————————————————————————日期:《课题学习选择方案》教学设计湖北省咸宁市温泉中学黄娟廖文一、内容和内容解析1.内容用函数思想解决方案选择问题—选择哪种上网收费方式省钱?2.内容解析本课是在学习了函数概念、一次函数有关知识后,通过学生熟悉的宽带上网收费方式的选择,让学生经历体会费用随时间的变化关系是一次函数的关系,确定实际数据整理成函数的模型,即建立了数学模型,从而利用函数图像求数学模型的解,还可以比较几个一次函数的变化率来解决方案选择问题,实现利用数学知识解决实际问题的方法.本课是明确给出多种方案,要求选择使问题解决最优的一种.综上所述,本节课教学的重点是:应用一次函数模型解决方案选择问题.二、目标和目标解析1.目标(1)会用一次函数知识解决方案选择问题,体会函数模型思想;(2)能从不同的角度思考问题,优化解决问题的方法;(3)能进行解决问题过程的反思,总结解决问题的方法.2.目标解析目标(1)要求能根据问题情景建立一次函数模型,并可以比较几个一次函数的变化率,应用一次函数的性质和图像解决问题,从而感受到函数模型的应用价值.目标(2)要求能从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.目标(3)要求在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.三、教学问题诊断分析八年级学生已经学会了用方程和不等式来解决生活中的简单的实际问题,但是用综合应用能力有待加强。
特别是由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其对应关系较复杂,分析起来显的理不清头绪,易迷失解决问题的方向,时间一长就不愿意去尝试了.在这方面要给他们创造机会,降低问题的坡度,使他们不难成功,体验成功的乐趣,激发学习兴趣.本课内容是学生熟悉的宽带上网收费方式的选择,如何选择,用什么方法选择很重要,特别是如何从数学的角度去分析.本课教学的难点是:分析实际问题背景中所包含的变量和对应关系建立函数模型,解决实际问题,从而使选择方案优化.四、教学过程1.创设情境,提出问题做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的。
一次函数课题学习--选择方案市公开课获奖课件省名师示范课获奖课件

1. 一种节能灯,一种白炽灯;
2. 两个节能灯;
3. 两个白炽灯.
练习
1、如图所示,L1反应了某企业产品旳销售收入 和销售数量旳关系, L2反应产品旳销售成本与 销售数量旳关系,根据图象判断企业盈利时销
售量(B)
A、不不小于4件
y/元
L 1
B、不小于4件
400
L2
C、等于4件
300 200
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水
一次函数y = 5x +1275旳值 y随x 旳增大而增大,所以当 x=1时y 有最小值,最小值为5×1+1275=1280,所以这次 运水方案应从A地调往甲地1万吨,调往乙地14-1=13(万吨 从B地调往甲地15-1=14(万吨),调往乙地1-1=0(万吨)
14.4课题学习 选择方案 怎样调水
解:(1)设派往A地域x台乙型收割机, 每天取得旳 租金为y元则,
派往A地域(30-x)台甲型收割机, 派往机, 所以 y=1600x+1200(30-x)+1800(30-x)+1600(x-10)
60+0.6×0.01x =3+0.6×0.06x
解得:x=1900
即当照明时间等于1900小时,购置节能灯、白炽灯均可.
解:设照明时间是x小时, 节能灯旳费用y1元表达,白炽灯旳费用y2 元表达,则有:y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .
若y1< y2 ,则有
60+0.6×0.01x <3+0.6×0.06x
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水
一次函数课题学习:选择方案

鸡西市第十九中学学案
、为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(
话时间x(min)与通话费y(元)的关系如图所示:
分别求出通话费1y(便民卡)2(如意卡)与通话时间x
系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜?6、如图一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)
下列问题:
⑴请分别求出表示轮船和快艇行驶过程的函数解析式。
范围)
⑵轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
⑶问快艇出发多长时间赶上轮船?
鸡西市第十九中学学案
鸡西市第十九中学学案。
人教版八年级下册数学优秀作业课件(RJ) 第十九章 一次函数 课题学习 选择方案

6.(20分)在乡村道路建设的过程中,甲、乙两村之间需要修建水泥路,它们准备 合作完成.已知甲、乙村分别需要水泥70 t,110 t,A,B两厂分别可提供100 t,80 t水泥,两厂到两村的运费如下表.设从A厂运往甲村水泥x t,总运费为y元.
(1)求y与x之间的函数关系式; (2)请你设计出运费最低的运送方案,并求出最低运费.
y=20x, y=10x+100,
解得xy= =12000,比较合算;②当入园次数等于 10 次时,选择两种消费卡费用一 样;③当入园次数大于 10 次时,选择乙消费卡比较合算
4.(12分)为了更好地运用信息技术辅助教学,某校计划购买进价分别为3 500 元/台、4 000元/台的A,B两种型号的笔记本电脑共15台.设购进A型笔记本电脑x 台,购买这两种型号的笔记本电脑共需的费用为y元.
数学 八年级下册 人教版
第十九章 一次函数
19.3 课题学习 选择方案
1.(4分)一家电信公司提供了有、无月租费两种上网收费的方式供用户选择, 这两种收费方式所收取的上网费用y(元)与上网时间x(min)之间的关系如图所示, 则下列说法错误的是( C )
A.图象甲描述的是无月租费的收费方式 B.图象乙描述的是有月租费的收费方式 C.当每月的上网时间为350 min时,选择有月租费的收费方式更省钱 D.当每月的上网时间为500 min时,选择有月租费的收费方式更省钱
(1)求y与x之间的函数解析式; (2)若购买的B型笔记本电脑的数量不少于A型笔记本电脑数量的2倍,请你帮该 校设计出一种费用最省的方案,并求出该方案所需的费用. 解:(1)由题意,得y=3 500x+4 000(15-x)=-500x+60 000 (2)由题意,得15-x≥2x,解得x≤5,∵-500<0,∴当x=5时,y有最小值,且 y最小值=-500×5+60 000=57 500,∴当该校购买A型笔记本电脑5台,B型笔记 本电脑15-5=10(台)时费用最省,所需的费用为57 500元
初中人教版数学八年级下册:19.3 课题学习 选择方案 习题课件(含答案)

7.(2020·河南中考)暑期将至,某健身俱乐部面向学 生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用 按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按 八折优惠.
设某学生暑期健身 x(次),按照方案一所需费用为 y1(元),且 y1 =k1x +b ;按照方案二所需费用 为 y2(元),且 y2=k2x.其函数图象如图所示. (1)求 k1 和 b 的值, 并说明它们的实际意义;
目录页
A 分点训练•打好基础 B 综合运用•提升能力
知识点 选择方案 1.某公司急需用车,但又不准备买车,公司准备和 一个个体车主或一家出租车公司签订月租车合同, 他们的月收费 y(元)与公司每月用车的路程 x(千米)
之间的关系如图所示(其中个体车主收费为 y1 元,出 租车公司收费为 y2 元),则当 x >1800 时,选 用个体车主较合算.
解:(1)∵y1=k1x+b 过点(0,30),(10,180),
∴ b=30,
解得 k1=15,
10k1 +b=180,
b=30.
k1=15 表示的实际意义是:购买一张学生暑期专享
卡后每次健身费用为 15 元;
b=30 表示的实际意义是:购买一张学生暑期专享
卡的费用为 30 元.
(2)求打折前的每次健身费用和 k2 的值; (2)由题意可得, 打折前的每次健身费用为 15÷0.6=25(元), 则 k2=25×0.8=20.
(3)八年级学生小华计划暑期前往该俱乐部健身 8 次,应选择哪种方案所需费用更少?说明理由.
(3)选择方案一所需费用更少.理由如下: 由(1)(2)可知,y1=15x+30,y2=20x. 当健身 8 次时,选择方案一所需费用为 y1=15×8+ 30=150(元),选择方案二所需费用为 y2=20×8= 160(元). ∵150<160, ∴选择方案一所需费用更少.
《课题学习 选择方案》教案精品 2022年数学

19.3课题学习选择方案1.稳固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价根底上打八折优惠,乙旅行社那么推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮助分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费〞,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.此题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的根本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按方案20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨)120160100(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,假设要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x-y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,那么有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),那么W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,那么x =8.应选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最正确方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费工程及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费工程及收费标准表 运输工具 运输费单价: 元/(吨·千米)冷藏单价: 元/(吨·时) 固定费用: 元/次汽车 2 5 200 火车1.652280货运收费工程及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费工程及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.假设y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题. 三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数;3.能正确区分单项式和多项式.(重点)一、情境导入列代数式:(1)长方形的长与宽分别为a 、b ,那么长方形的周长是________;(2)图中阴影局部的面积为________;(3)某班有男生x 人,女生21人,那么这个班的学生一共有________人.观察我们所列出的代数式,是我们所学过的单项式吗?假设不是,它又是什么代数式?二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出以下各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b 3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断.解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b3,6xy +1,2x2-x -5;整式有:x 2+y 2,-x ,a +b3,10,6xy+1,17m 2n ,2x 2-x -5,a 7.方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出以下各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项. 【类型三】 根据多项式的概念求字母的取值-5x m +104x m -4x m y 2是关于x 、y的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6,解得m =4,此多项式是-5x 4+104x 4-4x 4y 2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】与多项式有关的探究性问题假设关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.解析:多项式不含二次项和一次项,那么二次项和一次项系数为0.解:∵关于x的多项式-5x3-mx2+(n -1)x-1不含二次项和一次项,∴m=0,n-1=0,那么m=0,n =1.方法总结:多项式不含哪一项,那么哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a 米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影局部面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言表达中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。
人教初中数学八下 19.2.3 一次函数与方程、不等式课件2 【经典初中数学课件汇编】

要 学 习 好 探只 索有 一 条 路
二次根式的加减
复习回顾
a b ab ab a b(a≥0,b≥0)
a a
b
b
a b
a
b (a≥0,b>0)
最简二次根式。
复习回顾
下列根式中,哪些是最简二次根式?
18a , 28, x2 4, 5x4 y ,
×× √
×
2
x2 y,
ab ,
3xy ,
1
2 5 3x
解为χ= −3.
3
-3
直线y=x+3的图象与x轴交点坐标为 (_-3_,_0_ ),这说明方程χ+3=0的 解是x=_-3_)
0
x
从“形”上 看
五、强化训练:
4、已知直线 y2x4与 x轴交于点A,
与 轴y交于点B,求△AOB的面积.
解:由已知可得: 当χ=0时,y=4,即:B(0,4) 当y=0时,χ=2,即:A(2,0) 则S △AOห้องสมุดไป่ตู้=0.5 x OA x OB =0.5 x 2 x 4 =4
解:由题意可得: 当直线y=3χ+ 6与χ轴相交时,y=0 则3χ+ 6=0, 解得:χ= -2, 当χ= -2 时, 2 x (-2) + a =0 解得:a = 4
小组交流需要答成共识,然后由小组 中心发言人代表本组展示交流成果
从“数”上看,“解方程ax+b=0(a,b 为常数, a≠0)”与“求自变量 x 为何值时, 一次函数y=ax+b的值为0”有什么关系?从 图象上看呢?
√
×√
×
如图,学校要砌一个正方形花坛,已知外 面的正方形边长为 cm,里2 面2的正方形的边 长为 cm,两个正方形2 的周长和为多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得:x<1900
即当照明时间小于1900小时,购买白炽灯较省钱. • 若y1= y2,则有
60+0.6×0.01x =3+0.6×0.06x
解得:x=1900
10/15/2018 即当照明时间等于 1900小时,购买节能灯、白炽灯均可.
解:设照明时间是x小时, 节能灯的费用y1元表示,白炽灯的费用y2 元表示,则有:y1 =60+0.6×0.01x; y2 =3+0.6×0.06x . 若y1< y2 ,则有 60+0.6×0.01x <3+0.6×0.06x
若使用节能灯省钱,它的含义是什么? y1< y2 若使用白炽灯省钱,它的含义是什么? y1> y2
y =y
若y1< y2 ,则有 60+0.6×0.01x ห้องสมุดไป่ตู้3+0.6×0.06x
解得:x>1900
即当照明时间大于1900小时,购买节能灯较省钱. 若y1 > y2,则有
60+0.6×0.01x >3+0.6×0.06x
调运量:即 水量×运程
分析:设从A水库调往甲地的水量为x吨,则有
甲 A B
10/15/2018
乙
总计 14 14 28
x
15- x
15
14- x x -1
13
总计
八年级 数学
第十九章 函数
19.3课题学习
选择方案
怎样调水
解:设从A水库调往甲地的水量为x万吨 ,总 调运量为y万吨· 千米则 从A水库调往乙地的水量为(14- x) 万吨 从B水库调往甲地的水量为(15-x) 万吨 从B水库调往乙地的水量为 (X-1) 万吨 所以
y2>y1,故用节能灯省钱;当照明 时间等于1900小时, y2=y1购买 10/15/2018 节能灯、白炽灯均可.
y2 =0.036x + 3
y元
y2 y1
3 0
1900
x小时
方法总结
1、建立数学模型——列出两个函数关系 式 2、通过解不等式或利用图象来确定自变量 的取值范围。 3、选择出最佳方案。
问题
10/15/2018
4两甲种客车,2两乙种客车;
y1=120×4+1680=2160
5两甲种客车,1辆乙种客车;
y2=120×5+1680=2280
应选择方案一,它比方案二节约120元。
10/15/2018
八年级 数学 19.3课题学习 选择方案
第十九章 函数
怎样调水
从A、B两水库向甲、乙两地调水,其中甲地需水 15万吨,乙地需水13万吨,A、B两水库各可调出水14 万吨。从A地到甲地50千米,到乙地30千米;从B地到 甲地60千米,到乙地45千米。设计一个调运方案使水 的调运量(单位:万吨· 千米)尽可能小。
解得:x>1900
即当照明时间大于1900小时,购买节能灯较省钱. 若y1 > y2,则有 60+0.6×0.01x >3+0.6×0.06x 解得:x<1900 即当照明时间小于1900小时,购买白炽灯较省钱. 若y1= y2,则有 60+0.6×0.01x =3+0.6×0.06x 即当照明时间等于1900小时,购买节能灯、白炽灯均可.
归纳:解决含有多个变量的问题时,可 以分析这些变量之间的关系,从中选取 有代表性的变量作为自变量,然后根据 问题的条件寻求可以反映实际问题的函 数,以此作为解决问题的数学模型。
10/15/2018
八年级 数学
19.3课题学习
第十九章 函数 选择方案
巩固练习
A城有化肥200吨,B城有化肥300吨,现 要把化肥运往C、D两村,如果从A城运往 C、D两地运费分别为20元/吨与25元/吨, 从B城运往C、D两地运费分别为15元/吨 与24元/吨,已知C地需要240吨,D地需要 260吨,如果你是公司的调运员,你应 怎样调运这批化肥使这一次的运费最少?
10/15/2018
x
八年级 数学
19.3课题学习
第十九章 函数 选择方案
解:设从A城运往C乡x吨,总运费为y元,则 从A城运往D乡(200-x)吨 从B城运往C乡(240- x)吨 从B城运往D乡(x+60)吨 所以y=20x+25(200-x)+15(240-x)+24(x+60) 化简得:y=4x+10040 0≤x≤200 一次函数y = 4x +10040的值 y随x 的增大而增大,所以 当x=0时y 有最小值,最小值为4×0+10040=10040,所 以这次运化肥方案应从A城运往C乡0吨,从A城运往D乡 200吨,从B城运往C乡240吨,从B城运往D乡60吨
19.3课题学习
选择方案
10/15/2018
小刚家因种植反季节蔬菜致富后,盖起了一座三层 楼房,现正在装修,准备安装照明灯,他和他父亲 一起去灯具店买灯具,灯具店老板介绍说:
一种节能灯的功率是10瓦(即0.01千瓦)的,售价60 元.一种白炽灯的功率是60瓦(即0.06千瓦)的,售价 为3元.两种灯的照明效果是一样的.
10/15/2018
变一变(1)
• 若一盏白炽灯的使用寿命为2000小时,一盏节能灯的使用 寿命为6000小时,如果不考虑其它因素,以6000小时计算, 使用哪种照明灯省钱?省多少钱?
10/15/2018
解:节能灯6000小时的费用为: 60+0.6×0.01×6000=96(元) 白炽灯6000小时的费用为: (3+0.6×0.06×2000)×3=225(元) 节省钱为:225-96=129(元) 答:使用节能灯省钱,可省129元钱。
电费=0.6×灯的功率(千瓦)×照明时间(时).
10/15/2018
问题3 如何计算两种灯的费用?
设照明时间是 x 小时 , 节能灯的费用 y1 元 表示,白炽灯的费用y2元表示,则有:
y1 =60+0.6×0.01x;
y 观察上述两个函数 2 =3+0.6×0.06x .
10/15/2018 若使用两种灯的费用相等 ,它的含义是什么??
(3)如果要使这50台收割机每天获得的租金最高, 请你为光华农机公司提供一条合理化的建议
10/15/2018
八年级 数学
19.3课题学习
第十九章 函数 选择方案
解:(1)设派往A地区x台乙型收割机, 每天获得的 租金为y元则, 派往A地区(30-x)台甲型收割机, 派往B地区(30-x)台乙型收割机, 派往B地区(x-10)台甲型收割机, 所以 y=1600x+1200(30-x)+1800(30-x)+1600(x-10) 化简得y=200x+74000
(4)如果设其它水量(例如从B水库调往乙地的水 量)为x万吨,能得到同样的最佳方案吗?
10/15/2018
八年级 数学
19.3课题学习
第十九章 函数 选择方案 怎样调水
解:设从B水库向乙地调水x吨,总调运量为y万吨· 千米则
从B水库向甲地调水(14-x)万吨 从A水库向乙地调水(13-x)万吨 从A水库向甲地调水(x+1)万吨 所以y=5x+1280 (0≤x≤13)
200 100
0
10/15/2018
4
x/ 件
如图是甲、乙两家商店销售同一种产品的销 售价y元与销售量x件之间的函数图象,下 列说法(1)售2件时,甲、乙两家的售价 相同;(2)买一件时买乙家的合算;(3) 买3件时买甲家的合算;(4)买乙家的1件 售价约为3元。其中说法正确的是乙 : (1) (2) (3) y/ 元 . 甲
10/15/2018
能否利用函数解析式和图象也可以给出解答呢?
解:设照明时间是x小时, 节能灯的费用y1元表示,白炽灯 的费用y2元表示,则有: y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .
即: y1 =0.006x +60
由图象可知,当照明时间小 于1900时, y2 <y1,故用白炽灯 71.4 60 省钱;当照明时间大于1900时,
y 50x 30 14 x 60 15 x 45 x 1
(1)化简这个函数,并指出其中自变量x的取值应有什么 限制条件?
10/15/2018
八年级 数学
19.3课题学习
第十九章 函数 选择方案 怎样调水
化简得 y=5x+1275
(1≤x≤14)
y
(2)画出这个函数的图像。 1345
1280
0
1
14
x
(3)结合函数解析式及其图像说明水的最佳调运方案。 水的最小调运量为多少?
10/15/2018
八年级 数学
19.3课题学习
第十九章 函数 选择方案 怎样调水
一次函数y = 5x +1275的值 y随x 的增大而增大,所以当 x=1时y 有最小值,最小值为5×1+1275=1280,所以这次 运水方案应从A地调往甲地1万吨,调往乙地14-1=13(万吨 从B地调往甲地15-1=14(万吨),调往乙地1-1=0(万吨)
(1)共需租多少辆汽车? (2)给出最节省费用的租车方案。
10/15/2018
(1)要保证240名师生有车坐 (2)要使每辆汽车上至少要有1名教 师 6 根据(1)可知,汽车总数不能小于____;根据 6 (2)可知,汽车总数不能大于____。综合起来 6 可知汽车总数为 _____。 设租用x辆甲种客车,则租车费用y(单位:元) 是 x 的函数,即 y=400x+280(6-x) 化简为: y=120x+1680
10/15/2018
八年级 数学
19.3课题学习
第十九章 函数 选择方案
光华农机租赁公司共有50台联合收割机,其中甲型 20台,乙型30台,现将这50台联合收割机派往A、B 两地区收割小麦,其中30台派往A地区,20台派往B 地区,两地区与该收割机租赁公司商定的每天的租 赁价格表如下: 每台甲型收割机的租金 每台乙型收割机的租金