信号与系统第三版课后习题答案

合集下载

信号系统(第3版)习题解答

信号系统(第3版)习题解答

信号系统(第3版)习题解答《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。

] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S R S L S C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

信号与系统第三版课后答案燕庆明

信号与系统第三版课后答案燕庆明

信号与系统第三版课后答案燕庆明【篇一:信号与系统课后习题】t)?tf(t?td),tf(t?t0)?yf(t?t0)?,yf(t?t0)?(t?t0)f(t?t0)。

(3)令g(t)?f(t?t0),t[g(t)]?g(?t)?f(?t?t0),tf(t?t0)? yf(t?t0),yf(t?t0)?f(?t?t0)1.2.已知某系统输入f(t)与输出y(t)的关系为y(t)?f(t)判断该系统是否为线性时不变系统?解:设t为系统运算子,则y(t)可以表示为y(t)?t[f(t)]?f(t),不失一般性,设f(t)?f1(t)?f2(t)t[f1(t)]?f1(t)?y1(t),t[f(t)]?f1(t)?f2(t)?y(t),显然其不相等,即为非线性时不变系统。

df(t)t??f(x)dx(2):[y(t)]2?y(t)?f(t) 1.3判断下列方程所表示系统的性(1):y(t)?0dt(3):y(t)?2y(t)?3y(t)?f(t)?f(t?2)(4):y(t)?2ty(t)?2y(t)?3f(t) 线性非线性时不变线性时不变线性时变1.4。

试证明方程y(t)+ay(t)=f(t)所描述的系统为线性系统。

证明:不失一般性,设输入有两个分量,且f1(t)→y1(t),f2(t)→y2(t) 则有y1(t)+ay1(t)=f1(t),y2(t)+ay2(t)=f2(t) 相加得y1+ay1(t)+y2(t)+ay2(t)=f1(t)+f2(t) 即d[y1(t)+y2(t)]+a[y1(t)+y2(t)] dt=f1(t)+f2(t)可见f1(t)+f2(t)→y1(t)+y2(t)即满足可加性,齐次性是显然的。

故系统为线性的。

1.5。

证明1.4满足时不变性。

证明将方程中的t换为t-t0,t0为常数。

即y(t-t0)+ay(t-t0)=f(t-t0) 由链导发则,有dy(t?t0)? dtd(t?t0)dy(t?t0)d(t?t0)dy(t?t0)dy(t?t0)?1从而又因t0为常数,故所以有 ??dtd(t?t0)dtdtd(t?t0)dy(t?t0)?ay(t?t0)?f(t?t0)即满足时不变性f(t-t0)→y(t-t0) dty(t)?y(t?t0)f(t)?f(t??t)?所以?t?tlimf(t)?f(t??t)limy(t)?f(t?t0)既有 f(t)?y(t) ??t?0?t?0?t?t1.7 若有线性时不变系统的方程为y(t)+ay(t)=f(t)在非零f(t)作用下其响应y(t)=1-e-t,试求方程y(t)+ay(t)=2f(t)+f(t)的响应。

北理工-信号与系统-第三版-第三章-作业参考答案

北理工-信号与系统-第三版-第三章-作业参考答案
k 0



k
| u[k ] | ,有界
是非稳定系统
(e) 显然n<0时,h[n]=0,所以是因果系统;
k
| h[k ] | | u[k ] / n | ,无界
k


是非稳定系统
(f) 显然n<0时,h[n]=0,所以是因果系统;
| h[k ] |
(d)
y[n] x[n] h[n]
k
[k n ] [n k n ]
1 2

[n n1 n2 ]
3.11在LTI离散时间系统中 已知x[n]=u[n]时的零状态响应(单位阶跃响应)为s[n],求单位抽样响应h[n]; 已知h[n],求s[n].
y[n] - 4y[n-1] =2x[n]+3x[n-1];
令x[n]=δ[n],则有 h[n] – 4h[n-1] =2 δ[n]+3 δ[n-1];当n<0时,h[n]=0,得h[0]=2,h[1]=11,
特征方程为 λ-4=0, 得λ=4,
h[n]=c(4)nu[n],由h[1]=4c=11,c=11/4得 h[n]=(11/4)(4)nu[n-1]=11 (4)n-1u[n-1],考虑h[0]=2=2 δ[n],得 h[n]=2 δ[n]+11 (4)n-1u[n-1]。(n>0的解) (b).据图有同(a)一样的结果…。 (c).据图 y[n]=3y[n-1]- 2y[n-2]+ x[n]+2x[n-1]+x[n-2] ,即差分方程为 y[n] -3y[n-1]+2y[n-2] = x[n]+2x[n-1]+x[n-2], 先求

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
全响应:
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
代入初始条件yzi(0)=1,确定c=1,故有零输入响应:
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析

信号与系统第三版课后答案 (2)

信号与系统第三版课后答案 (2)

信号与系统第三版课后答案第一章信号与系统1.1 信号1.1.1 信号的定义信号是一种描述某一物理量随时间、空间或其他独立变量的变化规律的函数。

1.1.2 信号的分类•连续信号:在时间上是连续的。

•离散信号:在时间上是离散的。

1.1.3 常见信号•阶跃信号:以0为基准,在某一时刻突然发生变化。

•周期信号:在一定时间间隔内重复出现。

•高斯信号:以高斯分布函数描述的信号。

1.2 系统1.2.1 系统的定义系统是对信号进行处理的设备、电路或算法等。

1.2.2 系统的分类•线性系统:满足叠加性和齐次性的系统。

•非线性系统:不满足叠加性和齐次性的系统。

1.2.3 系统的性质•因果性:输出只依赖于当前时刻的输入。

•稳定性:只要输入有界,输出也有界。

•可逆性:存在逆系统将输出变为输入。

•时间不变性:不随时间的推移而改变。

第二章时域分析方法2.1 冲激响应和单位阶跃响应2.1.1 冲激响应冲激响应是指输入为单位冲激信号时,系统的输出。

2.1.2 单位阶跃响应单位阶跃响应是指输入为单位阶跃信号时,系统的输出。

2.2 系统的零点和极点2.2.1 零点零点是指当系统的输出为零时,输入所满足的条件。

2.2.2 极点极点是指当系统的输出为无穷时,输入所满足的条件。

2.3 系统的组合2.3.1 级联组合级联组合是指将两个系统串联,输出作为下一个系统的输入。

2.3.2 并联组合并联组合是指将两个系统并联,输入同时作为两个系统的输入,输出取两者之和。

第三章频域分析方法3.1 傅里叶级数展开3.1.1 傅里叶级数公式傅里叶级数公式是将周期信号分解为谐波成分的方法。

3.1.2 傅里叶级数系数的计算根据傅里叶级数公式,可以计算出各个谐波成分的幅值和相位。

3.2 傅里叶变换3.2.1 傅里叶变换定义傅里叶变换是将一个信号从时域转换到频域的方法,可以得到信号的频谱信息。

3.2.2 傅里叶变换的性质•线性性:对于常数和线性运算具有线性性质。

信号与系统第三版 第六章习题答案

信号与系统第三版 第六章习题答案
1
2 t 2
cos
2 2
t ]u (t )
6.13 一个因果LTI系统的频率响应为:
5 jw 7 H ( jw) ( jw 4)[( jw) 2 jw 1]
(a) 求该系统的冲激响应
(b) 试确定由一阶系统和二阶系统构成的串联型结构 (c)试确定由一阶系统和二阶系统构成的串联型结构 解:(a) 5 jw 7 1 jw 2
I 2 (w) 2 jw H ( jw) E (w) 8 jw 3
(b) 对H(jw)作反傅立叶变换可得h(t)
2 jw 1 H ( jw) 8 jw 3 4
h(t ) F 1{H ( jw)}
3 32 3 jw 8 3t 1 3 8 (t ) e u (t ) 4 32
(b) 对H(jw)作反傅立叶变换可得h(t)
3 3 3( jw 3) 2 H ( jw) 2 ( jw 2)( jw 4) ( jw 2) jw 4
3 2t h(t ) F {H ( jw)} (e e 4t )u (t ) 2 (c) 3( jw 3) 3 jw 9 Y ( w) H ( jw) 2 ( jw 2)( jw 4) ( jw) 6 jw 8 X ( w)
1 X ( w) ( jw 2) 2
Y (w) H ( jw) X (w)
2 Y ( w) 3 ( jw 2) ( jw 4)
1 1 4 2 3 ( jw 2) ( jw 2) ( jw 2) ( jw 4) 1 4 1 2
1 2t 1 2t 1 2 2t 1 4t y (t ) F {Y ( w)} ( e te t e e )u (t ) 4 2 2 4 2 2 ( jw ) 2 (c) H ( jw) ( jw) 2 2 jw 1

电子教案《信号与系统》(第三版)信号系统习题解答

电子教案《信号与系统》(第三版)信号系统习题解答

《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。

] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= t t i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S R S L S C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统第三版课后习题答案
信号与系统第三版课后习题答案
信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。

在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。

下面是信号与系统第三版课后习题的答案。

第一章:信号与系统的基本概念
1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。

系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。

2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。

离散时间信号是在离散时间范围内定义的信号,可以用数列表示。

3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。

非周期信号是指不具有周期性的信号。

4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。

偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。

5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。

6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。

7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。

第二章:连续时间信号与系统的时域分析
1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。

奇偶分解的目的是简化信号的处理和分析。

2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。

卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。

3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。

冲激响应可以用来描述系统的特性和性能。

4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。

单位阶跃响应可以用来描述系统的稳定性和响应速度。

5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。

单位斜坡响应可以用来描述系统的积分特性。

6. 系统的单位脉冲响应是指系统对于单位脉冲信号的输出响应。

单位脉冲响应可以用来描述系统的加权特性。

第三章:连续时间信号与系统的频域分析
1. 傅里叶级数展开是将周期信号展开为一系列正弦和余弦函数的和的过程。

傅里叶级数展开的目的是分析和处理周期信号。

2. 傅里叶变换是将连续时间信号分解为一系列正弦和余弦函数的和的过程。

傅里叶变换的目的是分析和处理非周期信号。

3. 系统的频率响应是指系统对于不同频率信号的响应特性。

频率响应可以用来描述系统的滤波特性和频率选择性。

4. 系统的幅频特性是指系统对于不同频率信号的幅度响应特性。

幅频特性可以用来描述系统对于不同频率信号的衰减或放大程度。

5. 系统的相频特性是指系统对于不同频率信号的相位响应特性。

相频特性可以
用来描述系统对于不同频率信号的相位延迟或提前程度。

6. 系统的群延迟是指系统对于不同频率信号的延迟时间特性。

群延迟可以用来描述系统对于不同频率信号的传输速度。

通过对信号与系统第三版课后习题的答案的学习和理解,我们可以更好地掌握信号与系统的基本概念、时域分析和频域分析方法。

这将有助于我们在实际工程中应用信号与系统的知识,解决实际问题。

希望以上内容对大家的学习有所帮助。

相关文档
最新文档