不同植被条件下土壤团聚体中氮素分布特征分析研究
第三章-土壤氮素与环境

2、来自大气的干湿沉降
干湿沉降作用到达地表的NO2有0.4亿1.16亿吨,铵态氮为1.1亿~2.4亿吨,但各地 区的干湿沉降的差异很大。干湿沉降的氮一部 分直接进入河、湖等集水区,一部分参与土壤 氮循环,还有一部分汇入城市径流。
(2)虽然反硝化作用可以在较宽的温度范围内进行,但温度过高或过低 都不利于反硝化的进行;
(3)反硝化微生物需要有机物质作为电子供体和细胞能源,因此土壤中 的生物有效性直接影响反硝化速率;
(4)研究发现,免耕能促进反硝化作用,主要是与免耕时作物残茬的覆 盖有利于土壤保持较多的水分和提供能源物质有关;
(5)由于植物根系分泌物和脱落物进入土壤增加了碳源,以及植物根系 的活动使根系周围土壤的通气状况和水分条件以及pH与根外土壤不同, 因此植物根系能提高反硝化作用;
(6)氮肥施用量高时反硝化量明显高。
氮的吸附
土壤中各种形态的氮化合物,如氨态氮、硝态氮、有机态氮等均 能和土壤无机固相部分相互作用,被吸附或固定,在这三种形态 中,研究得比较多的是氨态氮和有机氮与土壤固相的作用。至于 硝态氮和亚硝态氮则一般被认为是带负电荷,吸附量甚微,或甚 至有负吸附现象。土壤固体部分对氨态氮的吸附可分为物理吸附、 化学吸附和物理化学吸附等几种类型。
环境科学等多个研究领域密切关注的问题。
土壤氮素由有机态氮和无机态氮组 成。前者为与碳结合的含氮物质.后者 为未与碳结合的含氮物质
在表层土中,有机态氮占土壤全氮的 90%左右,随看土层深度的加深.这一 比率迅速降低。
土壤无机态氮
土壤无机态氮包括铵态氮、硝态氮、亚硝态氮、氮氧化物、氮气 等。铵态氮可分为土壤溶液中的铵,交换性铵和粘土矿物固定态 铵.固定态铵存在于2:l粘土矿物晶层间.其含量主要决定于土 壤的粘土矿物类型和土壤质地。对具有固定铵能力的土壤来说, 它是土壤中无机态氮的主体。硝态氮和亚硝态氮一般存在于土壤 溶液中,在一般土壤中亚硝态氮含量极低。
土壤氮素循环

[1]王晓蓉•环境化学•南京大学出版社,2005.氮的基态电子构型为 1s 22s 22p 3,有5个价电子,氧化态从一3到+ 5。
氮在地壳中的百分含量为0.0046%,大部分以氮分子的形式存在于大气中。
已知氮有 7种同位素,质量数 12- 18。
天然存在的稳定同位素有 14N 和15N ,丰度比为273:1。
其它五种均为放射性同位素,寿命最长 的13N 半衰期近10min 。
土壤氮素含量与分布自然土壤中氮素的含量分布有明显的地带性,与自然条件特别是气候条件相关。
耕地土壤 的氮素含量受人为因素的强烈影响。
土壤中氮的含量范围为: 0.02-0.5%,表层土壤和心、底土的含量相差很大。
一般耕地土壤有机质和氮素含量自亚表层以下锐减。
土壤氮含量在剖面中分布状况各异,主要与有机质的分布有关。
影响进入土壤的有机质的 数量和有机质分解的因素,包括水热条件、土壤质地等,都对土壤有机质和氮素含量产生显著 影响。
例在太湖平原,黏壤质中性潴育性水稻土的有机质和氮素含量分别为 25.8g/kg 和1.59g/kg , 而质地较轻粗的石灰性的潴育性水稻土仅分别为 19.2g/kg 和1.16g/kg 。
氮素,作为植物矿物质营养之首:作物中积累的氮素约有 50%系来自土壤,个别土壤上该 值超过70%。
分子氮分子氮不活泼,室温下仅能与型反应如下:N 2+ 3H 2 T 2NH 3N 2+ 02 T 2NON 2 + 3Mg T Mg 3N 2N 2 + CaC 2 T C + CaCN 2土壤中存在的氮的形态:无机态氮土壤中的无机态氮占的比例虽小,去卩是植物氮营养的直接形态,意义特别重要。
分子态埶 (大"于)无机态氮(土壤于)Li 反应,生成Li 3N 。
提高温度,加催化剂后,分子氮的典殆用目前我国氮肥施用也以无机态氮为主。
无机态氮包括固定态铵、交换性铵(包括土壤溶液中铵)硝态氮、亚硝态氮、氮氧化物和氮气,在土壤中占全氮的比例变幅较大,一般在2- 8%。
长期连作棉田不同种植模式下土壤团聚体组成及其有机碳分布特征

土壤团聚体是土壤结构的基本单元,对土壤的物理化学性质均具有重大影响[1-2]。
土壤团聚体通常被划分为大团聚体(>250um)和微团聚体(<250um)[3],不同粒级团聚体在土壤结构的改善和有机碳的固定中的作用不同。
耕作措施对土壤团聚体的影响主要是改变了土壤有机碳的分布和微生物的活动生境,为土壤有机物质的分解转化创造条件,从而造成了团聚体的变化[4]。
许多研究认为,耕作方式通过影响大团聚体与微团聚体之间的转化和再分布[5],进而影响土壤结构稳定性和抗侵蚀能力[6]。
免耕和少耕等保护性耕作措施有利于团聚体含量的增加,表层土壤结构的改善[7-9],但耕作方式对团聚体的土壤物理性质的影响会因气候条件、土壤质地和植被类型等的变化而不一样。
合理的耕作措施,对于增加土壤有机碳的固定,提高土壤肥力具有重要的理论和实践意义。
新疆北疆地区玛纳斯河流域棉花面积从1978年的14.97×103ha发展至2010年的176.25×103ha,部分区域棉田占总播种面积的70%[10]。
由于棉田面积的不断扩大,农业生产结构趋于单调,轮作倒茬困难,棉田大面积长期连作现象普遍,短则8~10年,长则15~20年,甚至更长。
大面积棉田多年连作的结果,使土壤肥力消耗很快,地力明显下降,对农田生态系统产生重要影响。
本研究以长期连作棉田为对象,分析大豆轮作、玉米轮作、玉米/大豆间作和休闲免耕种植模式对土壤有机碳团聚体组成及有机碳分布的影响,并运用土壤团粒指数(ELT)指标分析不同种植模式对长期棉田连作土壤团聚体稳定性的影响。
研究结果明确不同轮作模式对长期连作棉田土壤质量的变化,为采用有效的土壤管理措施以提高新疆棉田土壤质量提供科学依据。
1 材料与方法1.1 研究区概况试验始于2012年4月,在新疆石河子地区西古城镇选择长期连作棉田(20年),试验田的位置是北纬45°06′99″,东经86°13′56″,高程328m。
不同耕作方式下土壤氮素矿化和硝化特征研究

3 O℃ > 5℃。保护性耕作与水旱轮作和 常规平作之间的矿化量存在显著的差异 ,垄作免耕> 2 厢作免耕> 水旱轮作> 常规平作 。 土壤氮素最终硝化率达到了 6 %~8 %,表现为常规平作最高 ,水旱轮作次之 ,厢作免耕最低 。矿化率与土壤有机质 、碱解 0 0 氮和速效磷对数均成显著正相关 ,相关系数分别为 : .9 = . ,,= . ,p 09 ,, 09 7 09 H是影响硝化作用 的重要 因素 ,硝化率与 土 6
所需氮素的重要过程 ,硝化作用是氮素转化的另一 个重 要过程 ,硝化率 是确 定潜 在氮 素损失 的一个 关 键因子【,因此研究土壤氮素矿化具有极其深远 的 2 J 意义 。而影 响土壤 氮素 矿化 的因素 有很 多 ,其 中温 度是最主要的影响因素之一 ,除此之外 ,土壤理化 性质 、土壤 p H、土壤团聚体 、温度、湿度交互效 应等都被大量研究证明影响矿化作用。李辉信【 3 】 等 研究红壤氮素矿化 和硝化特征表 明矿化和硝化速 率与土壤 p H、速效磷含量和有机质含量成正相关 , 张云舒I 0 指出灰漠土硝化率与土壤 p 呈显著正 】 贝 H 相关 。而 沈玉 芳 l 和周才 平 等 I的研 究 表 明温 度 5 J 等 6 J 和 水 分 对 不 同 土层 土壤 氮 素 矿 化 具 有 明 显 正 交 互 作用, 并非单一影响土壤氮素矿化和硝化作用。 从 国内外相关 文 献可知 ,目前有 关不 同耕 作方 式对 土壤氮 素矿 化影 响特征 的研 究报道 还不 多见 。 本文采用恒温通气培养法,研究 了长期定位试验田 不 同耕作方式下土壤氮素矿化 和硝化特征及其对 温 度 的响应 ,以期 阐明不 同耕作方 式 对土壤 氮 素矿 化 影响 ,为农业 的可持续 发展 提供 科学 依据 。
不同植被条件下土壤团聚体的分布特征及稳定性分析

草地植被
草地植被对土壤团聚体的影响主要体现在对土壤结构的改 善和土壤质量的提升上。草地植被的根系和地上部分的残 余物能够提供有机质,促进微生物活动,改善土壤结构, 提高土壤团聚体的稳定性。
草地植被还能够通过减缓地表径流、减少土壤侵蚀等作用 ,保护土壤团聚体不被破坏。此外,草地植被的根系还能 够固结土壤,增强土壤的抗侵蚀能力。
能具有重要影响。
植被类型和覆盖度是影响土壤团 聚体分布和稳定性的重要因素。
不同植被条件下,土壤团聚体的 分布特征和稳定性存在差异,对 土壤质量和生态系统的健康具有
重要影响。
研究目的与意义
01
揭示不同植被条件下土壤团聚体的分布特征和稳定性规律。
02
探讨植被类型和覆盖度对土壤团聚体形成和稳定性的影响机制。
团聚体类型分布
团聚体类型分类
土壤团聚体可分为水稳性和非水稳性两大类。水稳性团聚体在土壤水分的作用下不易分散,而非水稳 性团聚体则较易分散。
植被类型对团聚体类型的影响
森林土壤中水稳性团聚体的含量较高,而农田土壤中非水稳性团聚体的含量较高。这可能与不同植被 条件下土壤有机质和微生物的分布有关。
团聚体稳定性分布
土壤pH值
总结词
土壤pH值对团聚体稳定性具有显著影响,通常在适宜的 酸碱度范围内能够提高团聚体的稳定性。
详细描述
在适宜的酸碱度范围内,土壤中的矿物质和有机质能够 更好地发挥其作用,促进土壤颗粒之间的粘结和稳定。 然而,过酸或过碱的土壤条件会破坏土壤结构,降低团 聚体的稳定性。例如,酸性土壤中过多的铝离子会与多 糖等物质发生反应,降低其粘结力;而碱性土壤中过多 的钙离子则会使土壤颗粒变得更加松散和不稳定。
针对农业活动区土壤团聚体稳定性较低的问题,未来研究可以探讨农业可持续管理措施对提高土壤团聚 体稳定性的作用,为农业可持续发展提供科学依据。
土壤团聚体研究进展

土壤团聚体研究进展一、本文概述土壤团聚体作为土壤结构的基本单元,对土壤肥力、水分保持、生物活动以及整体土壤生态系统的健康至关重要。
随着全球气候变化、农业集约化和土地退化等问题的加剧,土壤团聚体的稳定性和功能性受到了广泛关注。
本文旨在全面综述土壤团聚体的研究进展,包括其形成机制、影响因素、稳定性评估方法以及调控措施等。
通过深入了解土壤团聚体的研究进展,可以为土壤改良、土地复垦和农业可持续发展提供理论支撑和实践指导。
本文首先对土壤团聚体的基本概念和分类进行介绍,明确团聚体在土壤中的重要作用。
随后,综述了团聚体形成和稳定的机制,包括微生物活动、根系作用、有机无机复合等因素。
接着,分析了影响团聚体稳定性的内外因素,如气候、土壤类型、土地利用方式、管理措施等。
在此基础上,总结了评估团聚体稳定性的常用方法,如粒径分布、微形态观察、稳定性指数等。
探讨了调控土壤团聚体稳定性和功能性的措施,包括合理的土地利用规划、农业管理措施、生物修复技术等。
通过本文的综述,旨在为相关领域的研究者和实践者提供全面的土壤团聚体知识体系,促进土壤科学的发展和应用。
也为解决当前面临的土壤退化问题、推动农业可持续发展提供有益的参考和借鉴。
二、土壤团聚体的形成与稳定机制土壤团聚体是土壤中重要的结构体,其形成与稳定机制一直是土壤学研究的热点。
团聚体的形成是一个复杂的物理化学过程,涉及土壤颗粒间的相互作用、有机质的分解与转化、微生物的活动等多个方面。
土壤团聚体的形成首先依赖于土壤颗粒间的凝聚力。
这种凝聚力主要由土壤中的黏粒提供,黏粒间的静电引力、范德华力以及化学键合作用使得土壤颗粒能够相互黏结,形成初步的团聚体结构。
随着团聚体的发育,有机质和微生物的作用逐渐凸显。
有机质是团聚体形成和稳定的关键因素之一。
一方面,有机质通过其表面的官能团与土壤颗粒发生吸附作用,增强了颗粒间的凝聚力;另一方面,有机质在分解过程中会产生多糖、蛋白质等有机胶体,这些胶体物质能够填充土壤颗粒间的空隙,形成稳定的团聚体结构。
第四章 土壤氮的分析

第四章土壤氮的分析4.1概述土壤中氮素绝大多数为有机质的结合形态。
无机形态的氮一般占全氮的1~5%。
土壤有机质和氮素的消长,主要决定于生物积累和分解作用的相对强弱、气候、植被、耕作制度诸因素,特别是水热条件,对土壤有机质和氮素含量有显著的影响。
从自然植被下主要土类表层有机质和氮素含量来看,以东北的黑土为最高(N,2.56~6.95 g·kg-1)。
由黑土向西,经黑钙土、栗钙土、灰钙土,有机质和氮素的含量依次降低。
灰钙土的氮素含量只有(N,0.4~1.05g·kg-1)。
我国由北向南,各土类之间表土0~20cm中氮素含量大致有下列的变化趋势:由暗棕壤(N,1.68~3.64g·kg-1)经棕壤、褐土到黄棕壤(N,0.6~1.48g·kg-1),含量明显降低,再向南到红壤、砖红壤(N,0.90~3.05g·kg-1),含量又有升高。
耕种促进有机质分解,减少有机质积累。
因此,耕种土壤有机质和氮素含量比未耕种的土壤低得多,但变化趋势大体上与自然土壤的情况一致。
东北黑土地区耕种土壤的氮素含量最高(N,1.5~3.48g·kg-1),其次是华南、西南和青藏地区,而以黄、淮、海地区和黄土高原地区为最低(N,0.3~0.99g·kg-1)。
对大多数耕种土壤来说,土壤培肥的一个重要方面是提高土壤有机质和氮素含量。
总的来讲,我国耕种土壤的有机质的氮素含量不高,全氮量(N)一般为1.0~2.09g·kg-1。
特别是西北黄土高原和华北平原的土壤,必须采取有效措施,逐渐提高土壤有机质的氮素含量。
土壤中有机态氮可以半分解的有机质、微生物躯体和腐殖质,而主要是腐殖质。
有机形态的氮大部分必须经过土壤微生物的转化作用,变成无机形态的氮,才能为植物吸收利用。
有机态氮的矿化作用随季节而变化。
一般来讲,由于土壤质地的不同,一年中约有1~3%的N释放出来供植物吸收利用。
松嫩平原不同土地利用类型土壤团聚体分布及碳氮磷化学计量特征研究

Journal of Northeast Agricultural University东北农业大学学报第51卷第12期51(12):32~402020年12月December 2020松嫩平原不同土地利用类型土壤团聚体分布及碳氮磷化学计量特征研究刘骞1,许明月1,魏思雪1,王溢琨1,王紫含1,张博1,汤洁2*(1.长春大学园林学院,长春130022;2.吉林大学新能源与环境学院,长春130012)摘要:为揭示松嫩平原不同土地利用类型对土壤团聚体特征和碳氮磷的影响,以松嫩平原内水田(W1)、旱田(W2)、湿地(W3)、草地(W4)为研究对象,研究其土壤团聚体组成及碳、氮、磷化学计量特征。
结果表明,不同土地利用类型盐碱土壤团聚体主要组成及其碳、氮、磷含量主要集中在≥0.5mm 和0.088~0.105mm 粒级,土壤结构良好,有利于团聚体对土壤养分物理保护并促进碳氮磷积累。
4种土地利用类型下,≥0.5mm 、0.25~0.5mm 团聚体有机碳与全氮、全磷均呈显著正相关,而湿地、草地土壤0.105~0.25mm 、0.088~0.105mm 团聚体有机碳与全氮、全磷均呈显著正相关,其团聚体碳氮磷对土壤养分具有良好指示性作用。
关键词:盐碱土壤;团聚体;土地利用类型;碳氮磷化学计量特征中图分类号:S156文献标志码:A文章编号:1005-9369(2020)12-0032-08刘骞,许明月,魏思雪,等.松嫩平原不同土地利用类型土壤团聚体分布及碳氮磷化学计量特征研究[J].东北农业大学学报,2020,51(12):32-40.DOI :10.19720/ki.issn.1005-9369.2020.12.004.Liu Qian,Xu Mingyue,Wei Sixue,et al.Study on distribution of soil aggregates and their carbon,nitrogen and phosphorus stoichiometric characteristics of different land use types in Songnen Plain[J].Journal of Northeast Agricultural University,2020,51(12):32-40.(in Chinese with English abstract)DOI :10.19720/ki.issn.1005-9369.2020.12.004.Study on distribution of soil aggregates and their carbon,nitrogen and phosphorus stoichiometric characteristics of different land use types in Songnen Plain/LIU Qian 1,XU Mingyue 1,WEI Sixue 1,WANG Yikun 1,WANG Zihan 1,ZHANGBo 1,TANG Jie 2(1.School of Gardens,Changchun University,Changchun 130022,China;2.School of New Energy and Environment,Jilin University,Changchun 130012,China)Abstract:In order to reveal the effects of different land use types on the characteristics of soilaggregates and carbon,nitrogen and phosphorus in Songnen Plain,paddy fields (W1),dry fields (W2),wetland (W3)and wasteland (W4)in Songnen Plain were taken as the research objects to study the composition of soil aggregates and the stoichiometric characteristics of carbon,nitrogen and phosphorus.The results showed that the main composition of saline-alkali soil aggregates and their contents of carbon,nitrogen and phosphorus were mainly concentrated in aggregates ≥0.5mm and 0.088-0.105mm.The soil structure was good,which was conducive to the physical protection of soil nutrients by aggregates and the promotion of the accumulation of carbon,nitrogen and phosphorus.Under the four land use types,≥0.5mm,0.25-0.5mm aggregate organic carbon and the total nitrogen,the total phosphorus showed significant positive correlation,while the wetland and grassland soil was收稿日期:2020-08-14基金项目:长春大学国家科研基金培育项目(Z20160915);国家自然科学基金项目(41471152)作者简介:刘骞(1982-),女,讲师,博士研究生,研究方向为土壤养分资源利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同植被条件下土壤团聚体中氮素分布特征研究1 立题依据土壤团聚体是土壤结构最基本的单元,是土壤的重要组成部分和土壤肥力的物质基础,对土壤的许多理化性质和生物学性质都有着重要影响。
土壤氮是最易耗竭和限制植物生长的营养元素之一。
林地长期持续的生产力来自于土壤营养的持续供应<Burton J, Chen C, Xu Z H, GhadiriH,2007)。
土壤中氮的形态包括有机氮和无机氮。
有机氮是土壤中氮的主要部分,一般占土壤全氮量的92~98% ,土壤中的无机态氮主要包括铵态氮、硝态氮、亚硝态氮和氮气<袁可能,1983)。
土壤中的含氮有机物主要来自动植物残体、根分泌物以及微生物。
土壤科学工作者在研究土壤氮素方面做了大量工作,基本明确了土壤氮素转化及损失机理<李贵桐等2002;催远来,2004)。
国内外在土壤氮库及其在土壤不同团聚体中分布研究也取得了显著进展,Christensen等<Christensen B T,1998),发现,3种土壤施用秸秆后其不同粒级团聚体中的含氮量发生了变化。
研究表明土壤有机质和氮素的分解与积累有一定的相关性,不同肥料配合施用对土壤氮素盈亏分布有影响<马成泽等,1993)。
因此植被与土壤氮素的关系也愈来愈受到研究者的重视<Berendse F,1999)。
不同植被条件下的土壤环境不同,土壤结构和土壤养分含量也不同,因此系统研究岷江上游山地森林-干旱河谷区不同植被条件下土壤团聚体中氮素分布将为探索和研究该区域土壤特征提供理论依据。
同时结合土壤环境,揭示不同植被条件下土壤团聚体氮素的特征,将有助于我们了解土壤环境状况,对当地实现土壤的可持续利用具有重要的现实意义。
2 国内外研究现状氮素是地球上生物的重要生源要素,长期以来人类一直从生物圈生态发展和满足人类食物需求的角度加以研究和利用,但是为了提供足够的氮素,人工是施加的氮素也对农田生态系统等造成了一定的污染合理的利用氮素是现代农业的必要手段<刘雪琴等,2006;刘宏斌,2006;杨玉慧,2006),因此自20世纪70年代以来,国内外对农业面源污染与氮素流失的研究一直是热点问题<黄满湘,2003)。
现在人们开始着眼于林地草地土壤氮素的各种研究,土壤氮素在林地草地植被恢复起着中重要作用<李裕元等,2009)。
2.1土壤团聚体土壤团聚体的形成是一个复杂的物理、化学及生物化学过程,详细的机理目前尚不完全清楚<文倩,2004)。
纵观过去70a的研究结果,团聚体的形成主要有两种不同的观点。
Elliott(1998>认为大团聚体首先形成,小团聚体再形成于大团聚体内部的有机质颗粒周围;或当有机质分解,大团聚体破碎后直接形成小团聚体。
Tisdall(1994>和Lades(1991>认为大团聚体是微团聚体形成后在根系和菌丝的缠绕作用下形成的。
可见,土壤颗粒的团聚是生命和非生命物质共同作用的结果,即有机无机复合体是团聚体形成的基础)。
土壤团聚体是土壤功能的重要指标,其稳定性是土壤生态系统的综合参数,是土壤对径流和侵蚀敏感性的有效指示因子。
目前对于土壤团聚体的研究主要集中在黄土高原、西南土石山区及川中丘陵区等区域,对于岷江上游干旱河谷地区不同植被条件下土壤团聚体分布特征及其稳定性研究较少。
郑子成等(2018>研究了不同土地利用方式下土壤团聚体中养分的分布特征,结果表明,不同土地利用方式下土壤团聚体均以> 2 mm 粒径为主,0.5-0.25mm 粒径团聚体含量最少,不同土地利用方式下土壤有机碳,全氮、全磷、全钾,速效氮、速效钾在团聚体中的分布存在一定差异。
何淑勤等<2018)研究了在不同土地利用方式下土壤团聚体的分布及中其有机碳含量的变化,结果表明,不同土地利用方式下土壤团聚体的分布均以> 2.00 mm团聚体为主, 其它依次为0.5~1,1~ 2, < 0.25和0.25~0.5 mm粒径的团聚体。
在黄土丘陵区,植被恢复初期,土壤>10mm粒级的团聚体含量在0~20 和20~40 cm 层次均较高,含量为331.4~525.6 g/ kg。
随植被恢复年限增加,10~7、7~5、5~3、3~2、2~1 mm 粒级的团聚体绝对含量下降差异不明显<安韶山等,2008)。
植被恢复后土壤有机质提高,促进了团聚体的形成,并提高了团聚体的稳定性<彭新华等,2003;王清奎等,2005),同时团聚体稳定性是土壤的基本性质,反映了土壤肥力的高低<石辉,2006)。
2.2土壤团聚体中的氮素土壤中的氮包括有机态和无机态两大类,其中90%以上是有机态氮,无机态氮含量不到10%<郭群召,2004)。
根据对作物的有效性,土壤中的有机氮可分为两类,一类是植物难以利用甚至无效的氮,含量高达80%,他们很稳定,难以被微生物分解。
另一类是对植物有效的有机氮,这类氮存在于土壤中死的或活的生物体中,或刚从生物体中游离出来尚未被矿化,主要有蛋白质、核酸、氨基酸、酰胺和氨基糖,它们极容易被矿化,是土壤有效氮的主要来源。
土壤中的无机氮包括NO3-、NO2-和NH4+,NH4+又包括交换态和固定态,其中不能被植物直接利用的固定态的NH4+约占无机氮的50%以上。
所以,植物可以直接利用的NO3-、交换态NH4+和极少量的小分子有机态氮,仅占全氮的1%左右(张金波等,2004>。
氮是作物生长发育所需的生命元素,是构成生命物质—蛋白质的主要成分,缺氮往往使植株生长速率变慢,植株变弱,茎杆细小,叶片小而黄,产量和品质降。
植株吸收的氮素主要来自土壤和肥料,其中约有50%来自土壤的氮素,某条件下甚至达70%以上。
氮素是作物需求量最大、必不可缺少的矿质元素,也是作物生产重的限制因子<王西娜,2008)。
旱地分期施用氮肥可以一定量的提高小麦产量和品质, 施氮水平对小麦植株氮素吸收、利用和籽粒产量、品质形成有很大的影响<王渭玲,1996。
周筑南,2004)。
玉M秸秆肥配施化肥对土壤氮素的调节也有重要作用,同时在培养条件下,土壤中亚硝态氮主要来源于土壤硝化过程,且高浓度的亚硝态氮能在土壤中长时间累积<颜丽等,1992)。
我国13种主要土壤中硝态氮的“S”形曲线方程模拟得出,土壤最大硝化作用速率(Kmax>以黄绵土最高,其次是红油土,以砖红壤为最小。
硝态氮累积达到最大需要的时间(t>以水稻土为最长,其次是砖红壤和棕壤,以燥红土和淤灌土最小。
亚硝态氮的峰值浓度以褐土最高,其次是淤灌土;黑土、黄壤和棕壤在培养过程中几乎未检测到亚硝态氮<鲍俊丹,2009)。
为了提供足够的氮素,人工是施加的氮素也对农田生态系统等造成了一定的污染,合理的利用氮素是现代农业的必要手段<刘雪琴等,2006;刘宏斌,2006;杨玉慧,2006)同时,氮素存在循环。
这一循环是开放的,它与大气和水体等外界环境进行着复杂的交换<朱兆良,1992)。
3 研究目标及内容3.1研究目标本研究以岷江上游山地森林干旱河谷区不同植被条件下土壤为对象,开展不同植被条件下土壤团聚体中全氮及碱解氮的分布特征研究,弄清不同植被条件及不同土层土壤土各粒级团聚体中全氮及碱解氮含量的影响,以期为了解该区域的生态系统土壤特征及对生态环境的恢复与重建等方面提供一定依据。
3.2 研究内容<1)不同植被条件下土壤各粒级团聚体中全氮的分布特征<2)不同植被条件下土壤各粒级团聚体中碱解氮的分布特征<2)不同植被条件及不同土层对各粒级团聚体中全氮及碱解氮分布的影响4 研究方案4.1 研究区简况研究区域位于四川省西部理县干旱河谷的典型地带杂谷脑河支流,是典型的岷江上游山地森林/干旱河谷区域。
该地区属于典型的高山峡谷区,地质结构属龙门山断裂带中段,平均海拔2700m,是川西平原与青藏高原的过渡地带,气候具有明显干湿季、日温差大,属于山地季风气候,由于受西风急流南支、东南季风和西南季风的共同影响,加上复杂的地形、地貌和海拔高差,导致水热重组,垂直气候带明显具有典型的干旱河谷气候。
土壤以旱生灌木草丛植被下发育的山地燥褐土为主,pH值7.4~8.4。
由于当地的山地燥褐土土体中常夹着大量岩石硝屑和游离碳酸钙,粗粉粒比重达51.22%~57.90%,土壤结构不良,结构紧实致密,故通气透水和蓄水肥性较差,使植物很难定居,进而加速生态环境的更加恶化。
植被以旱生灌丛为主,为适应干燥环境。
植物呈现丛生、根深、叶小、具刺、被毛、低矮或匍匐的性状,植物体部分或全部卷曲、肉质化、分泌挥发油等荒漠化半荒漠化特征,主要建群种有白刺花(Sophoradavidiana>、虎榛子(Ostryopsis davidiana>、铁杆蒿(Artemisiagmelinii>、川甘亚菊(Ajania potaninii>、光果莸(Caryopteristangutica>等。
沿河谷逆流而上,植被类型分布出现:乔木林-高灌木-矮灌木-半灌木-丘状矮小半灌木-半灌木-矮灌木-高灌木-乔木林。
从两侧谷坡垂直往上,植被带谱也很清晰。
由于受海拔高度的影响,理县干旱河谷区由低到高形成明显而完整的垂直植被带谱。
4.2样品的采集基于对研究区海拔、坡度、坡位、坡向、植被类型及土地利用方式等因素的调查,分别选择最具代表性区域,在每一个样地内按“S形”布5点,分别采集0~10cm,10~20cm土层约2kg混合土样,装入硬质饭盒中带回实验室,自然风干后用来测定团聚体组成、数量及稳定性。
另外,利用环刀和铝盒采集土壤,带回实验室以便测定土壤容重、总孔隙度、饱和含水量、毛管持水量等。
4.3 测定的工程及方法4.3.1土壤团聚体土壤团聚体采用沙维诺夫法分级<干筛法)<中国科学院南京土壤研究所主编,1978),即将自然风干的土壤除去植物残体及小石块后,称取500 g放置在最大孔径土壤筛<5 mm)上面,套筛下面土壤筛孔径依次为2、1 、0.5和0.25 mm,底层放置底盒,以备收取<0.25 mm团聚体。
将盛土套筛放在干筛振荡机上振荡 5 min后,从上至下依次取样,称重,求得团聚体组成。
4.3.2全氮称取风干土样<0.25mm)约1.0g<含氮约1mg左右),放入干燥的50ml开氏瓶中,加入1.1g混合催化剂<硫酸钾100g,硫酸铜10g及硒1g,分别研磨成粉,再混合均匀。
)注入3ml浓硫酸,摇匀,盖上小漏斗,放在电炉上,开始用小火徐徐加热,待泡沫消失,再提高温度<注意防止作用过猛),然后微沸消煮,当消煮液呈灰白色时,可加高温度,待完全变成灰白稍带绿色时,再继续消煮1h。