函数的极值与导数公开课说课稿
函数的极值与导数说课

学情分析
在前面的学习中,学生已经学习了导数,了解 了导数的一些用途,思想中也有了一点运用导数的基 本思想去分析和解决实际问题的意识,本节课利用导 数知识求可导函数的极值,将继续加强这方面的意识 和能力的培养。不过鉴于学生在导数的应用方面水平 普遍偏低,理解和应用知识的能力还是不足,所以在 教学中,有必要从基础入手,指导学生先做到对解题 方法和步骤的机械模仿,在此基础上,努力提升认识 水平,力争让尽可能多的学生达到知识的融会贯通。
教学目标
知识与技能
1.掌握函数极值的定义,会从几何图形直观理解函数的 极值与其导数的关系,增强学生的数形结合意识,提 升思维水平;
2.掌握利用导数求可导函数的极值的一般方法及步骤.
过程与方法
1.培养学生运用导数的基本思想去分析和解决实际问 题的能力; 2.培养学生观察、分析、探究、归纳得出数学概念和 规律的学习能力.
2.函数的极大值一定大于极小值吗? 3.在区间内可导函数的极大值和极小值是唯一的吗?
小组讨论,解疑合探
(一)小组合探
小组内讨论解决自探中未解决的问题.
(二)小组展示
教师选择一个小组的同学展示讨论结果.
(三)评价
1.学生评价; 2.教师评价.
Hale Waihona Puke 深入学习,质疑再探对于刚才的学习内容,谁还有什么问题或 不明白的地方,请提出来,大家一起来解决!
为了提高课堂教学效率,我采用多媒体辅助教学.本节课的 学习效果主要通过学生回答问题和展示探究结果来检验,还要 通过做相应的练习题进行巩固.
创设情境,设疑自探 小组讨论,解疑合探 深入学习,质疑再探 练习巩固,运用拓展 课堂小结,课后作业
教 学 过 程 与 设 计
创设情境,设疑自探
函数的极值说课稿

函数的极值说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“函数的极值”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“函数的极值”是高中数学选修 1-1 第三章《导数及其应用》中的重要内容。
函数的极值是函数单调性的一个重要应用,它反映了函数在某一点附近的局部性质。
通过对函数极值的学习,学生能够更深入地理解导数与函数的关系,进一步提高运用导数解决实际问题的能力。
本节课在教材中的地位和作用主要体现在以下几个方面:1、承上启下:函数的极值是在学生已经学习了函数的单调性和导数的基础上进行的,它是对导数应用的进一步深化,同时也为后续学习函数的最值奠定了基础。
2、培养能力:通过对函数极值的探究,有助于培养学生的观察能力、分析问题和解决问题的能力,以及数学思维能力。
3、实际应用:函数的极值在实际生活中有着广泛的应用,如优化问题、经济问题等,能够让学生体会到数学与实际生活的紧密联系。
二、学情分析授课对象为高二年级的学生,他们已经掌握了函数的单调性和导数的基本概念和运算,但对于函数极值的概念和求法还比较陌生。
在思维能力方面,高二学生具备了一定的抽象思维和逻辑推理能力,但对于复杂问题的分析和解决还需要进一步的引导和训练。
此外,学生在学习过程中可能会遇到以下困难:1、对极值概念的理解不够准确,容易与最值概念混淆。
2、在运用导数求极值的过程中,可能会出现计算错误或忽略定义域等问题。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解函数极值的概念,能够区分极值与最值。
(2)掌握利用导数求函数极值的方法和步骤。
2、过程与方法目标(1)通过观察函数图象,引导学生发现函数极值的存在,培养学生的观察能力和归纳能力。
(2)通过求解函数的极值,让学生体会导数在研究函数性质中的作用,提高学生运用导数解决问题的能力。
函数的极值与导数(教案)

函数的极值与导数(教案)第一章:极值的概念教学目标:1. 理解极值的概念;2. 能够找出函数的极值点;3. 能够判断函数的极值类型。
教学内容:1. 引入极值的概念;2. 讲解极值的判断方法;3. 举例讲解如何找出函数的极值点;4. 讲解极大值和极小值的概念;5. 举例讲解如何判断函数的极大值和极小值。
教学活动:1. 引入极值的概念,引导学生思考什么是极值;2. 通过示例讲解如何找出函数的极值点,引导学生动手尝试;3. 讲解极大值和极小值的概念,引导学生理解极大值和极小值的区别;4. 通过示例讲解如何判断函数的极大值和极小值,引导学生进行判断。
作业布置:1. 练习找出给定函数的极值点;2. 练习判断给定函数的极大值和极小值。
第二章:导数的基本概念教学目标:1. 理解导数的概念;2. 能够计算常见函数的导数;3. 能够利用导数判断函数的单调性。
教学内容:1. 引入导数的概念;2. 讲解导数的计算方法;3. 举例讲解如何利用导数判断函数的单调性;4. 讲解导数的应用。
教学活动:1. 引入导数的概念,引导学生思考什么是导数;2. 通过示例讲解如何计算常见函数的导数,引导学生动手尝试;3. 讲解导数的应用,引导学生理解导数在实际问题中的应用;4. 通过示例讲解如何利用导数判断函数的单调性,引导学生进行判断。
作业布置:1. 练习计算给定函数的导数;2. 练习利用导数判断给定函数的单调性。
第三章:函数的单调性教学目标:1. 理解函数单调性的概念;2. 能够利用导数判断函数的单调性;3. 能够找出函数的单调区间。
教学内容:1. 引入函数单调性的概念;2. 讲解如何利用导数判断函数的单调性;3. 举例讲解如何找出函数的单调区间;4. 讲解函数单调性的应用。
教学活动:1. 引入函数单调性的概念,引导学生思考什么是函数单调性;2. 通过示例讲解如何利用导数判断函数的单调性,引导学生动手尝试;3. 讲解如何找出函数的单调区间,引导学生理解单调区间的概念;4. 通过示例讲解如何找出给定函数的单调区间,引导学生进行判断。
§1.3.2函数的极值与导数(说课稿)

《函数的极值与导数》说课稿永宁县回民高级中学马国宝二O一三年三月二十七日《函数的极值与导数》说课稿尊敬的各位领导,老师们:大家,下午好!今天,我说课的内容是《普通高中课程标准实验教科书数学选修2-2》第一章第三节,导数在研究函数中的应用二:函数的极值与导数。
大家知道,为了描述现实世界中运动、变化着的现象,在数学中引入了函数。
随着对函数的不断深化,产生了微积分,而微积分的创立与处理四类科学问题直接相关:①求速度与加速度问题;②求曲线切线;③求函数最值;④求长度、面积、体积和重心等。
而导数又是微积分的核心概念之一,它是研究函数增减、变化快慢、最大(小)值等问题的最一般、最有效工具,因而也是解决现实生活中用料最省、利用最大、效率最高等实际问题的最有利的工具。
本节课是学生在学习了上一节(函数的单调性与导数)的基础上,进一步探索导数在研究函数其他性质中的应用,也是为后面学习函数的最值与导数做铺垫,因此具有承前启后的作用。
极值对学生而言,是一个全新的概念,但学生已经有了上节课利用导数研究函数性质的思想方法和经验,所以这节课理解起来难度不大。
下面我说一下本节课所要达到的教学目标:①知识目标:理解极值的概念,掌握求极值的方法;结合函数图像,理解可导函数在某一点取得极值的充要条件;②过程与方法:结合实例,借助函数图形直观感受,然后上升到理性认识,并且让学生亲身经历由特殊到一般的认识过程,然后探索函数的极值与导数的关系;③情感态度方面:通过学生积极主动参与,培养学生观察问题、分析问题、解决问题的能力;感受导数在研究函数性质中的一般性和有效性,增强学生数形结合的思维意识。
教学重点:对极值概念的理解及求函数极值的方法与步骤。
教学难点:函数在某一点取得极值的充要条件和如何求一个可导函数的极值。
课型:概念课。
教学方法:引导式、启发式。
教学流程:创设情境,导入新课提出问题,激发学生的求知欲组织学生自主探索,获得函数极值的定义通过例题和练习,深化提高对函数的极值的定义的理解。
函数的极值与导数的教案

函数的极值与导数一、教学目标1. 理解导数的定义和几何意义2. 学会求函数的导数3. 理解函数的极值概念4. 学会利用导数研究函数的极值二、教学内容1. 导数的定义和几何意义2. 常见函数的导数3. 函数的极值概念4. 利用导数研究函数的单调性5. 利用导数求函数的极值三、教学重点与难点1. 重点:导数的定义和几何意义,常见函数的导数,函数的极值概念,利用导数求函数的极值2. 难点:导数的运算法则,利用导数研究函数的单调性,求函数的极值四、教学方法1. 采用讲授法讲解导数的定义、几何意义、常见函数的导数及函数的极值概念2. 利用例题解析法讲解利用导数研究函数的单调性和求函数的极值3. 组织学生进行小组讨论和互动,巩固所学知识五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考如何求函数的导数2. 新课:讲解常见函数的导数,引导学生掌握求导数的方法3. 案例分析:利用导数研究函数的单调性,求函数的极值,引导学生理解和应用所学知识4. 练习与讨论:布置练习题,组织学生进行小组讨论,解答练习题5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生思考如何利用导数研究更复杂的函数极值问题六、课后作业1. 复习导数的定义和几何意义,常见函数的导数2. 练习求函数的导数3. 利用导数研究函数的单调性,求函数的极值七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态2. 练习与讨论:评估学生在练习题和小组讨论中的表现,检验学生对知识的掌握程度3. 课后作业:检查课后作业的完成情况,评估学生对课堂所学知识的巩固程度六、教学策略的调整1. 根据学生的课堂反馈,适时调整教学节奏和难度,确保学生能够跟上教学进度。
2. 对于学生掌握不够扎实的知识点,可以通过举例、讲解、练习等多种方式加强巩固。
3. 鼓励学生提出问题,充分调动学生的主动学习积极性,提高课堂互动性。
七、教学案例分析1. 通过分析具体案例,让学生理解导数在实际问题中的应用,例如在物理学中的速度、加速度的计算。
《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义引入极值的概念,解释函数在某一点的局部性质。
通过图形和实例直观展示极值的存在。
1.2 极值的判定条件介绍函数的导数与极值的关系,讲解导数为零的必要性和充分性。
分析导数为正和导数为负时函数的单调性,得出极值的判定条件。
1.3 极值的判定定理介绍罗尔定理、拉格朗日中值定理和柯西中值定理在极值判定中的应用。
证明极值的判定定理,并通过实例进行验证。
第二章:导数与函数的单调性2.1 导数的定义与计算引入导数的概念,解释导数表示函数在某一点的瞬时变化率。
讲解导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。
2.2 导数与函数的单调性分析导数正负与函数单调性的关系,得出单调递增和单调递减的定义。
通过实例和图形展示导数与函数单调性的联系。
2.3 单调性的应用讲解利用单调性解决函数极值问题的方法。
分析函数的单调区间和极值点,得出函数的单调性对极值的影响。
第三章:函数的极值点与导数3.1 极值点的定义与判定引入极值点的概念,解释极值点是函数导数为零或不存在的点。
讲解极值点的判定方法,包括导数为零和导数不存在的条件。
3.2 极值点的求解方法介绍求解极值点的方法,包括解析法和数值法。
讲解如何利用导数和图形求解函数的极值点。
3.3 极值点的应用分析极值点在实际问题中的应用,如最优化问题。
举例说明如何利用极值点解决实际问题。
第四章:函数的拐点与导数4.1 拐点的定义与判定引入拐点的概念,解释拐点是函数导数由正变负或由负变正的点。
讲解拐点的判定方法,包括导数的正负变化和二阶导数的符号。
4.2 拐点的求解方法介绍求解拐点的方法,包括解析法和数值法。
讲解如何利用导数和图形求解函数的拐点。
4.3 拐点的应用分析拐点在实际问题中的应用,如曲线拟合和物体的运动。
举例说明如何利用拐点解决实际问题。
第五章:函数的极值与图像5.1 极值与函数图像的关系分析极值点在函数图像中的位置和特征。
函数的极值与导数课件公开课

x (–∞, –3)
f (x) +
f (x) 单调递增
–3 (–3, 3)
0
–
54 单调递减
3
( 3, +∞)
0
+
54 单调递增
所以, 当 x = –3 时, f (x)有极大值 54 ; 当 x = 3 时, f (x)有极小值 – 54 .
思考
(1)导数为0的点一定是 函数的极值点吗?
y y=x3
当 x= 2时,f(x)有极小值 5-4 2.
(2)由(1)的分析知 y=f(x)的图象的 大致形状及走向如图所示.所以, 当 5-4 2<a<5+4 2时,直线 y =a 与 y=f(x)的图象有三个不同 交点,即方程 f(x)=a 有三个不同 的解.
【名师点评】 用求导的方法确定方程根的个数, 是一种很有效的方法.它通过函数的变化情况, 运用数形结合思想来确定函数图象与x轴的交点 个数,从而判断方程根的个数.
【解】 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x1=- 2,x2= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以 f(x)的单调递增区间为(-∞,- 2)和( 2, +∞);单调递减区间为(- 2, 2). 当 x=- 2时,f(x)有极大值 5+4 2;
若f ’(x0)左正右负,则f(x0)为极大值; 若 f ’(x0)左负右正,则f(x0)为极小值
求导—求极点—列表—求极值
练习:
求下列函数的极值:
(1) f (x) x3 27x; (2) f (x) 3x x3
解:
(3) f (x) ln x 1 ; x
(1) 令f (x) 3x2 27 0, 解得 x1 3, x2 3.列表:
函数的极值与导数公开课说课稿

1.3.2函数的极值与导数习题课说课稿
高二数学组康海萍
[教材分析]:
《函数的极值与导数》是在学生学习了《函数的单调性与导数》,初步具备了运用导数研究函数的能力后学习的,并为《函数的最大(小)值与导数》奠定了知识与方法的基础,起着承上启下的作用。
本节课在本单元乃至整个数学学习中都具有十分重要的地位。
[学情分析]:
学生已经初步学习了函数极值与导数的关系,但还不够深入,因此在学习上还有一定困难。
本节课能够进一步提高学生运用导数研究函数的能力,体会导数的工具作用。
[教学目标]:
知识与技能:
•掌握函数极值的定义,会从几何图形直观求解函数极值,增强学生的数形结合意识;
•利用导数求函数极值的一般方法求解较复杂函数的极值;
•探究含有参数的极值问题。
过程与方法:
•培养学生观察、分析、探究、归纳得出数学概念和规律的学习能力。
情感态度与价值观:
•体会导数方法在研究函数性质中的一般性和有效性;
•培养学生大胆创新、勇于探索、互相合作的精神;
[教学重点和教学难点]:
教学重点:利用求导数的方法求解函数极值的问题。
教学难点:含有参数的极值问题。
[教法学法分析]:
教法分析和教学用具:
本节课我将采用定义检测—夯实基础—合作探究—教师点拨—巩固提高的教学环节。
并利用信息技术创设实际问题的情境。
发挥学生学习的主动性,使学生的学习过程成为在我引导下的“再创造”过程。
学法分析
通过图像研究函数的极值定义,提高了学生的导数概念的认识。
通过用较复杂求极值问题巩固求极值的方法,通过分类讨论解决含有参数的极值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2函数的极值与导数习题课说课稿
高二数学组康海萍
[教材分析]:
《函数的极值与导数》是在学生学习了《函数的单调性与导数》,初步具备了运用导数研究函数的能力后学习的,并为《函数的最大(小)值与导数》奠定了知识与方法的基础,起着承上启下的作用。
本节课在本单元乃至整个数学学习中都具有十分重要的地位。
[学情分析]:
学生已经初步学习了函数极值与导数的关系,但还不够深入,因此在学习上还有一定困难。
本节课能够进一步提高学生运用导数研究函数的能力,体会导数的工具作用。
[教学目标]:
知识与技能:
•掌握函数极值的定义,会从几何图形直观求解函数极值,增强学生的数形结合意识;
•利用导数求函数极值的一般方法求解较复杂函数的极值;
•探究含有参数的极值问题。
过程与方法:
•培养学生观察、分析、探究、归纳得出数学概念和规律的学习能力。
情感态度与价值观:
•体会导数方法在研究函数性质中的一般性和有效性;
•培养学生大胆创新、勇于探索、互相合作的精神;
[教学重点和教学难点]:
教学重点:利用求导数的方法求解函数极值的问题。
教学难点:含有参数的极值问题。
[教法学法分析]:
教法分析和教学用具:
本节课我将采用定义检测—夯实基础—合作探究—教师点拨—巩固提高的教学环节。
并利用信息技术创设实际问题的情境。
发挥学生学习的主动性,使学生的学习过程成为在我引导下的“再创造”过程。
学法分析
通过图像研究函数的极值定义,提高了学生的导数概念的认识。
通过用较复杂求极值问题巩固求极值的方法,通过分类讨论解决含有参数的极值问题。