2013届高考数学第一轮复习教案第13讲 直线与圆的方程(精编文档).doc
《直线和圆的方程》单元教学设计

《直线和圆的方程》单元教学设计一、教学目标:1.理解直线和圆的概念及特征。
2.掌握直线和圆的标准方程和一般方程的求解方法。
3.能够通过已知条件列出直线和圆的方程并解决相关问题。
4.进一步拓展学生的数学思维和解题能力。
二、教学重难点:1.掌握直线和圆的标准方程和一般方程的应用。
2.解决一般情况下的直线和圆的方程的问题。
三、教学内容和步骤:1.直线的方程(1)回顾直线的一般方程Ax+By+C=0,其中A、B、C为常数。
(2)讲解直线的斜率和截距的概念,以及与一般方程的关系。
(3)通过示例演示如何根据直线上的已知点和斜率确定直线的方程。
(4)讲解直线的点斜式方程和两点式方程的求解方法,并通过例题进行练习。
2.圆的方程(1)讲解圆的概念、圆心和半径的关系。
(2)介绍圆的标准方程和一般方程的表达形式。
(3)通过相应的示意图让学生理解标准方程(x-a)^2+(y-b)^2=r^2和(x-a)^2+(y-b)^2=r^2的特点。
(4)通过例题和实际问题引导学生运用标准方程求解圆的方程。
3.直线和圆的方程应用问题解决(1)通过实例演示如何根据已知条件列出直线和圆的方程。
(2)讲解如何解决直线和圆相交和相切的问题,并通过例题进行讲解和练习。
四、教学方法:1.归纳法:通过比较不同形式的直线和圆的方程,归纳出直线和圆的标准方程和一般方程。
2.演绎法:通过具体实例和推导过程让学生理解和掌握直线和圆的方程的求解方法。
3.实践法:通过实际问题的解决让学生将直线和圆的方程运用到实际生活中。
五、教学资源和工具:1.教科书教材。
2. PowerPoint课件。
3.讲台、黑板和粉笔。
六、教学评估和反思:1.教师在课堂上通过练习题、思考题等形式对学生进行提问和检测,以便及时发现学生的问题并进行纠正。
2.教师在课后对学生的作业进行批改,评估学生的掌握程度,并根据学生的表现调整教学内容和方法。
3.教师在教学过程中应及时总结经验,改进教学方法和手段,提高教学效果,使学生能够更好地理解和应用直线和圆的方程。
直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计引言在中学数学中,直线与圆的方程是一个重要的知识点。
在实际生活中,我们经常会遇到直线与圆的方程的应用问题,例如确定一条直线与一个圆的交点、求两个圆的交点等。
本文将介绍一种应用教学设计,帮助学生理解直线与圆的方程,并能够灵活运用于实际问题中。
教学目标通过本教学设计,学生将能够: - 掌握直线与圆的方程的基本概念; - 理解直线与圆的方程的应用背景和实际意义; - 能够运用直线与圆的方程解决简单的实际问题。
教学内容1.直线与圆的方程的基本概念–直线的方程:一般式、斜截式、点斜式等;–圆的方程:标准式、一般式等;2.直线与圆的方程的应用背景和实际意义–实际问题的引入,例如求两条直线的交点、求直线与圆的交点等;–直线与圆的方程在实际问题中的应用,例如求圆的切线等;3.直线与圆的方程的解题方法与实例演练–通过解题演示,让学生理解和掌握直线与圆的方程的解题方法;–通过实例演练,让学生灵活运用直线与圆的方程解决实际问题。
教学步骤1.导入引导–展示一个实际问题,例如已知直线和圆的方程,求直线与圆的交点;–引导学生思考如何解决这个问题,激发学生学习的兴趣。
2.基本概念讲解–介绍直线和圆的方程的基本概念,并解释不同形式的方程的特点;–演示如何根据已知条件和方程求解未知量。
3.应用背景与实际意义–引导学生思考直线与圆的方程在实际问题中的应用背景和实际意义;–举例说明直线与圆的方程在几何图形的创作、建筑设计等方面的应用。
4.解题方法与实例演练–分步讲解解题方法,例如直线与圆的方程联立求交点的步骤;–通过实例演练,让学生跟随教师一起解题,巩固所学知识。
5.练习与巩固–给学生布置一些相关练习题,让学生独立完成;–教师巡回指导并批改学生的答案,让学生对所学知识进行巩固。
6.总结与拓展–对本节课所学内容进行总结,强调直线与圆的方程的重要性;–拓展引导,让学生思考其他几何图形的方程与实际应用。
教学评估1.课堂互动评价–教师观察学生的思考情况,评估学生对直线与圆的方程的理解程度;–提问学生解题思路,鼓励学生表达自己的观点和解题方法。
直线与圆的方程教学设计

直线与圆的方程教学设计一、教学目标•理解直线与圆的定义及特性;•掌握直线的一般方程和点斜式方程的推导和运用;•掌握圆的标准方程和一般方程的推导和运用;•熟练运用直线和圆的方程求解相关问题。
二、教学内容1. 直线的方程(1)一般方程•定义一般式方程:Ax + By + C = 0;•解释A、B、C的物理意义和几何意义;•推导一般方程的标准式:y = kx + b。
(2)点斜式方程•定义点斜式方程:y - y1 = k(x - x1);•解释k和(x1, y1)的几何意义;•推导点斜式方程的一般式:Ax + By + C = 0。
2. 圆的方程(1)标准方程•定义标准方程:(x - a)² + (y - b)² = r²;•解释圆心坐标(a, b)和半径r的物理意义和几何意义;•推导标准方程的一般式:x² + y² + Dx + Ey + F = 0。
(2)一般方程•定义一般方程:x² + y² + Dx + Ey + F = 0;•解释D、E、F的物理意义和几何意义;•推导一般方程的标准式:(x - a)² + (y - b)² = r²。
三、教学过程1. 直线的方程(1)一般方程1.引导学生思考直线方程的表示方法;2.介绍直线的一般方程:Ax + By + C = 0;3.解释A、B、C的物理意义和几何意义;4.讲解一般方程的标准式:y = kx + b;5.给出一个具体的例子进行讲解和演示;6.练习一些示例题,加深理解。
(2)点斜式方程1.引导学生思考点斜式方程的表示方法;2.介绍点斜式方程:y - y1 = k(x - x1);3.解释k和(x1, y1)的几何意义;4.讲解点斜式方程的一般式:Ax + By + C = 0;5.给出一个具体的例子进行讲解和演示;6.练习一些示例题,加深理解。
直线与圆的方程单元教学设计

直线与圆的方程单元教学设计一、教学目标本课程设计旨在通过教授直线和圆的方程,使学生能够: - 掌握直线的一般方程和斜截式方程的概念及应用; - 掌握圆的标准方程和一般方程的概念及应用; -能够根据已知条件构造直线和圆的方程; - 能够应用直线和圆的方程解决实际问题。
二、教学重点与难点1. 教学重点•直线的一般方程和斜截式方程的应用;•圆的标准方程和一般方程的应用。
2. 教学难点•如何根据已知条件构造直线和圆的方程;•如何应用直线和圆的方程解决实际问题。
三、教学准备•教师准备:直线和圆的方程教学课件、黑板、彩色粉笔等。
•学生准备:课本、笔记本、铅笔、直尺、计算器等。
四、教学过程与内容1. 导入与引入(10分钟)•通过提问引导学生回顾已学内容,了解学生对直线和圆的掌握情况;•引入直线的方程概念,与学生分享实际应用中直线方程的重要性。
2. 直线的一般方程和斜截式方程(30分钟)•介绍直线一般方程和斜截式方程的定义和特点;•通过例题讲解,引导学生理解直线的一般方程和斜截式方程的应用方法;•练习巩固:学生在小组内完成练习题,查漏补缺。
3. 圆的标准方程和一般方程(30分钟)•介绍圆的标准方程和一般方程的定义和特点;•通过例题讲解,引导学生理解圆的标准方程和一般方程的应用方法;•练习巩固:学生在小组内完成练习题,查漏补缺。
4. 应用实例解析与讨论(20分钟)•设计一些实际问题,利用直线和圆的方程进行解析,引导学生应用已学知识解决问题;•学生小组展示解题过程和答案,并进行讨论与点评。
5. 总结与归纳(10分钟)•整理并归纳学习过程中的重点和难点;•回顾学习内容,强化关键知识点。
五、教学评估•教师可通过课堂练习、小组讨论和学生作业等方式进行评估;•评估主要针对学生对直线和圆的方程的掌握程度以及应用能力。
六、教学延伸•鼓励学生自主积累直线和圆的方程应用题,并展示在课堂上;•提供更多的实际问题,引导学生灵活运用直线和圆的方程解决问题;•推荐教学参考书籍和网站,扩展学生的学习资源。
高中数学第13章教案讲解

高中数学第13章教案讲解
一、教学目标:
1. 理解直线与圆的位置关系,掌握直线与圆的切线性质。
2. 能够解决关于直线与圆的位置关系的问题。
3. 能够利用切线性质解决相关实际问题。
二、教学重点与难点:
1. 直线与圆的位置关系的判断依据。
2. 切线性质的应用。
三、教学准备:
1. 教材《高中数学》第13章的教学内容。
2. 录有相关示例题目的PPT备课。
3. 教学实物:纸板、圆规、直尺等几何工具。
四、教学内容与过程安排:
1. 导入:通过投影仪展示几个直线与圆相交的情况,引出直线与圆的位置关系。
2. 讲解:讲解直线与圆的外切、内切、相交、跨越、重合等多种位置关系,以及切线的性质。
3. 实例分析:通过PPT展示几个相关的例题,引导学生掌握判断直线与圆位置关系的方法。
4. 练习:让学生在纸上画出不同位置关系的直线与圆,并判断它们的位置。
5. 拓展:引导学生思考切线性质在实际问题中的应用,如工程施工中的抛物线拱桥设计等。
6. 总结:总结本节课的重点内容,强调切线性质的重要性,并提醒学生在解题时要注意规
范化的解题步骤。
五、作业布置:
1. 完成教材相关习题,巩固直线与圆的位置关系。
2. 设计一道相关的切线性质题目,并写明解题思路。
六、课后反思:
本节课内容难度适中,学生在实例分析与练习环节表现较好,但在拓展应用方面还有待加强。
下节课将结合实际问题,提高学生对切线性质的应用能力。
直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计教学目标:1.知识目标:掌握直线与圆的方程的应用,能够正确推导出直线与圆的交点坐标和直线是否与圆相交的判断。
2.能力目标:培养学生运用直线与圆的方程解决实际问题的能力。
3.情感目标:培养学生合作探究、独立思考的态度和习惯。
教学重点:理解直线与圆交点坐标的推导过程,掌握对应方法与技巧。
教学难点:利用直线与圆的方程解决实际问题。
教学过程:一、导入(5分钟)通过展示一个例子,引出问题:“给定一个圆和一条直线,如何确定它们的交点的坐标?”二、知识讲解(15分钟)1.提要求:教师依次向学生提问,引导学生思考求解交点坐标的问题。
-如何找到直线与圆的交点?-如何确定直线与圆是否相交?2.教师讲解:教师介绍直线与圆的方程及其应用,并讲解求解直线与圆交点坐标的步骤。
- 直线方程:y = kx + b-圆方程:(x-a)²+(y-b)²=r²-求解交点坐标:联立直线方程和圆方程,解方程组得到交点坐标。
-判断直线与圆是否相交:将直线方程代入圆方程,判断是否有实数解,若有则相交,若无则不相交。
3.导入问题解决:教师给出具体的例题,引导学生利用所学知识求解交点坐标。
三、示范演练(20分钟)1.教师示范演练:教师选取一道典型的例题,结合黑板和投影仪,演示如何通过解方程组求解交点坐标。
2.学生模仿演练:学生在纸上模仿教师的示范演练,逐步求解其他例题。
教师及时指导和纠正。
四、合作探究(20分钟)1.学生小组活动:将学生分为小组,每个小组选择一道直线与圆的问题,并自主解决。
学生之间可以互相讨论、合作,但每个学生需独立写出解题过程和答案。
2.小组汇报:每个小组派一名代表进行汇报,其他小组可以提问和讨论。
教师在汇报过程中及时指导、点评和纠正,引导学生探讨和总结在实际问题中应用直线与圆方程的方法。
五、拓展延伸(15分钟)1.学生自主拓展:学生自选一个与直线与圆相关的问题,并通过求解方程组来解决问题。
(全国通用版)高考数学一轮复习第十三单元直线与圆学案理

第十三单元 直线与圆教材复习课“直线与圆”相关基础知识一课过1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; ③范围:直线l 的倾斜角的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan_α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式1.已知A (m ,-2),B (3,0),若直线AB 的斜率为2,则m 的值为( ) A .-1 B .2 C .-1或2D .-2解析:选B 由直线AB 的斜率k =-2-0m -3=2,解得m =2.2.若经过两点(5,m )和(m,8)的直线的斜率大于1,则m 的取值范围是( ) A .(5,8) B .(8,+∞)C.⎝⎛⎭⎪⎫132,8D.⎝⎛⎭⎪⎫5,132解析:选D 由题意知8-mm -5>1,即2m -13m -5<0,∴5<m <132. 3.过点C (2,-1)且与直线x +y -3=0垂直的直线是( ) A .x +y -1=0 B .x +y +1=0 C .x -y -3=0D .x -y -1=0解析:选C 设所求直线斜率为k , ∵直线x +y -3=0的斜率为-1,且所求直线与直线x +y -3=0垂直,∴k =1. 又∵直线过点C (2,-1), ∴所求直线方程为y +1=x -2, 即x -y -3=0.4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1 解析:选D 由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a. ∴a +2a=a +2,解得a =-2或a =1. 5.经过点(-4,1),且倾斜角为直线y =-x +1的倾斜角的13的直线方程为________.解析:由题意可知,所求直线方程的倾斜角为45°,即斜率k =1,故所求直线方程为y -1=x +4,即x -y +5=0.答案:x -y +5=0[清易错]1.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.2.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 1.过点(5,10)且到原点的距离是5的直线的方程为________.解析:当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0. 由点到直线的距离公式,得|10-5k |k 2+1=5, 解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=02.经过点A (1,1),且在两坐标轴上的截距相等的直线方程为________. 解析:当直线过原点时,方程为y =x ,即x -y =0; 当直线不过原点时,设直线方程为x +y =a , 把点(1,1)代入直线方程可得a =2, 故直线方程为x +y -2=0.综上可得所求的直线方程为x -y =0或x +y -2=0. 答案:x -y =0或x +y -2=01.圆的定义及方程点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [小题速通]1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0C .(-2,0)D.⎝⎛⎭⎪⎫-2,23 解析:选D 由题意知a 2+4a 2-4(2a 2+a -1)>0, 解得-2<a <23.2.(2018·天津模拟)若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( )A .(-1,1)B .(-3,3)C .(-2,2)D.⎝ ⎛⎭⎪⎫-22,22 解析:选C 因为(0,0)在(x -m )2+(y +m )2=4的内部,则有(0-m )2+(0+m )2<4,解得-2<m < 2.3.(2015·北京高考)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 圆的半径r =-2+-2=2,圆心坐标为(1,1),所以圆的标准方程为(x -1)2+(y -1)2=2.4.若圆C 的圆心在x 轴上,且过点A (-1,1)和B (1,3),则圆C 的方程为________________. 解析:设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |, 即a +2+1=a -2+9,解得a =2,所以圆心为C (2,0), 半径|CA |=+2+1=10,∴圆C 的方程为(x -2)2+y 2=10. 答案:(x -2)2+y 2=101.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.距离|P 1P 2|=x 2-x 12+y 2-y 121.已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =( ) A .-7或-1 B .-7 C .7或1D .-1解析:选B 由题意可得a ≠-5,所以3+a 2=45+a ≠5-3a8,解得a =-7(a =-1舍去).2.圆x 2+y 2-6x -2y +3=0的圆心到直线x +ay -1=0的距离为1,则a =( ) A .-43B .-34C. 3D .2解析:选B 圆x 2+y 2-6x -2y +3=0可化为(x -3)2+(y -1)2=7,其圆心(3,1)到直线x +ay -1=0的距离d =|2+a |1+a2=1,解得a =-34. 3.已知直线l 1:(m +2)x -y +5=0与l 2:(m +3)x +(18+m )y +2=0垂直,则实数m 的值为( )A .2或4B .1或4C .1或2D .-6或2解析:选D 当m =-18时,两条直线不垂直,舍去; 当m ≠-18时,由l 1⊥l 2,可得(m +2)·⎝ ⎛⎭⎪⎫-m +318+m =-1,化简得(m +6)(m -2)=0,解得m =-6或2.4.若两条平行直线4x +3y -6=0和4x +3y +a =0之间的距离等于2,则实数a =________.解析:∵两条平行直线的方程为4x +3y -6=0和4x +3y +a =0, ∴由平行线间的距离公式可得2=|-6-a |42+32, 即|-6-a |=10, 解得a =4或-16. 答案:4或-16[清易错]1.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.1.已知直线l 1:x +(a -2)y -2=0,直线l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:(1)当直线l 1的斜率不存在,即a =2时,有l 1:x -2=0,l 2:2y -1=0,此时符合l 1⊥l 2.(2)当直线l 1的斜率存在,即a ≠2时,直线l 1的斜率k 1=-1a -2≠0,若l 1⊥l 2,则必有直线l 2的斜率k 2=-a -2a ,所以⎝ ⎛⎭⎪⎫-1a -2·⎝ ⎛⎭⎪⎫-a -2a =-1,解得a =-1.综上所述,l 1⊥l 2⇔a =-1或a =2.故“a =-1”是“l 1⊥l 2”的充分不必要条件. 法二:l 1⊥l 2⇔1×(a -2)+(a -2)×a =0, 解得a =-1或a =2.所以“a =-1”是“l 1⊥l 2”的充分不必要条件.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行.由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.直线与圆的位置关系(半径r ,圆心到直线的距离为d )1.直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切 B .相交C .相离D .随a 的变化而变化解析:选B 因为直线y =ax +1恒过定点(0,1),又点(0,1)在圆x 2+y 2-2x -3=0的内部,故直线与圆相交.2.(2018·大连模拟)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D. 2解析:选D 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 3.已知圆C :x 2+y 2-6x +8=0,则圆心C 的坐标为______;若直线y =kx 与圆C 相切,且切点在第四象限,则k 的值为________.解析:圆的方程可化为(x -3)2+y 2=1,故圆心坐标为(3,0);由|3k |1+k2=1,解得k =±24,由切点在第四象限,可得k =-24. 答案:(3,0) -24圆与圆的位置关系(两圆半径r 1,r 2,d =|O 1O 2|)1.若圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a =________. 答案:±25或02.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析:由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2. 答案:2 2一、选择题1.直线 3x +y -3=0的倾斜角为( ) A.π6 B.π3 C.2π3D.5π6解析:选C ∵直线3x +y -3=0可化为y =-3x +3, ∴直线的斜率为-3,设倾斜角为α,则tan α=-3,又∵0≤α<π, ∴α=2π3.2.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则必有( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 2解析:选D 由图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,所以k 1<k 3<k 2. 3.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2解析:选B 由⎩⎪⎨⎪⎧x =1,x +y =2,得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1.4.过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( )A .2x +y -8=0B .2x -y -8=0C .2x +y +8=0D .2x -y +8=0解析:选A 设过直线2x -y +4=0与x -y +5=0的交点的直线方程为2x -y +4+λ(x -y +5)=0,即(2+λ)x -(1+λ)y +4+5λ=0, ∵该直线与直线x -2y =0垂直, ∴k =2+λ1+λ=-2,解得λ=-43.∴所求的直线方程为⎝ ⎛⎭⎪⎫2-43x -⎝ ⎛⎭⎪⎫1-43y +4+5×-43=0,即2x +y -8=0.5.已知直线l 1:x +2y +t 2=0和直线l 2:2x +4y +2t -3=0,则当l 1与l 2间的距离最短时t 的值为( )A .1 B.12 C.13D .2解析:选B ∵直线l 2:2x +4y +2t -3=0, 即x +2y +2t -32=0.∴l 1∥l 2,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪t 2-2t -3212+22=⎝ ⎛⎭⎪⎫t -122+545≥54,当且仅当t =12时取等号.∴当l 1与l 2间的距离最短时t 的值为12.6.已知直线l 1:(a +3)x +y -4=0与直线l 2:x +(a -1)y +4=0垂直,则直线l 1在x 轴上的截距是( )A .1B .2C .3D .4解析:选B ∵直线l 1:(a +3)x +y -4=0与直线l 2:x +(a -1)y +4=0垂直, ∴a +3+a -1=0,解得a =-1, ∴直线l 1:2x +y -4=0, ∴直线l 1在x 轴上的截距是2.7.一条光线从A ⎝ ⎛⎭⎪⎫-12,0处射到点B (0,1)后被y 轴反射,则反射光线所在直线的方程为( )A .2x -y -1=0B .2x +y -1=0C .x -2y -1=0D .x +2y +1=0解析:选B 由题意可得点A ⎝ ⎛⎭⎪⎫-12,0关于y 轴的对称点A ′⎝ ⎛⎭⎪⎫12,0在反射光线所在的直线上,又点B (0,1)也在反射光线所在的直线上,则两点式求得反射光线所在的直线方程为y -10-1=x -012-0,即2x +y -1=0.8.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1 D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.二、填空题9.已知直线l 过点A (0,2)和B (-3,3m 2+12m +13)(m ∈R),则直线l 的倾斜角的取值范围为________.解析:设此直线的倾斜角为θ,0≤θ<π,则tan θ=3m 2+12m +13-2-3-0=-3(m +2)2+33≤33.因为θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎝ ⎛⎭⎪⎫π2,π.答案:⎣⎢⎡⎦⎥⎤0,π6∪⎝ ⎛⎭⎪⎫π2,π10.已知点A (-1,-2),B (2,3),若直线l :x +y -c =0与线段AB 有公共点,则直线l 在y 轴上的截距的取值范围为__________.解析:如图,把A (-1,-2),B (2,3)分别代入直线l :x +y -c =0,得c 的值分别为-3,5. 故若直线l :x +y -c =0与线段AB 有公共点,则直线l 在y 轴上的截距的取值范围为[-3,5].答案:[-3,5]11.已知直线x +y -3m =0与2x -y +2m -1=0的交点在第四象限,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -3m =0,2x -y +2m -1=0,解得⎩⎪⎨⎪⎧x =m +13,y =8m -13.∵两直线的交点在第四象限,∴m +13>0,且8m -13<0, 解得-1<m <18,∴实数m 的取值范围是⎝ ⎛⎭⎪⎫-1,18. 答案:⎝⎛⎭⎪⎫-1,1812.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧AB 的中点为M ,则过点M 的圆C 的切线方程是______________.解析:因为圆C 与两坐标轴相切,且M 是劣弧AB 的中点, 所以直线CM 是第二、四象限的角平分线, 所以斜率为-1,所以过M 的切线的斜率为1. 因为圆心到原点的距离为2,所以|OM |=2-1, 所以M ⎝⎛⎭⎪⎫22-1,1-22,所以切线方程为y -1+22=x -22+1, 整理得x -y +2-2=0. 答案:x -y +2-2=0 三、解答题13.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.14.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2, 设P (a,2a ),则a 2+a -2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125. (2)证明:设P (b,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎪⎨⎪⎧x 2+y 2-4y =0,x +2y -8=0,解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165,所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165. 高考研究课(一)直线方程命题4角度——求方程、判位置、定距离、用对称 [全国卷5年命题分析]直线方程的求法[典例] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的3的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. [解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a=-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. [方法技巧]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时演练]1.若直线l 过点A (3,4),且点B (-3,2)到直线l 的距离最远,则直线l 的方程为( ) A .3x -y -5=0 B .3x -y +5=0 C .3x +y +13=0D .3x +y -13=0解析:选D 当l ⊥AB 时满足条件. ∵k AB =2-4-3-3=13,则k l =-3.∴直线l 的方程为y -4=-3(x -3), 即3x +y -13=0.2.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,则当|OA |+|OB |取得最小值时,直线l 的方程为____________.解析:设A (a,0),B (0,b )(a >0,b >0).设直线l 的方程为x a +y b=1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +ba ≥2+2·a b ·ba=4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.答案:x +y -2=0[典例] (1)12y -8=0平行,则m 的值为( )A .-7B .-1或-7C .-6D .-6或-7(2)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos ⎝ ⎛⎭⎪⎫2 0172π-2α的值为( )A.45 B .-45C .1D .-12[解析] (1)直线l 1的斜率一定存在,因为l 2:2x +(m +5)y -8=0, 当m =-5时,l 2的斜率不存在,两直线不平行. 当m ≠-5时,由l 1∥l 2,得(m +3)(m +5)-2×4=0, 解得m =-1或-7.当m =-1时,两直线重合,故不满足条件;经检验,m =-7满足条件,故选A. (2)由已知得tan α=2,则cos ⎝ ⎛⎭⎪⎫2 0172π-2α=sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. [答案] (1)A (2)A [方法技巧]由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.[即时演练]1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由点(1,0)在所求直线上,得1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.2.若直线l 经过点P (1,2),且垂直于直线2x +y -1=0,则直线l 的方程是______________.解析:设垂直于直线2x +y -1=0的直线l 的方程为x -2y +c =0, ∵直线l 经过点P (1,2), ∴1-4+c =0,解得c =3, ∴直线l 的方程是x -2y +3=0. 答案:x -2y +3=0[典例] (1)过直线x 1的直线有( )A .0条B .1条C .2条D .3条(2)直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,求直线l 的方程.[解析] (1)解方程组⎩⎨⎧x -3y +1=0,3x +y -3=0,得⎩⎪⎨⎪⎧x =12,y =32.由于⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1,则所求直线只有1条.[答案] B(2)当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d 1=1,点B 到直线l 的距离为d 2=3,不符合题意,故直线l 的斜率必存在.∵直线l 过点P (2,-5),∴设直线l 的方程为y +5=k (x -2).即kx -y -2k -5=0.∴点A (3,-2)到直线l 的距离d 1=|3k ---2k -5|k 2+1=|k -3|k 2+1, 点B (-1,6)到直线l 的距离d 2=|-k -6-2k -5|k 2+1=|3k +11|k 2+1.∵d 1∶d 2=1∶2, ∴|k -3||3k +11|=12,∴k 2+18k +17=0,∴k 1=-1,k 2=-17. ∴所求直线方程为x +y +3=0和17x +y -29=0. [方法技巧]求解距离问题的注意点解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.[即时演练]1.已知点A (a,2)到直线l :x -y +3=0距离为2,则a 等于( ) A .1 B .±1 C .-3D .1或-3解析:选D ∵点A (a,2)到直线l :x -y +3=0距离为2, ∴|a -2+3|2=2, ∴a +1=±2. 解得a =1或-3.2.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为__________.解析:当直线l 的斜率存在时, 设直线l 的方程为y -2=k (x +1), 即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|, ∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 答案:x =-1或x +3y -5=0对称问题对称问题是高考常考内容之一,也是考查转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称; (4)对称问题的应用. 1.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( )A .11B .10C .9D .8解析:选B 依题意a =2,P (0,5),设A (x,2x ),B (-2y ,y ),由⎩⎪⎨⎪⎧x -2y =0,2x +y =10,得A (4,8),B (-4,2),所以|AB |=+2+-2=10.[方法技巧]点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .角度二:点关于线的对称问题2.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( )A.345B.365C.283D.323解析:选A 由题意可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x-3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,故m +n =345[方法技巧]解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.角度三:线关于线对称问题3.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (2)直线l 关于点A (-1,-2)对称的直线l ′的方程.解:(1)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(2)在直线l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A (-1,-2)的对称点M ′,N ′均在直线l ′上.易得M ′(-3,-5),N ′(-6,-7),再由两点式可得l ′的方程为2x -3y -9=0.[方法技巧]若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.角度四:对称问题的应用4.已知有条光线从点A (-2,1)出发射向x 轴上的B 点,经过x 轴反射后射向y 轴上的C 点,再经过y 轴反射后到达点D (-2,7).(1)求直线BC 的方程;(2)求光线从A 点到达D 点所经过的路程.解:作出草图,如图所示, (1)∵A (-2,1),∴点A 关于x 轴的对称点A ′(-2,-1), ∵D (-2,7),∴点D 关于y 轴的对称点D ′(2,7).由对称性可得,A ′,D ′所在直线方程即为BC 所在直线方程,由两点式得直线BC 的方程为y -7-1-7=x -2-2-2,整理得2x -y +3=0.(2)由图可得,光线从A 点到达D 点所经过的路程即为 |A ′D ′|=-2-2+-1-2=4 5.[方法技巧]解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.1.(2013·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1)解析:选C 法一:如图所示,作出抛物线的准线l 1及点A ,B 到准线的垂线段AA 1,BB 1,并设直线l 交准线于点M .设|BF |=m ,由抛物线的定义可知|BB 1|=m ,|AA 1|=|AF |=3m .由BB 1∥AA 1可知|BB 1||AA 1|=|MB ||MA |,即m 3m =|MB ||MB |+4m ,所以|MB |=2m ,则|MA |=6m .故∠AMA 1=30°,得∠AFx =∠MAA 1=60°,结合选项知选C 项.法二:由|AF |=3|BF |可知AF ―→=3FB ―→,易知F (1,0),设B (x 0,y 0),则⎩⎪⎨⎪⎧1-x A =x 0-,-y A =3y 0,从而可解得A 的坐标为(4-3x 0,-3y 0).因为点A ,B 都在抛物线上,所以⎩⎪⎨⎪⎧y 20=4x 0,-3y 02=-3x 0,解得x 0=13,y 0=±23,所以k l =y 0-0x 0-1=± 3. 2.(2013·全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12解析:选B 由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故选B.一、选择题1.如果AB >0,BC <0,则直线Ax +By +C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 由AB >0,BC <0,可得直线Ax +By +C =0的斜率为-AB<0,直线在y 轴上的截距-C B>0, 故直线不经过第三象限.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π解析:选B 直线x sin α+y +2=0的斜率为k =-sin α,∵-1≤sin α≤1, ∴-1≤k ≤1,∴直线倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.3.已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则|PM |的最小值为( ) A.12 B .1 C .2D .3解析:选B |PM |的最小值即点P (3,-1)到直线x +3y =2的距离,又|3-3-2|1+3=1,故|PM |的最小值为1.4.(2018·郑州质量预测)“a =1”是“直线ax +y +1=0与直线(a +2)x -3y -2=0垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B ∵ax +y +1=0与(a +2)x -3y -2=0垂直, ∴a (a +2)-3=0,解得a =1或a =-3. ∴“a =1”是两直线垂直的充分不必要条件.5.已知点A (1,-2),B (m,2),若线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值为( )A .-2B .-7C .3D .1解析:选C ∵A (1,-2)和B (m,2)的中点⎝ ⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,∴1+m2+2×0-2=0, ∴m =3.6.已知直线l 过点P (1,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,则当△AOB 的面积取得最小值时,直线l 的方程为( )A .2x +y -4=0B .x -2y +3=0C .x +y -3=0D .x -y +1=0解析:选A 由题可知,直线l 的斜率k 存在,且k <0,则直线l 的方程为y -2=k (x -1).∴A ⎝⎛⎭⎪⎫1-2k,0,B (0,2-k ), ∴S △OAB =12⎝ ⎛⎭⎪⎫1-2k (2-k )=12⎝ ⎛⎭⎪⎫4-k +4-k ≥12⎣⎢⎡⎦⎥⎤4+2-k⎝ ⎛⎭⎪⎫4-k =4,当且仅当k =-2时取等号.∴直线l 的方程为y -2=-2(x -1),即2x +y -4=0.7.(2018·豫南九校质量考评)若直线x +ay -2=0与以A (3,1),B (1,2)为端点的线段没有公共点,则实数a 的取值范围是( )A .(-2,1)B .(-∞,-2)∪(1,+∞) C.⎝⎛⎭⎪⎫-1,12 D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞解析:选D 直线x +ay -2=0过定点C (2,0),直线CB 的斜率k CB =-2,直线CA 的斜率k CA =1,所以由题意可得a ≠0且-2<-1a <1,解得a <-1或a >12.8.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l :Ax +By +C =0外一点,所以Ax 0+By 0+C =k ,k ≠0. 若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,且k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P ,故选D. 二、填空题9.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 答案:-13或-7910.与直线2x +3y +5=0平行,且在两坐标轴上截距的和为6的直线方程是________________.解析:由平行关系设所求直线方程为2x +3y +c =0, 令x =0,可得y =-c 3;令y =0,可得x =-c2,∴-c 2-c 3=6,解得c =-365,∴所求直线方程为2x +3y -365=0,化为一般式可得10x +15y -36=0. 答案:10x +15y -36=011.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析:直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,∴直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32.答案:3212.在平面直角坐标系中,已知点P (-2,2),对于任意不全为零的实数a ,b ,直线l :a (x -1)+b (y +2)=0,若点P 到直线l 的距离为d ,则d 的取值范围是____________.解析:由题意,直线过定点Q (1,-2),PQ ⊥l 时,d 取得最大值+2+-2-2=5,直线l 过点P 时,d 取得最小值0, 所以d 的取值范围[0,5]. 答案:[0,5] 三、解答题13.已知方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R). (1)求方程表示一条直线的条件;(2)当m 为何值时,方程表示的直线与x 轴垂直;(3)若方程表示的直线在两坐标轴上的截距相等,求实数m 的值.解:(1)由⎩⎪⎨⎪⎧m 2-2m -3=0,2m 2+m -1=0,解得m =-1,∵方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R)表示直线, ∴m 2-2m -3,2m 2+m -1不同时为0,∴m ≠-1. 故方程表示一条直线的条件为m ≠-1. (2)∵方程表示的直线与x 轴垂直,∴⎩⎪⎨⎪⎧m 2-2m -3≠0,2m 2+m -1=0,解得m =12.(3)当5-2m =0,即m =52时,直线过原点,在两坐标轴上的截距均为0;当m ≠52时,由2m -5m 2-2m -3=2m -52m 2+m -1,解得m =-2.故实数m 的值为52或-2.14.已知直线m :2x -y -3=0与直线n :x +y -3=0的交点为P .(1)若直线l 过点P ,且点A (1,3)和点B (3,2)到直线l 的距离相等,求直线l 的方程; (2)若直线l 1过点P 且与x 轴、y 轴的正半轴分别交于A ,B 两点,△ABO 的面积为4,求直线l 1的方程.解:(1)由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得⎩⎪⎨⎪⎧x =2,y =1,即交点P (2,1).由直线l 与A ,B 的距离相等可知,l ∥AB 或l 过AB 的中点. ①由l ∥AB ,得k l =k AB =2-33-1=-12,所以直线l 的方程为y -1=-12(x -2),即x +2y -4=0,②由l 过AB 的中点得l 的方程为x =2, 故x +2y -4=0或x =2为所求.(2)法一:由题可知,直线l 1的斜率k 存在,且k <0. 则直线l 1的方程为y =k (x -2)+1=kx -2k +1. 令x =0,得y =1-2k >0, 令y =0,得x =2k -1k>0,∴S △ABO =12×(1-2k )×2k -1k =4,解得k =-12,故直线l 1的方程为y =-12x +2,即x +2y -4=0.法二:由题可知,直线l 1的横、纵截距a ,b 存在,且a >0,b >0,则l 1:x a +yb=1. 又l 1过点(2,1),△ABO 的面积为4, ∴⎩⎪⎨⎪⎧2a +1b =1,12ab =4,解得⎩⎪⎨⎪⎧a =4,b =2,故直线l 1的方程为x 4+y2=1,即x +2y -4=0.1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△PAB 的面积最大值是( )A .2 5B .5 C.52D. 5解析:选C 由题意可知,动直线x +my =0过定点A (0,0). 动直线mx -y -m +3=0⇒m (x -1)+3-y =0, 因此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12×1×3=32.当m ≠0时,两条直线的斜率分别为-1m,m ,则-1m·m =-1,因此两条直线相互垂直.当|PA |=|PB |时,△PAB 的面积取得最大值. 由2|PA |=|AB |=12+32=10, 解得|PA |= 5. ∴S △PAB =12|PA |2=52.综上可得,△PAB 的面积最大值是52.2.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,即(4,-2).∴直线BC 所在方程为y -1=-2-14-3(x -3),即3x +y -10=0.联立⎩⎪⎨⎪⎧3x +y -10=0,y =2x ,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4).3.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.① 又∵k BD =5--1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,即M (2,4).答案:(2,4) 高考研究课(二)圆的方程命题3角度——求方程、算最值、定轨迹 [全国卷5年命题分析]圆的方程圆的方程的求法,应根据条件选用合适的圆的方程,一般来说,求圆的方程有两种方法:几何法,通过研究圆的性质进而求出圆的基本量. 代数法,即设出圆的方程,用待定系数法求解.[典例] [解] 法一:用“几何法”解题由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ), ∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1,∴C (2,1),∴r =|CA |=-2+-2=10.∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:用“代数法”解题设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,-a 2+-b 2=r 2,-a 2+-2-b 2=r 2,解得⎩⎨⎧a=2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10. 法三:用“代数法”解题设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E2-3=0,解得⎩⎪⎨⎪⎧D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0. [方法技巧]求圆的方程的方法(1)方程选择原则若条件中圆心坐标明确时,常设为圆的标准方程,不明确时,常设为一般方程. (2)求圆的方程的方法和步骤确定圆的方程的主要方法是代数法,大致步骤如下:①根据题意,选择标准方程或一般方程;②根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; ③解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. [即时演练]根据下列条件,求圆的方程.(1)已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).解:(1)法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2. 由题意可得⎩⎪⎨⎪⎧-2-6E +F =0,12+-2+D -5E +F =0,D -E -2=0,解得⎩⎪⎨⎪⎧D =6,E =4,F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0. 法二:因为A (0,-6),B (1,-5), 所以线段AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫12,-112,直线AB 的斜率k AB =-5--1-0=1,因此线段AB 的垂直平分线的方程是y +112=-⎝⎛⎭⎪⎫x -12,即x +y +5=0.则圆心C 的坐标是方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +1=0的解,解得⎩⎪⎨⎪⎧x =-3,y =-2,所以圆心C 的坐标是(-3,-2).圆的半径长r =|AC |=+2+-6+2=5,所以圆的方程为(x +3)2+(y +2)2=25.(2)法一:如图,设圆心坐标为(x 0,-4x 0),依题意得-2--4x 03-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =-2+-4+2=22,故圆的方程为(x -1)2+(y +4)2=8.法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.1.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y x的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3,解得k =± 3.所以y x的最大值为3,最小值为- 3.角度二:截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.角度三:距离型最值问题3.设P (x ,y )是圆(x -2)2+y 2=1上的任意一点,则(x -5)2+(y +4)2的最大值为( ) A .6 B .25 C .26D .36解析:选D (x -5)2+(y +4)2表示点P (x ,y )到点(5,-4)的距离的平方,又点(5,-4)到圆心(2,0)的距离d =-2+-2=5,则点P (x ,y )到点(5,-4)的距离最大值为6,从而(x -5)2+(y +4)2的最大值为36. 角度四:距离和(差)的最值问题4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17解析:选A 圆心C 1(2,3),C 2(3,4),作C 1关于x 轴的对称点C 1′(2,-3),连接C 1′C 2与x 轴交于点P ,此时|PM |+|PN |取得最小值,为|C 1′C 2|-1-3=52-4.角度五:三角形的面积的最值问题5.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△PAB 面积的最大值与最小值分别是( )A .2,12(4-5)B.12(4+5),12(4-5) C.5,4- 5D.12(5+2),12(5-2) 解析:选B 直线AB 的方程为x -1+y2=1,即2x -y +2=0,圆心(1,0)到直线AB 的距离d =2+25=455,则点P 到直线AB 的距离最大值为455+1,最小值为455-1,又|AB |=5,则(S △PAB )max =12×5×⎝ ⎛⎭⎪⎫455+1=12(4+5),(S △PAB )min =12×5×⎝ ⎛⎭⎪⎫455-1=12(4-5),故选B. [方法技巧]求解与圆有关的最值问题的2大规律(1)借助几何性质求最值处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.(2)建立函数关系式求最值根据题目条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用基本不等式法、参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.与圆有关的轨迹问题[典例] 已知圆22,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ). 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,。
新课标高三数学第一轮复习直线和圆的方程详细教案

高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:【解】用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为1999年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【分析】【点评】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】【点评】从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化,是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.【解法一】【解法二】【解法三】【点评】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】2013年普通高考数学科一轮复习精品学案第13讲直线与圆的方程一.课标要求:1.直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2.圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。
二.命题走向直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。
预测2013年对本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程。
三.要点精讲1.倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)π,0。
2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=t a nα;当直线的倾斜角等于900时,直线的斜率不存在。
过两点p 1(x 1,y 1),p 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式:k=t a n 1212x x y y --=α(若x 1=x 2,则直线p 1p 2的斜率不存在,此时直线的倾斜角为900)。
4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。
确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。
的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。
5.圆的方程 圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 。
特殊地,当0==b a 时,圆心在原点的圆的方程为:222r y x =+。
圆的一般方程022=++++F Ey Dx y x ,圆心为点)2,2(E D --,半径2422FE D r -+=,其中0422>-+F E D 。
二元二次方程022=+++++F Ey Dx Cy Bxy Ax ,表示圆的方程的充要条件是:①、2x 项2y 项的系数相同且不为0,即0≠=C A ;②、没有xy 项,即B =0;③、0422>-+AF E D 。
四.典例解析题型1:直线的倾斜角例1.图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案:D 解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D 。
点评:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力。
例2.过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,求PA PB ·||的值最小时直线l 的方程。
解析:依题意作图,设∠BA O =θ, 则PA PB ==12sin cos θθ,,∴===PA PB ·22442sin cos sin cos sin θθθθθ,当sin21θ=,即θ=︒45时PA PB ·||的值最小,此时直线l 的倾斜角为135°,∴斜率k l =︒=-tan1351。
图y BP (2,1)θ O A xθ故直线l 的方程为()()y x -=--112·,即x y +-=30。
点评:求直线方程是解析几何的基础,也是重要的题型。
解这类题除用到有关概念和直线方程的五种形式外,还要用到一些技巧。
题型2:斜率公式及应用例3.(1)设实数x ,y满足x y x y y --≤+-≥-≤⎧⎨⎪⎩⎪20240230,则yx 的最大值是___________。
(2)已知过原点O 的一条直线与函数y =lo g 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =lo g 2x 的图象交于C 、D 两点。
(1)证明点C 、D 和原点O 在同一条直线上。
(2)当BC 平行于x 轴时,求点A 的坐标。
解析:(1)如图,实数x ,y 满足的区域为图中阴影部分(包括边界),而y x y x =--0表示点(x ,y )与原点连线的斜率,则直线A O 的斜率最大,其中A 点坐标为132,⎛⎝ ⎫⎭⎪,此时k OA =32,所以y x 的最大值是32。
点评:本题还可以设yx k =,则y kx =,斜率k 的最大值即为yx的最大值,但求解颇费周折。
(2)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x=3lo g 8x 2, 所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====。
由此得k OC =k OD ,即O 、C 、D 在同一条直线上。
由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).点评:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力。
例4.当02<<x π时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值是()A .2B .C .4D .43解析:原式化简为,则y 看作点A (0,5)与点()B x x -sin cos 232,的连线的斜率。
因为点B 的轨迹是X x Y xx =-=⎧⎨⎩<<⎛⎝ ⎫⎭⎪sin cos 23202π 即过A 作直线Y kX =+5,代入上式,由相切(△=0)可求出k =4,由图象知k 的最小值是4,故选C 。
点评:也可用三角函数公式变换求最值或用求导的方法求最值等。
但将问题转化为直线与椭圆的位置关系使问题解决的十分准确与清晰。
题型3:直线方程例5.已知直线的点斜式方程为()y x -=--1342,求该直线另外三种特殊形式的方程。
解析:(1)将()y x -=--1342移项、展开括号后合并,即得斜截式方程。
(2)因为点(2,1)、(0,52)均满足方程()y x -=--1342,故它们为直线上的两点。
由两点式方程得:y x --=--1521202 即y x -=--13222 (3)由y x =-+3452知:直线在y轴上的截距b =52又令y =0,得x =103故直线的截距式方程x y103521+=点评:直线方程的四种特殊形式之间存在着内在的联系,它是直线在不同条件下的不同表现形式,要掌握好它们之间的互化。
在解具体问题时,要根据问题的条件、结论,灵活恰当地选用公式,使问题解得简捷、明了。
例6.直线l 经过点P (-5,-4),且与两坐标轴围成的三角形面积为5,求直线l 的方程。
解析:设所求直线l 的方程为, ∵直线l 过点P (-5,-4),∴-+-=541a b,即45a b ab +=-。
又由已知有125a b =,即ab =10, 解方程组4510a b ab ab +=-=⎧⎨⎩,得:a b =-=⎧⎨⎪⎩⎪524或a b ==-⎧⎨⎩52故所求直线l 的方程为:x y -+=5241,或x y521+-=。
即85200x y -+=,或25100x y --=点评:要求l 的方程,须先求截距a 、b 的值,而求截距的方法也有三种:(1)从点的坐标()a ,0或()0,b 中直接观察出来; (2)由斜截式或截距式方程确定截距;(3)在其他形式的直线方程中,令x =0得y 轴上的截距b ;令y =0得出x 轴上的截距a 。
总之,在求直线方程时,设计合理的运算途径比训练提高运算能力更为重要。
解题时善于观察,勤于思考,常常能起到事半功倍的效果。
题型3:直线方程综合问题例5.在直角坐标系xOy中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是()A.95 B.91 C.88 D.75 答案:B解析一:由y=10-32x(0≤x≤15,x∈N)转化为求满足不等式y≤10-32x(0≤x≤15,x∈N)所有整数y的值.然后再求其总数.令x=0,y有11个整数,x=1,y有10个,x=2或x=3时,y分别有9个,x=4时,y有8个,x=5或6时,y分别有7个,类推:x=13时y有2个,x=14或15时,y分别有1个,共91个整点.故选B。
解析二:将x=0,y=0和2x+3y=30所围成的三角形补成一个矩形.如图所示。
对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB内部和边上的整点共有26176 =91(个)点评:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径。
例6.已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上。
(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A、B两点。
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围。
图(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-。