2013届高考数学第一轮复习教案9.

合集下载

高考数学第一轮复习教案

高考数学第一轮复习教案

高考数学第一轮复习教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学第一轮复习教案高考数学第一轮复习教案七篇高考数学第一轮复习教案都有哪些?新的数学方法和概念,常常比解决数学问题本身更重要。

2013届高考数学第一轮数列专项复习教案1

2013届高考数学第一轮数列专项复习教案1

一、选择题
1. 已知 an+1-an- 3=0,则数列 { an} 是( )
A .递增数列
B.递减数列
C. 常数项
D.不能确定
2.数列 1,3,6,10,15,…的递推公式是 ( )
A . an+ 1= an+n,n∈N +
B . an= an- 1+ n,n∈N+, n≥2 C. an+1= an+ (n+ 1),n∈ N+ ,n≥2 D. an= an- 1+ (n- 1), n∈ N+ ,n≥2
函数与数列的联系与区别
一方面,数列是一种特殊的函数,因此在解决数列问题时,要善
于利用函数的知识、函数的观点、函数的思想方法来解题,即用
共性来解决特殊问题. 另一方面, 还要注意数列的特殊性 ( 离散型 ) ,由于它的定义域是 N+或它的子集 {1,2 ,…, n} ,因而它的图像是一系列孤立的点, 而不像我们前面所研究过的初等函数一般都是连续的曲线, 因此 在解决问题时,要充分利用这一特殊性,如研究单调性时,由数 列的图像可知,只要这些点每个比它前面相邻的一个高 ( 即 an>an - 1) ,则图像呈上升趋势,即数列递增,即 { an} 递增 ? an+1>an 对任 意的 n ( n∈N+) 都成立.类似地,有 { an} 递减 ? an+1<an对任意的 n( n∈N+) 都成立.
-1 n=2k-1 ,
an= 1 n=2k ,
其中 k∈N+.
1.2 数列的函数特性
课时目标 1.了解数列的递推公式 ,明确递推公式与通项公式的 异同; 2.会根据数列的递推公式写出数列的前几项; 3.了解数列 和函数之间的关系 ,能用函数的观点研究数列.
1.如果数列 { an} 的第 1 项或前几项已知 ,并且数列 { an} 的任一项 an 与它的前一项 an-1(或前几项 )间的关系可以用一个式子来表 示 ,那么这个式子就叫做这个数列的递推公式. 2.数列可以看作是一个定义域为 ____________(或它的有限子集 {1,2,3 ,…,n}) 的函数 ,当自变量按照从小到大的顺序依次取值 时 ,对应的一列 ________. 3.一般地 ,一个数列 { an} ,如果从 ________起,每一项都大于 它的前一项 ,即__________,那么这个数列叫做递增数列.如果 从 ________起,每一项都小于它的前一项 ,即__________,那么 这个数列叫做递减数列.如果数列 { an} 的各项 ________,那么这 个数列叫做常数列.

2013高考数学(文)一轮复习课件:9-2

2013高考数学(文)一轮复习课件:9-2

2.频率分布折线图和总体密度曲线 (1)频率分布折线图:连接频率分布直方图中各小长方形上端 的 中点 ,就得频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分组数增 加, 组距 减小,相应的频率折线图会越来越接近于一条光滑 曲线,即总体密度曲线.
3.茎叶图的优点 用茎叶图表示数据有两个突出的优点: 一是统计图上没有原始数据信息的损失,所有数据信息都可以 从茎叶图中得到; 二是茎叶图中的数据可以随时记录,随时添加,方便记录与表 示.
【训练3】 甲、乙两名射击运动员参加某大型运动会的预选 赛,他们分别射击了5次,成绩如下表(单位:环): 甲 10 8 9 9 9
乙 10 10 7 9 9 如果甲、乙两人中只有1人入选,则入选的最佳人选应是 ________.
解析
2
1 x 甲= x 乙=9环,s 甲 = 5 [(9-10)2+(9-8)2+(9-9)2+(9
频率分布直方图直观形象地表示了样本的频率分布,从这个 直方图上可以求出样本数据在各个组的频率分布.根据频率分 布直方图估计样本(或者总体)的平均值时,一般是采取组中值 乘以各组的频率的方法.
【训练1】
(2011· 湖北)有一个容量为200的样本,其频率分布
直方图如图所示.根据样本的频率分布直方图估计,样本数据 落在区间[10,12)内的频数为( A.18 C.54 B.36 D.72 ).
三个特征 利用频率分布直方图估计样本的数字特征: (1)中位数:在频率分布直方图中,中位数左边和右边的直方 图的面积相等,由此可以估计中位数值. (2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形 底边中点横坐标之和. (3)众数:最高的矩形的中点的横坐标.
双基自测 1.(人教A版教材习题改编)某工厂生产滚珠,从某批产品中随 机抽取8粒,量得直径分别为(单位:mm): 14.7,14.6,15.1,15.0,14.8,15.1,15.0,14.9,则估计该厂生产的滚珠 直径的平均数为( A.14.8 mm C.15.0 mm 解析 ).

【走向高考】(2013春季发行)高三数学第一轮总复习 9-1空间几何体的结构特征及其直观图、三视图 新人教A版

【走向高考】(2013春季发行)高三数学第一轮总复习 9-1空间几何体的结构特征及其直观图、三视图 新人教A版

9-1空间几何体的结构特征及其直观图、三视图基础巩固强化1.(文)(2011·合肥市质检)下图是一个几何体的三视图,其中正(主)视图和侧(左)视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 由三视图知,该几何体是两底半径分别为1和2,母线长为4的圆台,故其侧面积S =π(1+2)×4=12π.(理)一个几何体的三视图如图所示,正视图上部是一个边长为4的正三角形,下部是高为3两底长为3和4的等腰梯形,则其表面积为( )A.31π2B.63π2C.π4(57+737) D.π4(41+737) [答案] D [解析]由三视图知,该几何体是一个组合体,上部是底半径为2,高为23的圆锥,下部是两底半径分别为2和32,高为3的圆台,其表面积S =π×2×4+π(2+32)×372+π·(32)2=π4(41+737),故选D. 2.如图所示是水平放置三角形的直观图,D 是△ABC 的BC 边中点,AB 、BC 分别与y ′轴、x ′轴平行,则三条线段AB 、AD 、AC 中( )A .最长的是AB ,最短的是AC B .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AC ,最短的是AD [答案] B[解析] 由条件知,原平面图形中AB ⊥AC ,从而AB <AD <AC .3.(文)(2012·河南六市联考)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为( )A.14 3 B.6+2 3 C.12+2 3 D.16+2 3 [答案] C[解析] 该几何体是一个正三棱柱,设底面正三角形边长为a,则32a=3,∴a=2,又其高为2,故其全面积S=2×(34×22)+3×(2×2)=12+2 3.(理)(2011·北京西城模拟)一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是( )A.①②B.②③C.③④D.①④[答案] B[解析] 根据三视图画法规则“长对正,高平齐、宽相等”,俯视图应与正视图同长为3,与侧视图同宽为2,故一定不可能是圆和正方形.4.(文)(2011·广东文,9)如下图,某几何体的正视图(正视图),侧视图(侧视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2[答案] C[解析] 由三视图知该几何体是四棱锥,底面是菱形,其面积S =12×23×2=23,高h =3,所以V =13Sh =13×23×3=2 3.(理)(2012·保定市一模)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的体积是(单位:m 3).( )A .4+2 6B .4+ 6 C.23 D.43[答案] D[解析] 由侧视图和俯视图是全等的等腰三角形,及正视图为等腰直角三角形可知,该几何体可看作边长AB =BC =3,AC =1的△ABC 绕AC 边转动到与平面△PAC 位置(平面PAC ⊥平面ABC )所形成的几何体,故其体积V =13×(12×2×2)×2=43.5.(文)(2011·广东省东莞市一模)一空间几何体的三视图如图所示,该几何体的体积为12π+853,则正视图与侧视图中x 的值为( )A .5B .4C .3D .2 [答案] C[解析] 根据题中的三视图可知,该几何体是圆柱和正四棱锥的组合体,圆柱的底半径为2,高为x ,四棱锥的底面正方形对角线长为4,四棱锥的高h =32-22=5,其体积为V =13×8×5+π×22×x =12π+853,解得x =3. (理)(2011·新课标全国理,6)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )[答案] D [解析]由正视图知该几何体是锥体,由俯视图知,该几何体的底面是一个半圆和一个等腰三角形,故该几何体是一个半圆锥和一个三棱锥组成的,两锥体有公共顶点,圆锥的两条母线为棱锥的两侧棱,其直观图如图,在侧视图中,O 、A 与C 的射影重合,侧视图是一个三角形△PBD ,OB =OD ,PO ⊥BD ,PO 为实线,故应选D.6.(文)(2012·河北郑口中学模拟)某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图不可以是( )[答案] D[解析] 由正视图及俯视图可知该几何体的高为1,又∵其体积为13,故为锥体,∴S 底=1,A 中为三角形,此时其底面积为12,舍去;B 为14个圆,底面积为π4,也舍去,C 为圆,其面积为π舍去,故只有D 成立.[点评] 如果不限定体积为13,则如图(1)在三棱锥P -ABC 中,AC ⊥BC ,PC ⊥平面ABC ,AC =BC =PC =1,则此三棱锥满足题设要求,其俯视图为等腰直角三角形A ;如图(2),底半径为1,高为1的圆锥,被截面POA 与POB 截下一角,OA ⊥OB ,则此时几何体满足题设要求,其俯视图为B ;如图(3),这是一个四棱锥,底面是边长为1的正方形,PA ⊥平面ABCD ,此几何体满足题设要求,其俯视图为D.(理)(2012·大同市调研)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8 B.203 C.173D.143[答案] C[解析] 由题可知,原正方体如图所示,被平面EFB 1D 1截掉的几何体为棱台AFE -A 1B 1D 1,则所求几何体的体积V =23-V A 1B 1D 1-AEF =23-13×(2+12+2×12)×2=173,故选C.7.已知一个几何体的三视图如图所示(单位:cm),其中正(主)视图是直角梯形,侧(左)视图和俯视图都是矩形,则这个几何体的体积是________cm 3.[答案] 32[解析] 依据三视图知,该几何体的上、下底面均为矩形,上底面是边长为1的正方形,下底面是长为2,宽为1的矩形,左侧面是与底面垂直的正方形,其直观图如图所示,易知该几何体是四棱柱ABCD -A 1B 1C 1D 1,其体积V =S 梯形ABCD ·AA 1=1+2×12×1=32cm 3. 8.(2011·皖南八校联考)已知三棱锥的直观图及其俯视图与侧视图如下,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图面积为________.[答案] 2[解析] 由条件知,该三棱锥底面为正三角形,边长为2,一条侧棱与底面垂直,该侧棱长为2,故正视图为一直角三角形,两直角边的长都是2,故其面积S =12×2×2=2.9.(2011·安徽知名省级示范高中联考)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于E ,交CC 1于F ,得四边形BFD 1E ,给出下列结论:①四边形BFD 1E 有可能为梯形; ②四边形BFD 1E 有可能为菱形;③四边形BFD 1E 在底面ABCD 内的投影一定是正方形; ④四边形BFD 1E 有可能垂直于平面BB 1D 1D ; ⑤四边形BFD 1E 面积的最小值为62. 其中正确的是________.(请写出所有正确结论的序号) [答案] ②③④⑤[解析] ∵平面ADD 1A 1∥平面BCC 1B 1,平面BFD 1E ∩平面ADD 1A 1=D 1E ,平面BFD 1E ∩平面BCC 1B 1=BF ,∴D 1E ∥BF ;同理BE ∥FD 1,∴四边形BFD 1E 为平行四边形,①显然不成立;当E 、F 分别为AA 1、CC 1的中点时,易证BF =FD 1=D 1E =BE ,∴EF ⊥BD 1,又EF ∥AC ,AC ⊥BD ,∴EF⊥BD ,∴EF ⊥平面BB 1D 1D ,∴平面BFD 1E ⊥平面BB 1D 1E ,∴②④成立,四边形BFD 1E 在底面的投影恒为正方形ABCD .当E 、F 分别为AA 1、CC 1的中点时,四边形BFD 1E 的面积最小,最小值为62. 10.在如图所示的几何体中,四边形 ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ;(2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比. [解析] (1)证明:∵MA ⊥平面ABCD ,PD ∥MA , ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD ⊥BC , ∵四边形ABCD 为正方形,∴BC ⊥DC . ∵PD ∩DC =D ,∴BC ⊥平面PDC .在△PBC 中,因为G 、F 分别为PB 、PC 的中点, ∴GF ∥BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)不妨设MA =1,∵四边形ABCD 为正方形,∴PD =AD =2, 又∵PD ⊥平面ABCD ,所以V P -ABCD =13S 正方形ABCD ·PD =83.由于DA ⊥平面MAB ,且PD ∥MA , 所以DA 即为点P 到平面MAB 的距离, 三棱锥V P -MAB =13×⎝ ⎛⎭⎪⎫12×1×2×2=23.所以V P -MAB :V P -ABCD =1:4.能力拓展提升11.(2011·湖南六市联考)一个几何体的三视图如下图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( )A.32B.12 C .1 D .2[答案] A[解析] 由三视图知,该几何体是正六棱锥,底面正六边形的边长为1,侧棱长为2,故侧视图为一等腰三角形,底边长3,高为正六棱锥的高3,故其面积为S =12×3×3=32. 12.(2011·皖南八校联考)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )[答案] B [解析]由三视图间的关系,易知其侧视图是一个底边为3,高为2的直角三角形,故选B. [点评] 由题设条件及正视图、俯视图可知,此三棱锥P -ABC 的底面是正△ABC ,侧棱PB ⊥平面ABC ,AB =2,PB =2.13.(2012·内蒙包头市模拟)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.[答案] 16π[解析] 由三视图知,该几何体是一个正三棱柱,底面正三角形边长为3,高为2,故其外接球半径R 满足R 2=(22)2+(23×32×3)2=4,∴R =2,∴S 球=4πR 2=16π.14.(2011·南京市调研)如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.[答案] 13[解析] 如图,将三棱柱侧面A1ABB1置于桌面上,以A1A为界,滚动两周(即将侧面展开两次),则最短线长为AA″1的长度,∴AA1=5,AA″=12,∴AA″1=13.15.圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的半径长与两底面面积的和.[解析] 如图所示,设圆台上底面半径为r,则下底面半径为2r,且∠ASO =30°, 在Rt △SA ′O ′中,rSA ′=sin30°, ∴SA ′=2r ,在Rt △SAO 中,2rSA=sin30°,∴SA =4r .∵SA -SA ′=AA ′,即4r -2r =2a ,r =a . ∴S =S 1+S 2=πr 2+π(2r )2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.16.(文)(2011·青岛质检)如下的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积. [解析] (1)如图.(2)所求多面体体积V =V 长方体-V 正三棱锥 =4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3). (理)多面体PABCD 的直观图及三视图如图所示,E 、F 分别为PC 、BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:PA ⊥平面PDC .[解析] 由多面体PABCD 的三视图知,该几何体是四棱锥,四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,侧面PAD 是等腰直角三角形,PA =PD =2,且平面PAD ⊥平面ABCD .(1)连接AC ,则F 是AC 的中点, 又∵E 是PC 的中点, ∴在△CPA 中,EF ∥PA , 又PA ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 又CD ⊥AD ,∴CD ⊥平面PAD , ∴CD ⊥PA .∵△PAD 是等腰直角三角形,且∠APD =π2.即PA ⊥PD .又CD ∩PD =D ,∴PA ⊥平面PDC .1.(2011·宁夏银川一中检测)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是( )[答案] B[分析] 可以直接根据变化率的含义求解,也可以求出函数的解析式进行判断.[解析] 容器是一个倒置的圆锥,由于水是均匀注入的,故水面高度随时间变化的变化率逐渐减少,表现在函数图象上就是其切线的斜率逐渐减小,故选B.[点评] 本题在空间几何体三视图和函数的变化率交汇处命制,重点是对函数变化率的考查,这种在知识交汇处命制题目考查对基本概念的理解与运用的命题方式值得重视.2.(2011·惠州模拟)用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最大体积与最小体积的差是( )A.6 B.7 C.8 D.9[答案] A3.(2011·河源模拟)如图所示,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( )[答案] B[解析] 箭头所指正面的观察方向与底面直角三角形边长为4的边平行,故该边的射影为一点,与其垂直的直角边的长度3不变,高4不变,故选B.4.(2011·辽宁文,8)一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如右图所示,侧视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3[答案] B[解析] 由题意可设棱柱的底面边长为a ,则其体积为34a 2·a =23,得a =2. 由俯视图易知,三棱柱的侧视图是以2为长,3为宽的矩形.∴其面积为2 3.故选B.5.(2011·天津理,10)一个几何体的三视图如下图所示(单位:m),则该几何体的体积为________m3.[答案] π+6[解析] 根据三视图知该几何体是一个长方体上面放一个圆锥.因而V=V长方体+V圆锥,又知长方体长、宽、高分别为3、2、1,圆锥的底面半径为1,高为3,从而求出体积为(π+6)m3.6.下图是一几何体的直观图和三视图.(1)若F为PD的中点,求证:AF⊥平面PCD;(2)求几何体BEC-APD的体积.[解析] (1)证明:由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,PA=2EB=4.∵PA=AD,F为PD的中点,∴PD⊥AF.又∵CD⊥DA,CD⊥PA,∴CD⊥AF.∴AF ⊥平面PCD .(2)V BEC -APD =V C -APEB +V P -ACD =13×12×(4+2)×4×4+13×12×4×4×4=803.。

高考数学一轮复习 第九章 平面解析几何9 (2)

高考数学一轮复习 第九章 平面解析几何9 (2)

高考数学一轮复习 第九章 平面解析几何9.11 圆锥曲线中定点与定值问题题型一 定点问题例1 已知定圆A :(x +3)2+y 2=16,动圆M 过点B (3,0),且和圆A 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)设不垂直于x 轴的直线l 与轨迹E 交于不同的两点P ,Q ,点N (4,0).若P ,Q ,N 三点不共线,且∠ONP =∠ONQ .证明:动直线PQ 经过定点.(1)解 圆A 的圆心为A (-3,0),半径r 1=4.设动圆M 的半径为r 2,依题意有r 2=|MB |.由|AB |=23,可知点B 在圆A 内,从而圆M 内切于圆A ,故|MA |=r 1-r 2,即|MA |+|MB |=4>2 3.所以动点M 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,其方程为x 24+y 2=1. (2)证明 设直线l 的方程为y =kx +b (k ≠0),联立⎩⎪⎨⎪⎧y =kx +b ,x 2+4y 2=4, 消去y 得,(1+4k 2)x 2+8kbx +4b 2-4=0,Δ=16(4k 2-b 2+1)>0,设P (x 1,kx 1+b ),Q (x 2,kx 2+b ),则x 1+x 2=-8kb 1+4k 2,x 1x 2=4b 2-41+4k 2, 于是k PN +k QN =kx 1+b x 1-4+kx 2+b x 2-4=2kx 1x 2-4k -bx 1+x 2-8b x 1-4x 2-4, 由∠ONP =∠ONQ 知k PN +k QN =0.即2kx 1x 2-(4k -b )(x 1+x 2)-8b =2k ·4b 2-41+4k 2-(4k -b )-8kb 1+4k 2-8b =8kb 2-8k 1+4k 2+32k 2b -8kb 21+4k 2-8b =0, 得b =-k ,Δ=16(3k 2+1)>0.故动直线l 的方程为y =kx -k ,过定点(1,0).教师备选在平面直角坐标系中,已知动点M (x ,y )(y ≥0)到定点F (0,1)的距离比到x 轴的距离大1.(1)求动点M 的轨迹C 的方程;(2)过点N (4,4)作斜率为k 1,k 2的直线分别交曲线C 于不同于N 的A ,B 两点,且1k 1+1k 2=1.证明:直线AB 恒过定点.(1)解 由题意可知x 2+y -12=y +1,化简可得曲线C :x 2=4y .(2)证明 由题意可知,N (4,4)是曲线C :x 2=4y 上的点,设A (x 1,y 1),B (x 2,y 2),则l NA :y =k 1(x -4)+4,l NB :y =k 2(x -4)+4,联立直线NA 的方程与抛物线C 的方程,⎩⎪⎨⎪⎧ y =k 1x -4+4,x 2=4y⇒x 2-4k 1x +16(k 1-1)=0,解得x 1=4(k 1-1),①同理可得x 2=4(k 2-1),②而l AB :y -x 214=x 1+x 24(x -x 1),③又1k 1+1k 2=1,④ 由①②③④整理可得l AB :y =(k 1+k 2-2)x -4,故直线AB 恒过定点(0,-4).思维升华 求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式y =kx +m ,则直线必过定点(0,m ).跟踪训练1 (2022·邯郸质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且过点⎝⎛⎭⎫3,12. (1)求椭圆方程;(2)设直线l :y =kx +m (k ≠0)交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线x =12上,求证:线段AB 的中垂线恒过定点N .(1)解 椭圆过点⎝⎛⎭⎫3,12,即3a 2+14b2=1, 又2c =23,得a 2=b 2+3,所以a 2=4,b 2=1,即椭圆方程为x 24+y 2=1. (2)证明 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 1+4k 2,设AB 的中点M 为(x 0,y 0),得x 0=-4km 1+4k 2=12, 即1+4k 2=-8km ,所以y 0=kx 0+m =12k -1+4k 28k =-18k. 所以AB 的中垂线方程为y +18k =-1k ⎝⎛⎭⎫x -12, 即y =-1k ⎝⎛⎭⎫x -38, 故AB 的中垂线恒过点N ⎝⎛⎭⎫38,0.题型二 定值问题例2 (2022·江西赣抚吉名校联考)已知抛物线E :y 2=2px (p >0)上的动点M 到直线x =-1的距离比到抛物线E 的焦点F 的距离大12. (1)求抛物线E 的标准方程;(2)设点Q 是直线x =-1(y ≠0)上的任意一点,过点P (1,0)的直线l 与抛物线E 交于A ,B 两点,记直线AQ ,BQ ,PQ 的斜率分别为k AQ ,k BQ ,k PQ ,证明:k AQ +k BQ k PQ为定值. (1)解 由题意可知抛物线E 的准线方程为x =-12, 所以-p 2=-12,即p =1, 故抛物线E 的标准方程为y 2=2x .(2)证明 设Q (-1,y 0),A (x 1,y 1),B (x 2,y 2),因为直线l 的斜率显然不为0,故可设直线l 的方程为x =ty +1.联立⎩⎪⎨⎪⎧x =ty +1,y 2=2x ,消去x ,得y 2-2ty -2=0.Δ=4t 2+8>0,所以y 1+y 2=2t ,y 1y 2=-2,k PQ =-y 02. 又k AQ +k BQ =y 1-y 0x 1+1+y 2-y 0x 2+1 =y 1-y 0x 2+1+y 2-y 0x 1+1x 1+1x 2+1=y 1-y 0ty 2+2+y 2-y 0ty 1+2ty 1+2ty 2+2=2ty 1y 2+2-ty 0y 1+y 2-4y 0t 2y 1y 2+2t y 1+y 2+4 =2t ·-2+2-ty 0·2t -4y 0t 2·-2+2t ·2t +4=-y 0t 2+2t 2+2=-y 0. 所以k AQ +k BQ k PQ =-y 0-y 02=2(定值). 教师备选(2022·邯郸模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆于A ,B 两点,交y 轴于点M ,若|F 1F 2|=2,△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)MA →=λF 1A —→,MB →=μF 1B —→,试分析λ+μ是否为定值,若是,求出这个定值,否则,说明理由.解 (1)因为△ABF 2的周长为8,所以4a =8,解得a =2,由|F 1F 2|=2,得2a 2-b 2=24-b 2=2,所以b 2=3,因此椭圆C 的标准方程为x 24+y 23=1.(2)由题意可得直线l 的斜率存在,设直线l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧ y =k x +1,x 24+y 23=1, 整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0,设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧ x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.设M (0,k ),又F 1(-1,0),所以MA →=(x 1,y 1-k ),F 1A —→=(x 1+1,y 1),则λ=x 1x 1+1. 同理可得MB →=(x 2,y 2-k ),F 1B —→=(x 2+1,y 2),则μ=x 2x 2+1. 所以λ+μ=x 1x 1+1+x 2x 2+1=x 1x 2+1+x 2x 1+1x 1+1x 2+1=2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=2×4k 2-123+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k 2+1=8k 2-24-8k 24k 2-12-8k 2+3+4k 2=-24-9=83, 所以λ+μ为定值83. 思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2 在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB的斜率为k 1,点P 的坐标为⎝⎛⎭⎫1,32. (1)求椭圆C 的方程;(2)求证:k 1k 为定值.(1)解 由题意知⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧ a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1. (2)证明 设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),由于A ,B 为椭圆C 上的点, 所以x 214+y 213=1,x 224+y 223=1, 两式相减得x 1+x 2x 1-x 24=-y 1+y 2y 1-y 23, 所以k 1=y 1-y 2x 1-x 2=-3x 1+x 24y 1+y 2=-3x 04y 0. 又k =y 0x 0, 故k 1k =-34,为定值. 课时精练1.(2022·运城模拟)已知P (1,2)在抛物线C :y 2=2px 上.(1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线P A 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.(1)解 将P 点坐标代入抛物线方程y 2=2px ,得4=2p ,即p =2,所以抛物线C 的方程为y 2=4x .(2)证明 设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0⇒16m 2+16t >0⇒m 2+t >0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k P A =y 1-2x 1-1=y 1-2y 214-1=4y 1+2, 同理k PB =4y 2+2,由题意知4y 1+2+4y 2+2=2, 即4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,故-4t =4,即t =-1,故直线AB :x =my -1恒过定点(-1,0).2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,且其左顶点到右焦点的距离为5. (1)求椭圆的方程;(2)设点M ,N 在椭圆上,以线段MN 为直径的圆过原点O ,试问是否存在定点P ,使得P 到直线MN 的距离为定值?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题设可知⎩⎪⎨⎪⎧c a =23,a +c =5,解得a =3,c =2,b 2=a 2-c 2=5,所以椭圆的方程为x 29+y 25=1. (2)设M (x 1,y 1),N (x 2,y 2),①若直线MN 与x 轴垂直,由对称性可知|x 1|=|y 1|,将点M (x 1,y 1)代入椭圆方程,解得|x 1|=37014, 原点到该直线的距离d =37014; ②若直线MN 不与x 轴垂直,设直线MN 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 25=1,消去y 得(9k 2+5)x 2+18kmx +9m 2-45=0,由根与系数的关系得⎩⎪⎨⎪⎧ x 1x 2=9m 2-459k 2+5,x 1+x 2=-18km 9k 2+5,由题意知,OM →·ON →=0,即x 1x 2+(kx 1+m )(kx 2+m )=0, 得(k 2+1)9m 2-459k 2+5+km ⎝⎛⎭⎫-18km 9k 2+5+m 2=0, 整理得45k 2+45=14m 2,则原点到该直线的距离d =|m |k 2+1=4514=37014, 故存在定点P (0,0),使得P 到直线MN 的距离为定值.3.已知双曲线C 的渐近线方程为y =±3x ,右焦点F (c ,0)到渐近线的距离为 3.(1)求双曲线C 的方程;(2)过F 作斜率为k 的直线l 交双曲线于A ,B 两点,线段AB 的中垂线交x 轴于D ,求证:|AB ||FD |为定值.(1)解 设双曲线方程为3x 2-y 2=λ(λ>0),由题意知c =2,所以λ3+λ=4⇒λ=3, 所以双曲线C 的方程为x 2-y 23=1. (2)证明 设直线l 的方程为y =k (x -2)(k ≠0)代入x 2-y 23=1, 整理得(3-k 2)x 2+4k 2x -4k 2-3=0,Δ=36(k 2+1)>0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-4k 23-k 2,x 1x 2=-4k 2-33-k 2, 由弦长公式得|AB |=1+k 2·x 1+x 22-4x 1x 2=6k 2+1|3-k 2|, 设AB 的中点P (x 0,y 0),则x 0=x 1+x 22=-2k 23-k 2, 代入l 得y 0=-6k 3-k 2, AB 的垂直平分线方程为y =-1k ⎝⎛⎭⎫x +2k 23-k 2-6k 3-k 2,令y =0得x D =-8k 23-k 2, 即|FD |=⎪⎪⎪⎪⎪⎪-8k 23-k 2-2=61+k 2|3-k 2|, 所以|AB ||FD |=1为定值. 当k =0时,|AB |=2,|FD |=2,|AB ||FD |=1, 综上所述,|AB ||FD |为定值.4.(2022·河南九师联盟模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,长轴长为4.(1)求椭圆C 的方程;(2)设过点F 1不与x 轴重合的直线l 与椭圆C 相交于E ,D 两点,试问在x 轴上是否存在一个点M ,使得直线ME ,MD 的斜率之积恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.解 (1)因为焦距为2,长轴长为4,即2c =2,2a =4,解得c =1,a =2,所以b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)由(1)知F 1(-1,0),设点E (x 1,y 1),D (x 2,y 2),M (m ,0),因为直线l 不与x 轴重合,所以设直线l 的方程为x =ny -1,联立⎩⎪⎨⎪⎧x =ny -1,x 24+y 23=1, 得(3n 2+4)y 2-6ny -9=0,所以Δ=(-6n )2+36(3n 2+4)>0,所以y 1+y 2=6n 3n 2+4,y 1y 2=-93n 2+4, 又x 1x 2=(ny 1-1)(ny 2-1)=n 2y 1y 2-n (y 1+y 2)+1=-9n 23n 2+4-6n 23n 2+4+1 =-12n 2-43n 2+4, x 1+x 2=n (y 1+y 2)-2=6n 23n 2+4-2 =-83n 2+4. 直线ME ,MD 的斜率分别为k ME =y 1x 1-m,k MD =y 2x 2-m , 所以k ME ·k MD =y 1x 1-m ·y 2x 2-m=y 1y 2x 1-m x 2-m=y 1y 2x 1x 2-m x 1+x 2+m 2=-93n 2+4-12n 2-43n 2+4-m ⎝ ⎛⎭⎪⎫-83n 2+4+m 2 =-9-12n 2+4+8m +3m 2n 2+4m 2=-93m 2-12n 2+4m +12, 要使直线ME ,MD 的斜率之积恒为定值,3m 2-12=0,解得m =±2,当m =2时,存在点M (2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-936=-14, 当m =-2时,存在点M (-2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-94, 综上,在x 轴上存在点M ,使得ME ,MD 的斜率之积恒为定值,当点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14, 当点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.。

2013届高考数学(理)一轮复习教案:第三篇 导数及其应用专题一 高考函数与导数命题动向(人教A版)

2013届高考数学(理)一轮复习教案:第三篇  导数及其应用专题一 高考函数与导数命题动向(人教A版)

2013届高考数学(理)一轮复习教案:第三篇导数及其应用专题一高考函数与导数命题动向高考命题分析函数是数学永恒的主题,是中学数学最重要的主干知识之一;导数是研究函数的有力工具,函数与导数不仅是高中数学的核心内容,还是学习高等数学的基础,而且函数的观点及其思想方法贯穿于整个高中数学教学的全过程,高考对函数的考查更多的是与导数的结合,发挥导数的工具性作用,应用导数研究函数的性质、证明不等式问题等,体现出高考的综合热点.所以在高考中函数知识占有极其重要的地位,是高考考查数学思想、数学方法、能力和素质的主要阵地.高考命题特点函数与导数在高考试卷中形式新颖且呈现出多样性,既有选择题、填空题,又有解答题.其命题特点如下:(1)全方位:近年新课标的高考题中,函数的知识点基本都有所涉及,虽然高考不强调知识点的覆盖率,但函数知识点的覆盖率依然没有减小.(2)多层次:在近年新课标的高考题中,低档、中档、高档难度的函数题都有,且题型齐全.低档难度题一般仅涉及函数本身的内容,诸如定义域、值域、单调性、周期性、图象等,且对能力的要求不高;中、高档难度题多为综合程度较高的试题,或者函数与其他知识结合,或者是多种方法的渗透.(3)巧综合:为了突出函数在中学数学中的主体地位,近年高考强化了函数与其他知识的渗透,加大了以函数为载体的多种方法、多种能力(甚至包括阅读能力、理解能力、表述能力、信息处理能力)的综合程度.(4)变角度:出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大了函数应用题、探索题、开放题和信息题的考查力度,从而使函数考题显得新颖、生动、灵活.(5)重能力:以导数为背景与其他知识(如函数、方程、不等式、数列等)交汇命题.利用导数解决相关问题,是命题的热点,而且不断丰富创新.解决该类问题要注意函数与方程、转化与化归、分类讨论等数学思想的应用.综合考查学生分析问题、解决问题的能力和数学素养.高考动向透视函数的概念和性质函数既是高中数学中极为重要的内容,又是学习高等数学的基础.函数的基础知识涉及函数的三要素、函数的表示方法、单调性、奇偶性、周期性等内容.纵观全国各地的高考试题,可以发现对函数基础知识的考查主要以客观题为主,难度中等偏下,在解答题中主要与多个知识点交汇命题,难度中等.【示例1】►(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ).A .-3B .-1C .1D .3解析 法一 ∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3.故选A.法二 设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.答案 A本题考查函数的奇偶性和函数的求值,解题思路有两个:一是利用奇函数的性质,直接通过f (1)=-f (-1)计算;二是利用奇函数的性质,先求出x >0时f (x )的解析式,再计算f (1).指数函数、对数函数、幂函数指数函数在新课标高考中占有十分重要的地位,因此高考对指数函数的考查有升温的趋势,重点是指数函数的图象和性质,以及函数的应用问题.对于幂函数应重点掌握五种常用幂函数的图象及性质,此时,幂的运算是解决有关指数问题的基础,也要引起重视.对数函数在新课标中适当地降低了要求,因此高考对它的考查也会适当降低难度,但它仍是高考的热点内容,重点考查对数函数的图象和性质及其应用.【示例2】►(2011·天津)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( ). A .a >b >c B .b >a >c C .a >c >b D .c >a >b解析因为c=5-log30.3=5log3103,又log23.4>log33.4>log3103>1>log43.6>0,且指数函数y=5x是R上的增函数,所以a>c>b.故选C.答案 C本题主要考查指数函数单调性的应用、对数式的大小比较.一般是利用指数函数单调性进行比较.对数式的比较类似指数式的比较,也可以寻找中间量.函数的应用函数的应用历来是高考重视的考点,新课标高考更是把这个考点放到了一个重要的位置.相对于大纲的高考,新课标高考无论在考查内容上还是力度上都有所加强,这主要体现在函数与方程方面,函数与方程已经成为新课标高考的一个命题热点,值得考生重视.【示例3】►(2011·山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A.6 B.7 C.8 D.9解析由f(x)=0,x∈[0,2)可得x=0或x=1,即在一个周期内,函数的图象与x 轴有两个交点,在区间[0,6)上共有6个交点,当x=6时,也是符合要求的交点,故共有7个不同的交点.故选B.答案 B本小题考查对周期函数的理解与应用,考查三次方程根的求法、转化与化归思想及推理能力,难度较小.求解本题的关键是将f(x)=x3-x进行因式分解,结合周期函数的性质求出f(x)=0在区间[0,6]上的根,然后将方程f(x)=0的根转化为函数图象与x轴的交点问题.导数的概念及运算从近两年的高考试题来看,利用导数的几何意义求曲线在某点处的切线方程是高考的热点问题,解决该类问题必须熟记导数公式,明确导数的几何意义是曲线在某点处切线的斜率,切点既在切线上又在曲线上.【示例4】►已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x -y=0,则点P的坐标为________.解析由题意知,函数f(x)=x4-x在点P处的切线的斜率等于3,即f′(x0)=4x30-1=3,∴x0=1,将其代入f(x)中可得P(1,0).答案(1,0)本题主要考查导数的几何意义及简单的逻辑推理能力.利用导数求函数的单调区间、极值、最值从近两年的高考试题来看,利用导数研究函数的单调性和极、最值问题已成为高考考查的热点.解决该类问题要明确:导数为零的点不一定是极值点,导函数的变号零点才是函数的极值点;求单调区间时一定要注意函数的定义域;求最值时需要把极值和端点值逐一求出,比较即可.【示例5】►已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为1010,若x=23时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.解(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0.①当x=23时,y=f(x)有极值,则f′⎝⎛⎭⎪⎫23=0,可得4a+3b+4=0②由①②解得a=2,b=-4. 设切线l的方程为y=3x+m由原点到切线l的距离为10 10,则|m|32+1=1010,解得m=±1.∵切线l不过第四象限∴m=1,由于切点的横坐标为x=1,∴f(1)=4,∴1+a+b+c=4∴c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,∴f′(x)=3x2+4x-4.令f′(x)=0,得x=-2,x=2 3.f(x)和f′(x)的变化情况如下表:在x=23处取得极小值f⎝⎛⎭⎪⎫23=9527.又f(-3)=8,f(1)=4,∴f(x)在[-3,1]上的最大值为13,最小值为95 27.在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.突出以函数与导数为主的综合应用高考命题强调“以能力立意”,就是以数学知识为载体,从问题入手,把握数学学科的整体意义,加强对知识的综合性和应用性的考查.中学数学的内容可以聚合为数和形两条主线,其中数是以函数概念来串联代数、三角和解析几何知识,我们可以把方程看作函数为零,不等式看成两个函数值的大小比较、数列、三角则是特殊的一类函数.所以,高考试题中涉及函数的考题面很广.新课标高考对有关函数的综合题的考查,重在对函数与导数知识理解的准确性、深刻性,重在与方程、不等式、数列、解析几何等相关知识的相互联系,要求考生具备较高的数学思维能力和综合分析问题能力以及较强的运算能力,体现了以函数为载体,多种能力同时考查的命题思想.【示例6】►(2011·福建)已知a,b为常数,且a≠0,函数f(x)=-ax+b+ax ln x,f(e)=2(e=2.718 28…是自然对数的底数).(1)求实数b的值;(2)求函数f(x)的单调区间.(3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.解 (1)由f (e)=2得b =2.(2)由(1)可得f (x )=-ax +2+ax ln x .从而f ′(x )=a ln x .因为a ≠0,故①当a >0时,由f ′(x )>0得x >1,由f ′(x )<0得0<x <1;②当a <0时,由f ′(x )>0得0<x <1,由f ′(x )<0得x >1.综上,当a >0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1);当a <0时,函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)当a =1时,f (x )=-x +2+x ln x ,f ′(x )=ln x .由(2)可得,当x 在区间⎣⎢⎡⎦⎥⎤1e ,e 内变化时,f ′(x ),f (x )的变化情况如下表:又2-2e <2,所以函数f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 的值域为[1,2].据此可得,若⎩⎨⎧m =1,M =2.则对每一个t ∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点; 并且对每一个t ∈(-∞,m )∪(M ,+∞),直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都没有公共点.综上,当a =1时,存在最小的实数m =1,最大的实数M =2,使得对每一个t∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点.本题主要考查函数、导数等基础知识.考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.。

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9.1 直线的方程考试要求 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).知识梳理 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°. 2.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α(α≠90°). (2)过两点的直线的斜率公式如果直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含直线x =x 1 和直线y =y 1截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论直线的斜率k与倾斜角α之间的关系α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<0牢记口诀:1.“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.2.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.3.直线Ax+By+C=0(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)若一条直线的倾斜角为α,则此直线的斜率为tan α.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)截距可以为负值.(√)教材改编题1.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.2.倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0 D .x +y +1=0答案 D解析 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 3.过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时, 设直线方程为x a +ya =1,则2a +3a =1,解得a =5. 所以直线方程为x +y -5=0.题型一 直线的倾斜角与斜率例1 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D.⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α. 由于α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 由于θ∈[0,π), 所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的变化范围是⎣⎡⎦⎤π4,π3.(2)过函数f (x )=13x 3-x 2的图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎣⎡⎦⎤π2,3π4答案 B解析 设切线的倾斜角为α,则α∈[0,π), ∵f ′(x )=x 2-2x =(x -1)2-1≥-1, ∴切线的斜率k =tan α≥-1, 则α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 教师备选1.(2022·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 相交, ∴-2≤k ≤12.2.若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________. 答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当α∈⎣⎡⎭⎫π6,π4时,k =tan α∈⎣⎡⎭⎫33,1; 当α∈⎣⎡⎭⎫2π3,π时,k =tan α∈[-3,0). 综上得k ∈[-3,0)∪⎣⎡⎭⎫33,1.思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论. 跟踪训练1 (1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π答案 B解析 依题意,直线的斜率k =-1a 2+1∈[-1,0),因此其倾斜角的取值范围是⎣⎡⎭⎫3π4,π. (2)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,______. 答案 13-3解析 如图,在正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图所示的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2,由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13, k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3. 题型二 求直线的方程例2 求满足下列条件的直线方程:(1)经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍; (2)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)当直线不过原点时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx , 则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为 x -y +1=0或x +y -7=0.教师备选1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的边BC 上的高所在的直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0 D .x -y =0答案 B解析 因为B (3,1),C (1,3),所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A (-1,1),所以其所在的直线方程为x -y +2=0.2.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0 答案 D解析 设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ⎝⎛⎭⎫α+π4=2+11-2×1=-3, 又点M (2,0),所以y =-3(x -2),即3x +y -6=0. 思维升华 求直线方程的两种方法(1)直接法:由题意确定出直线方程的适当形式.(2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数.跟踪训练2 (1)已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0答案 C解析 由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为______________. 答案 x +y -3=0或x +2y -4=0 解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.题型三 直线方程的综合应用例3 已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程. 解 方法一 设直线l 的方程为y -1=k (x -2)(k <0), 则A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ), S △AOB =12(1-2k )·⎝⎛⎭⎫2-1k =12⎣⎡⎦⎤4+-4k +⎝⎛⎭⎫-1k ≥12×(4+4)=4, 当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二 设直线l :x a +yb =1,且a >0,b >0,因为直线l 过点M (2,1), 所以2a +1b =1,则1=2a +1b≥22ab,故ab ≥8, 故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 的方程为x 4+y2=1,即x +2y -4=0.延伸探究 1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解 由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫2a +1b =3+a b +2ba≥3+22,当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2.2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解 方法一 由本例方法一知A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0).所以|MA |·|MB |=1k 2+1·4+4k 2 =2×1+k 2|k |=2⎣⎡⎦⎤-k +1-k ≥4.当且仅当-k =-1k ,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二 由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b =1.所以|MA |·|MB |=|MA →|·|MB →| =-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2⎝⎛⎭⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 教师备选如图所示,为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪,但△EF A 内部为文物保护区,不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解 如图所示,以A 为坐标原点建立平面直角坐标系,则E (30,0),F (0,20),∴直线EF 的方程为x 30+y20=1.易知当矩形草坪的两邻边在BC ,CD 上,且一个顶点在线段EF 上时,可使草坪面积最大,在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =|PQ |·|PR |=(100-m )(80-n ), 又m 30+n20=1(0≤m ≤30), ∴n =20-23m ,∴S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30),∴当m =5时,S 有最大值,此时|EP ||PF |=5,∴当矩形草坪的两邻边在BC ,CD 上,一个顶点P 在线段EF 上,且|EP |=5|PF |时,草坪面积最大.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识来解决. 跟踪训练3 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程可化为 k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线l 总经过定点(-2,1). (2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-2,1+2k >1, 解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.课时精练1.已知直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程是( )A .x +y +1=0B .y =-12xC .x +2=0D .y -1=0答案 C解析 由于直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程为x =-2,即x +2=0.2.(2022·清远模拟)倾斜角为120°且在y 轴上的截距为-2的直线方程为( ) A .y =-3x +2 B .y =-3x -2 C .y =3x +2 D .y =3x -2答案 B解析 斜率为tan 120°=-3,利用斜截式直接写出方程,即y =-3x -2. 3.直线l 经过点(1,-2),且在两坐标轴上的截距相等,则直线l 的方程为( ) A .x -y -1=0或x -2y =0 B .x +y +1=0或x +2y =0 C .x -y +1=0或2x -y =0 D .x +y +1=0或2x +y =0 答案 D解析 若直线l 过原点, 设直线l 的方程为y =kx , 则k =-2,此时直线l 的方程为y =-2x , 即2x +y =0; 若直线l 不过原点, 设直线l 的方程为x a +ya =1,则1a -2a =1,解得a =-1, 此时直线l 的方程为x +y +1=0.综上所述,直线l的方程为x+y+1=0或2x+y=0.4.若直线y=ax+c经过第一、二、三象限,则有()A.a>0,c>0 B.a>0,c<0C.a<0,c>0 D.a<0,c<0答案 A解析因为直线y=ax+c经过第一、二、三象限,所以直线的斜率a>0,在y轴上的截距c>0. 5.(2022·衡水模拟)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°答案 C解析∵O,O3都为五角星的中心点,∴OO3平分第三颗小星的一个角,又五角星的内角为36°,可知∠BAO3=18°,过O3作x轴的平行线O3E,如图,则∠OO 3E =α≈16°,∴直线AB 的倾斜角为18°-16°=2°.6.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .-1<k <15B .k >1或k <12C .k >1或k <15D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得k >12或k <-1.7.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞) 答案 C解析 令x =0,得y =b 2,令y =0,得x =-b , 所以所求三角形的面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1, 所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].8.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴与y 轴上的截距之和的最小值为( )A .1B .2C .3D .4 答案 D解析 因为直线ax +by =ab (a >0,b >0), 当x =0时,y =a ,当y =0时,x =b ,所以该直线在x 轴与y 轴上的截距分别为b ,a , 又直线ax +by =ab (a >0,b >0)过点(1,1), 所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时等号成立.所以直线在x 轴与y 轴上的截距之和的最小值为4.9.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 5x +3y =0或x -y +8=0解析 ①当直线过原点时,直线方程为y =-53x ,即5x +3y =0;②当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a ,代入点(-3,5),得a =-8,即直线方程为x -y +8=0.综上,直线方程为5x +3y =0或x -y +8=0.10.直线l 过(-1,-1),(2,5)两点,点(1 011,b )在l 上,则b 的值为________. 答案 2 023解析 直线l 的方程为y --15--1=x --12--1,即y +16=x +13,即y =2x +1. 令x =1 011,得y =2 023, ∴b =2 023.11.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =______. 答案 5 1解析 因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5.直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1.12.已知点M 是直线l :y =3x +3与x 轴的交点,将直线l 绕点M 旋转30°,则所得到的直线l ′的方程为________________________. 答案 x =-3或y =33(x +3) 解析 在y =3x +3中,令y =0,得x =-3,即M (-3,0).因为直线l 的斜率为3,所以其倾斜角为60°.若直线l 绕点M 逆时针旋转30°,则得到的直线l ′的倾斜角为90°,此时直线l ′的斜率不存在,故其方程为x =-3;若直线l 绕点M 顺时针旋转30°,则得到的直线l ′的倾斜角为30°,此时直线l ′的斜率为tan 30°=33,故其方程为y =33(x +3).13.直线(1-a 2)x +y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎭⎫π4,π2 B.⎣⎡⎭⎫0,3π4 C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,πD.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 答案 C解析 直线的斜率k =-(1-a 2)=a 2-1, ∵a 2≥0,∴k =a 2-1≥-1. 倾斜角和斜率的关系如图所示,∴该直线倾斜角的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 14.已知直线2x -my +1-3m =0,当m 变动时,直线恒过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 答案 D解析 直线方程可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3,∴直线恒过定点⎝⎛⎭⎫-12,-3.15.已知直线x sin α+y cos α+1=0(α∈R ),则下列命题正确的是( ) A .直线的倾斜角是π-αB .无论α如何变化,直线始终过原点C .直线的斜率一定存在D .当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1 答案 D解析 根据直线倾斜角的范围为[0,π),而π-α∈R ,所以A 不正确;当x =y =0时,x sin α+y cos α+1=1≠0,所以直线必不过原点,B 不正确;当α=π2时,直线斜率不存在,C 不正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积为S =12⎪⎪⎪⎪1-sin α·⎪⎪⎪⎪1-cos α=1|sin 2α|≥1,所以D 正确. 16.若ab >0,且A (a ,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a ,0),B (0,b )确定直线的方程为x a +yb =1,又因为C (-2,-2)在该直线上, 故-2a +-2b=1, 所以-2(a +b )=ab . 又因为ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.。

2013届高考数学第一轮复习教案8

2013届高考数学第一轮复习教案8

2013年普通高考数学科一轮复习精品学案第35讲曲线方程及圆锥曲线的综合问题一.课标要求:1.由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练;2.通过圆锥曲线与方程的学习,进一步体会数形结合的思想;3.了解圆锥曲线的简单应用。

二.命题走向近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。

但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2007年高考对本讲的考察,仍将以以下三类题型为主。

1.求曲线(或轨迹)的方程,对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;2.与圆锥曲线有关的最值问题、参数范围问题,这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、函数、不等式、三角知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。

预测2013年高考:1.出现1道复合其它知识的圆锥曲线综合题;2.可能出现1道考查求轨迹的选择题或填空题,也可能出现在解答题中间的小问。

三.要点精讲1.曲线方程(1)求曲线(图形)方程的方法及其具体步骤如下:这五个步骤(不包括证明)可浓缩为五字“口诀”:建设现(限)代化”(2)求曲线方程的常见方法:直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。

这是求曲线方程的基本方法。

转移代入法:这个方法又叫相关点法或坐标代换法。

即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。

几何法:就是根据图形的几何性质而得到轨迹方程的方法。

参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y 联系起来,得到用参数表示的方程。

如果消去参数,就可以得到轨迹的普通方程。

2.圆锥曲线综合问题(1)圆锥曲线中的最值问题、范围问题通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高考数学科一轮复习精品学案第36讲空间向量及其应用一.课标要求:(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程;②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③掌握空间向量的线性运算及其坐标表示;④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。

(2)空间向量的应用①理解直线的方向向量与平面的法向量;②能用向量语言表述线线、线面、面面的垂直、平行关系;③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

二.命题走向本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。

本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。

预测2013年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。

三.要点精讲1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。

如位移、速度、力等。

相等向量:长度相等且方向相同的向量叫做相等向量。

表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。

说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。

2.向量运算和运算率加法交换率:加法结合率:数乘分配率:说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。

3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

平行于记作∥。

注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。

共线向量定理:对空间任意两个向量(≠)、,∥的充要条件是存在实数使=注:⑴上述定理包含两个方面:①性质定理:若∥(≠0),则有=,其中是唯一确定的实数。

②判断定理:若存在唯一实数,使=(≠0),则有∥(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上)。

⑵对于确定的和,=表示空间与平行或共线,长度为||,当>0时与同向,当<0时与反向的所有向量。

⑶若直线l∥,,P为l上任一点,O为空间任一点,下面根据上述定理来推导的表达式。

推论:如果l为经过已知点A且平行于已知非零向量的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式①其中向量叫做直线l的方向向量。

在l上取,则①式可化为②当时,点P是线段AB的中点,则③①或②叫做空间直线的向量参数表示式,③是线段AB的中点公式。

注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。

⑶结合三角形法则记忆方程。

4.向量与平面平行:如果表示向量的有向线段所在直线与平面平行或在平面内,我们就说向量平行于平面,记作∥。

注意:向量∥与直线a∥的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理如果两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使①注:与共线向量定理一样,此定理包含性质和判定两个方面。

推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使④或对空间任一定点O,有⑤在平面MAB内,点P对应的实数对(x, y)是唯一的。

①式叫做平面MAB的向量表示式。

又∵代入⑤,整理得⑥由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量、(或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。

5.空间向量基本定理:如果三个向量、、不共面,那么对空间任一向量,存在一个唯一的有序实数组x, y, z, 使说明:⑴由上述定理知,如果三个向量、、不共面,那么所有空间向量所组成的集合就是,这个集合可看作由向量、、生成的,所以我们把{,,}叫做空间的一个基底,,,都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于可视为与任意非零向量共线。

与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是。

推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组,使 6.数量积(1)夹角:已知两个非零向量、,在空间任取一点O ,作,,则角∠AOB 叫做向量与的夹角,记作说明:⑴规定0≤≤,因而=; ⑵如果=,则称与互相垂直,记作⊥; A B O (3A B O (1O A B (2⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(3)、(4)中的两个向量的夹角不同,图(3)中∠AOB =, 图(4)中∠AOB =, 从而有==. (2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。

(3)向量的数量积:叫做向量、的数量积,记作。

即=, 向量:(4)性质与运算率 ⑴。

⑴⑵⊥=0 ⑵= ⑶⑶四.典例解析题型1:空间向量的概念及性质 例1.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。

其中正确的命题是( )A BO (4A B l①②①③②③①②③解析:对于①“如果向量与任何向量不能构成空间向量的一组基底,那么的关系一定共线”;所以①错误。

②③正确。

点评:该题通过给出命题的形式考察了空间向量能成为一组基的条件,为此我们要掌握好空间不共面与不共线的区别与联系。

例2.下列命题正确的是()若与共线,与共线,则与共线;向量共面就是它们所在的直线共面;零向量没有确定的方向;若,则存在唯一的实数使得;解析:A中向量为零向量时要注意,B中向量的共线、共面与直线的共线、共面不一样,D中需保证不为零向量。

答案C。

点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处。

像零向量与任何向量共线等性质,要兼顾。

题型2:空间向量的基本运算例3.如图:在平行六面体中,为与的交点。

若,,,则下列向量中与相等的向量是()解析:显然;答案为A。

点评:类比平面向量表达平面位置关系过程,掌握好空间向量的用途。

用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力。

例4.已知:且不共面.若∥,求的值.解:∥,,且即又不共面,点评:空间向量在运算时,注意到如何实施空间向量共线定理。

题型3:空间向量的坐标例5.(1)已知两个非零向量=(a1,a2,a3),=(b1,b2,b3),它们平行的充要条件是()A.:||=:||B.a1·b1=a2·b2=a3·b3C.a1b1+a2b2+a3b3=0D.存在非零实数k,使=k(2)已知向量=(2,4,x),=(2,y,2),若||=6,⊥,则x+y的值是()A. -3或1B.3或-1C. -3D.1(3)下列各组向量共面的是()A.=(1,2,3),=(3,0,2),=(4,2,5)B.=(1,0,0),=(0,1,0),=(0,0,1)C.=(1,1,0),=(1,0,1),=(0,1,1)D.=(1,1,1),=(1,1,0),=(1,0,1)解析:(1)D;点拨:由共线向量定线易知;(2)A点拨:由题知或;(3)A点拨:由共面向量基本定理可得。

点评:空间向量的坐标运算除了数量积外就是考察共线、垂直时参数的取值情况。

例6.已知空间三点A(-2,0,2),B(-1,1,2),C (-3,0,4)。

设=,=,(1)求和的夹角;(2)若向量k+与k-2互相垂直,求k的值.思维入门指导:本题考查向量夹角公式以及垂直条件的应用,套用公式即可得到所要求的结果.解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4),=,=,∴=(1,1,0),=(-1,0,2).(1)cos==-,∴和的夹角为-。

(2)∵k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),且(k+)⊥(k-2),∴(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k -10=0。

则k=-或k=2。

点拨:第(2)问在解答时也可以按运算律做。

(+)(k-2)=k22-k·-22=2k2+k-10=0,解得k=-,或k=2。

题型4:数量积例7.设、、c是任意的非零平面向量,且相互不共线,则①(·)-(·)=②||-||<|-| ③(·)-(·)不与垂直④(3+2)(3-2)=9||2-4||2中,是真命题的有()A.①②B.②③C.③④D.②④答案:D解析:①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知||、||、|-|恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(·)-(·)]·=(·)·-(·)·=0,所以垂直.故③假;④(3+2)(3-2)=9··-4·=9||2-4||2成立.故④真.点评:本题考查平面向量的数量积及运算律。

例8.(1)已知向量和的夹角为120°,且||=2,||=5,则(2-)·=_____.(2)设空间两个不同的单位向量=(x1,y1,0),=(x2,y2,0)与向量=(1,1,1)的夹角都等于。

(1)求x1+y1和x1y1的值;(2)求<,>的大小(其中0<<,><π。

解析:(1)答案:13;解析:∵(2-)·=22-·=2||2-||·||·cos120°=2·4-2·5(-)=13。

(2)解:(1)∵||=||=1,∴x+y=1,∴x=y=1.又∵与的夹角为,∴·=||||cos==.又∵·=x1+y1,∴x1+y1=。

相关文档
最新文档