高中数学知识点整理(苏教版)
苏教版高中数学必修+选修知识点归纳总结(精编版)

高中数学必修+选修知识点归纳恒则成人生一连串的奋斗 追求理想要奋战不懈坚持到底有恒则成引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:三角函数、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有3个系列:选修系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数的引入、框图选修系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数的引入选修2—3:计数原理、概率,统计案例。
选修系列4:由4个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念 §、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
高中数学知识点全总结苏教

高中数学知识点全总结苏教一、代数表达式与方程1. 代数基础代数表达式是由数字、字母和运算符组成的式子。
例如:3x^2 + 2x - 1。
字母代表变量,数字称为系数。
2. 单项式与多项式单项式是只有一个乘法运算的代数式,如:5x^3。
多项式是由若干个单项式相加或相减组成的代数式,如:2x^2 + 3x - 5。
3. 同类项与合并同类项同类项是指变量的指数相同的项,如:3x^2 和 -2x^2。
合并同类项即将同类项的系数相加。
4. 一元一次方程一元一次方程是只含有一个变量,且变量的最高次数为1的方程,如:3x + 2 = 0。
5. 二元一次方程组二元一次方程组是由两个含有两个变量的一次方程组成的方程组,如:x + y = 3 和 2x - y = 1。
6. 一元二次方程一元二次方程是只含有一个变量,且变量的最高次数为2的方程,标准形式为:ax^2 + bx + c = 0。
二、函数1. 函数的概念函数是将一个集合中的每个数(自变量)映射到另一个集合中的一个唯一确定的数(因变量)的关系。
2. 函数的表示方法函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
3. 函数的性质函数具有单调性、奇偶性、周期性等基本性质。
4. 基本初等函数包括幂函数、指数函数、对数函数、三角函数等。
5. 函数的图像函数的图像是函数关系的几何表示,通过坐标系可以直观地展示函数的性质。
6. 函数的应用函数在实际问题中有着广泛的应用,如物理中的运动规律、经济学中的成本收益分析等。
三、立体几何1. 空间几何体包括点、线、面、体等基本元素,以及由这些元素构成的多面体、旋转体等。
2. 空间直线与平面空间直线是一维的无限延伸,平面是二维的无限延展。
直线与平面的位置关系有平行和相交两种。
3. 立体图形的性质包括体积、表面积的计算,以及棱柱、棱锥、圆柱、圆锥、球等常见几何体的性质。
4. 空间向量空间向量是具有大小和方向的量,可以用来表示空间中的位置关系和直线与平面的方程。
高中数学必修+选修全部知识点精华归纳总结(苏教版)

专题一:推理与证明知识结构1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。
归纳推理的一般步骤:•通过观察个别情况发现某些相同的性质;•从已知的相同性质中推出一个明确表述的一般命题(猜想);•证明(视题目要求,可有可无).2、类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:•找出两类对象之间可以确切表述的相似特征;•用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;•检验猜想。
3、合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.4、演绎推理从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括⑴大前提-----已知的一般原理;⑵小前提-----所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.用集合的观点来理解:若集合M中的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确. 5、直接证明与间接证明⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示: 要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法. 反证法法证明一个命题的一般步骤: (1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止; (3)(归谬)断言假设不成立;(4)(结论)肯定原命题的结论成立. 6、数学归纳法数学归纳法是证明关于正整数n 的命题的一种方法. 用数学归纳法证明命题的步骤;(1)(归纳奠基)证明当n 取第一个值*00()n n N ∈时命题成立;(2)(归纳递推)假设*0(,)n k k n k N =≥∈时命题成立,推证当1n k =+时命题也成立.只要完成了这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立.用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、几何中的计算问题等.专题二:数系的扩充与复数 1、复数的概念 ⑴虚数单位;⑵复数的代数形式(,)z a bia b R =+∈;⑶复数的实部、虚部,虚数与纯虚数. 2、复数的分类 复数(),z a bia b R =+∈(0)(0,0)(0)(0,0)b a b b a b =⎧⎪=≠⎧⎨≠⎨⎪≠≠⎩⎩实数纯虚数虚数非纯虚数 3、相关公式⑴d c b a di c bi a ==⇔+=+且,⑵00==⇔=+b a bi a ⑶22b a bi a z +=+=⑷z a bi =-z z ,指两复数实部相同,虚部互为相反数(互为共轭复数). 4、复数运算⑴复数加减法:()()()()i d b c a di c bi a ±+±=+±+; ⑵复数的乘法:()()()()a bi c di ac bd bc ad i ++=-++;⑶复数的除法:()()()()a bi c di a bi c di c di c di +-+=++- ()()222222ac bd bc ad i ac bd bc ad ic d c d c d ++-+-==++++(类似于无理数除法的分母有理化→虚数除法的分母实数化) 5、常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n i i i i i i ++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+ )9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω6、复数的几何意义x 轴叫做复平面的实轴,y 轴叫做复平面的虚轴.专题三:排列组合与二项式定理 1、基本计数原理⑴ 分类加法计数原理:(分类相加)做一件事情,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事情共有n m m m N +++= 21种不同的方法.⑵ 分步乘法计数原理:(分步相乘)做一件事情,完成它需要n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法.那么完成这件事情共有n m m m N ⨯⨯⨯= 21种不同的方法.2、排列与组合⑴排列定义:一般地,从n 个不同的元素中任取()n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中任取m 个元素的一个排列.⑵组合定义:一般地,从n 个不同的元素中任取()n m m ≤个元素并成一组,叫做从n 个不同的元素中任取m 个元素的一个组合.⑶排列数:从n 个不同的元素中任取()n m m ≤个元素的所有排列的个数,叫做从n 个不同的元素中任取m 个元素的排列数,记作m n A .⑷组合数:从n 个不同的元素中任取()n m m ≤个元素的所有组合的个数,叫做从n 个不同的元素中任取m 个元素的组合数,记作m n C .⑸排列数公式:①()()()121+---=m n n n n A mn()!m n n A m n -=!;②!n A n n =,规定1!0=.⑹组合数公式: ①()()()!121m m n n n n C mn +---=或()!!m n m n C mn -=!;②m n n m n C C -=,规定10=n C .⑺排列与组合的区别:排列有顺序,组合无顺序.⑻排列与组合的联系:mm m n m n A C A ⋅=,即排列就是先组合再全排列.()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-⑼排列与组合的两个性质性质排列11-++=m n m n m n mA A A ;组合11-++=m nm n m n C C C . ⑽解排列组合问题的方法①特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置).②间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉). ③相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列).④不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间).⑤有序问题组合法.⑥选取问题先选后排法. ⑦至多至少问题间接法.⑧相同元素分组可采用隔板法.⑨分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !. 3、二项式定理⑴二项展开公式:()011222nnn n r n r rn n n n a b C a C ab C a b C a b ---+=++++()n nn C b n N +++∈.⑵二项展开式的通项公式:()+-+∈∈≤≤=N n N r n r b a C T rr n r n r ,,01.主要用途是求指定的项.⑶项的系数与二项式系数项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数.如在()nax b +的展开式中,第1r +项的二项式系数为rn C ,第1r +项的系数为rn rr n C ab -;而1()n x x+的展开式中的系数等于二项式系数;二项式系数一定为正,而项的系数不一定为正.⑷()n x +1的展开式:()0221101x C x C x C x C x n n n n n n n n n++++=+-- ,若令1=x ,则有()nnn n n n n C C C C ++++==+ 210211. 二项式奇数项系数的和等于二项式偶数项系数的和.即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C⑸二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即mn n m n C C -=;(2)增减性与最大值:当12n r +≤时,二项式系数C r n 的值逐渐增大,当12n r +≥时,C rn 的值逐渐减小,且在中间取得最大值。
苏教版高中数学知识点整理

第一讲 集 合一、知识精点讲解1.集合:某些指定的对象集在一起成为集合。
(1)集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。
2.集合的包含关系:(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。
若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作A B ;(2)简单性质:1)A ⊆A ;2)Φ⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集; 4.交集与并集:(1)一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集。
苏教版高中数学必修选修全部知识点归纳总结

名师精编
⑼直线、平面、简单几何体:空间直线、直线 与平面、平面与平面、棱柱、 棱锥、球、空间向量
⑽排列、组合和概率:排列、组合应用题、二 项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、 抽样、正态分布
⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算
必修 1 数学知识点
第一章:集合与函数概念 §1.1.1、集合 1、 把研究的对象统称为元素,把一些元素组成的总
(4)在 R 上是增函数
(5) x 0, ax 1 ; x 0, 0 ax 1
(4)在 R 上是减函数
(5) x 0, 0 ax 1 ;
x 0, ax 1
第二章:基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算
1、 一般地,如果 x n a ,那么 x 叫做 a 的 n 次方根。
2.重难点及考点:
重点:函数,数列,三角函数,平面向量, 圆锥曲线,立体几何,导数
难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻
辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、
值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、
圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且
每相邻两个四边形的公共边都互相平行,由这些面所围 成的多面体叫做棱柱。
名师精编 优秀资料
高中数学必修+选修知识点归纳
引言
1.课程内容:
必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、
高二数学知识点总结苏教版

⾼⼆数学知识点总结苏教版 凡事预则⽴,不预则废。
学习数学需要讲究⽅法和技巧,更要学会对知识点进⾏归纳整理。
下⾯是店铺为⼤家整理的⾼⼆数学知识点,希望对⼤家有所帮助! ⾼⼆数学知识点总结(苏教版) ⼀、不等式 ⼀、不等式的基本性质: 注意:(1)特值法是判断不等式命题是否成⽴的⼀种⽅法,此法尤其适⽤于不成⽴的命题。
(2)注意课本上的⼏个性质,另外需要特别注意: ①若ab>0,则。
即不等式两边同号时,不等式两边取倒数,不等号⽅向要改变。
②如果对不等式两边同时乘以⼀个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
③图象法:利⽤有关函数的图象(指数函数、对数函数、⼆次函数、三⾓函数的图象),直接⽐较⼤⼩。
④中介值法:先把要⽐较的代数式与“0”⽐,与“1”⽐,然后再⽐较它们的⼤⼩ ⼆、均值不等式:两个数的算术平均数不⼩于它们的⼏何平均数。
基本应⽤:①放缩,变形; ②求函数最值:注意:①⼀正⼆定三相等;②积定和最⼩,和定积最⼤。
常⽤的⽅法为:拆、凑、平⽅; 三、绝对值不等式: 注意:上述等号“=”成⽴的条件; 四、常⽤的基本不等式: 五、证明不等式常⽤⽅法: (1)⽐较法:作差⽐较: 作差⽐较的步骤: ⑴作差:对要⽐较⼤⼩的两个数(或式)作差。
⑵变形:对差进⾏因式分解或配⽅成⼏个数(或式)的完全平⽅和。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差⽐较有困难,可以通过它们的平⽅差来⽐较⼤⼩。
(2)综合法:由因导果。
(3)分析法:执果索因。
基本步骤:要证……只需证……,只需证…… (4)反证法:正难则反。
(5)放缩法:将不等式⼀侧适当的放⼤或缩⼩以达证题⽬的。
放缩法的⽅法有: ⑴添加或舍去⼀些项, ⑵将分⼦或分母放⼤(或缩⼩) ⑶利⽤基本不等式, (6)换元法:换元的⽬的就是减少不等式中变量,以使问题化难为易,化繁为简,常⽤的换元有三⾓换元和代数换元。
高中数学知识点大全总结苏教版

高中数学知识点大全总结苏教版高中数学知识点大全总结(苏教版)一、函数与导数1. 函数的概念与性质- 函数的定义- 函数的表示方法- 函数的域与值域- 函数的奇偶性- 函数的单调性与周期性2. 基本初等函数- 幂函数、指数函数与对数函数- 三角函数及其性质- 反三角函数- 双曲函数3. 函数的极限与连续性- 极限的概念与性质- 无穷小与无穷大- 函数的连续性与间断点4. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 高阶导数- 微分的概念与应用5. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 洛必达法则- 函数的单调区间与曲线的凹凸性二、三角函数与解三角形1. 三角函数的图像与性质- 三角函数的图像- 三角函数的基本性质- 三角函数的和差化积与积化和差2. 三角函数的恒等变换- 同角三角函数的基本关系- 恒等变换公式3. 解三角形- 三角形的边角关系- 正弦定理与余弦定理- 三角形面积的计算三、数列与数学归纳法1. 等差数列与等比数列- 数列的基本概念- 等差数列与等比数列的定义、通项公式与求和公式2. 数列的极限- 数列极限的概念- 极限的四则运算3. 数学归纳法- 数学归纳法的原理- 证明方法与步骤四、平面向量与解析几何1. 平面向量- 向量的基本概念与运算- 向量的模、方向角与投影2. 直线与圆的方程- 直线的点斜式、两点式与一般式方程- 圆的标准方程与一般方程3. 圆锥曲线- 椭圆、双曲线与抛物线的方程及其性质五、立体几何1. 空间直线与平面- 空间直线的方程- 平面的方程- 直线与平面的位置关系2. 立体图形的性质- 棱柱、棱锥与圆柱、圆锥、圆台的体积与表面积 - 球的体积与表面积六、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量与连续型随机变量- 概率分布与概率密度函数3. 统计初步- 总体与样本- 统计量的概念与计算- 线性回归与相关分析以上是苏教版高中数学的主要知识点总结,涵盖了函数、三角函数、数列、向量、解析几何、立体几何、概率与统计等多个领域。
高一上册数学苏教版知识点

高一上册数学苏教版知识点数学是一门需要掌握基本知识点才能够从根本上理解和运用的学科。
本文将介绍高一上册数学苏教版中的一些重要知识点,帮助同学们更好地掌握数学知识。
一、函数与方程1. 函数的基本概念函数是一种具有特定关系的映射关系,通常表示为f(x),其中x为自变量,f(x)为对应的因变量。
函数的定义域、值域以及图像是理解函数的重要方面。
2. 一次函数与二次函数一次函数是形如y=kx+b的函数表达式,其中k为斜率,b为截距。
二次函数是形如y=ax²+bx+c的函数表达式,其中a、b、c 为常数。
3. 方程与不等式方程是含有等号的数学表达式,例如ax+b=0,其中a、b为已知常数。
不等式则是含有不等关系的数学表达式,例如ax+b>0。
二、几何与三角1. 平面几何基本定义基本图形包括点、线、面以及它们之间的关系。
例如,直线上的点称为线上的点,在同一平面内的点称为共面。
2. 相似与全等相似指两个物体在形状上相似,但尺寸可能不同。
全等则指两个物体在形状和尺寸上完全相同。
3. 三角函数的概念三角函数是描述角度与边长之间关系的函数,包括正弦、余弦、正切等。
这些函数在解三角形问题时经常被使用。
三、数列与数学归纳法1. 数列的定义与性质数列是按一定顺序排列的一组数,可以是等差数列、等比数列等。
数列的通项公式和前n项和公式是数列的重要性质。
2. 数列的应用数列在实际问题中的应用非常广泛,例如等差数列可以描述人口增长,等比数列可以描述物质的衰减等。
四、概率与统计1. 概率的基本概念概率是描述随机事件发生可能性的数值,位于0到1之间。
事件的概率可以通过实验次数与事件发生次数的比值来计算。
2. 排列与组合排列指的是从n个元素中取出r个元素进行排列,组合指的是从n个元素中取出r个元素进行组合。
3. 统计的基本概念统计是关于数据收集、整理、分析和解释的学科。
通过统计可以得到对现象的客观描述和分析。
综上所述,高一上册数学苏教版的知识点包括函数与方程、几何与三角、数列与数学归纳法、概率与统计等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲集合一、知识精点讲解 1.集合:某些指定的对象集在一起成为集合。
(1)集合中的对象称元素,若a是集合A 的元素,记作;若b不是集合A的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。
2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或);集合相等:构成两个集合的元素完全一样。
若AB且BA,则称A等于B,记作A B;若AB且A≠B,则称A是B的真子集,记作A B;(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集); 3.全集与补集:(1)
包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,AS,则,称S中子集A的补集; 4.交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。
交集。
(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
第二讲函数概念与表示一、知识精点讲解 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f x 和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y f x ,x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合 f x | x∈A 叫做函数的值域。
注意:(1)“y f x ”是函数符号,可以用任意的字母表示,如“y g x ”;(2)函数符号“y f x ”中的f x 表示与x对应的函数值,一个数,而不是f 乘x。
2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域是比较困难的
数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。
①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。
3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。
当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间:区间的分类:开区间、闭区间、半开半闭区间; 5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。
记作“f:AB”。
函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。
注意:(1)这两个集合有先后顺序,A 到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。
(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
6.常用的函数表示法:(1)解析法:(2)列表法:(3)图象法: 7.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 8.复合函数若y f u ,u g x ,x a,b ,u m,n ,那么y f[g x ]称为复合函数,u称为中间变量,它的取值范围是g x 的值域。
第三讲函数的基本性质一、要点精讲 1.奇偶性(1)定义:如果对于函数f x 定义域内的任意x都有f -x -f x ,则称f x 为奇函数;如果对于函数f x 定义域内的任意x都有f -x f x ,则称f x 为偶函数。
如果函数f x 不具有上述性质,则f x 不具有奇偶
性.如果函数同时具有上述两条性质,则f x 既是奇函数,又是偶函数。
注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f -x 与f x 的关系;作出相应结论:若f -x f x 或 f -x -f x 0,则f x 是偶函数;若f -x -f x 或f -x +f x 0,则f x 是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设,的定义域分别是,那么在它们的公共定义域上:奇+奇奇,奇奇偶,偶+偶偶,偶偶偶,奇偶奇 2.单调性(1)定义:一般地,设函数y f x 的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 x2时,都有f x1 f x2 (f x1 f x2 ),那么就说f x 在区间D上是增函数(减函数);注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1 x2时,总有f x1 f x2 (2)如果函数y f x 在某个区间上是增函数或是减函数,那么就说函数y f x 在这一区间具有(严格的)单调性,区间D叫做y f x 的单调区间。
(3)设复合函数y f[g x ],其中u g x , A是y f[g x ]定义域的某个区间,B是映射g : x→u g x 的象集:①若u g x 在 A上是增(或减)函数,y f u 在B上也是增(或减)函数,则函数y f[g x ]在A上是增函数;②若u g x 在A上是增(或减)函数,而y f u 在B上是减(或增)函数,则函数y f[g x ]在A上是减函数。
(4)
判断函数单调性的方法步骤:任取x1,x2∈D,且x1 x2;作差f x1 -f x2 ;变形(通常是因式分解和配方);定号(即判断差f x1 -f x2 的正负);下结论(即指出函数f x 在给定的区间D上的单调性)。
(5)简单性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。
3.最值(1)定义:最大值:一般地,设函数y f x 的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f x ≤M;②存在x0∈I,使得f x0 M。
那么,称M是函数y f x 的最大值。
最小值:一般地,设函数y f x 的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f x ≥M;②存在x0∈I,使得f x0 M。
那么,称M是函数y f x 的最大值。
注意:函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f x0 M;函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f x ≤M(f x ≥M)。
(2)利用函数单调性的判断函数的最大(小)值的方法:利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值:如果函数y f x 在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y f。