高中数学定积分知识点讲解学习
高二数学定积分知识点总结

高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。
当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。
定积分可以看做是一个变量的特定区间上的累积和。
1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。
1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。
1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。
通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。
二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。
在力学中,定积分常用来计算物体的质心以及转动惯量等。
2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。
2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。
2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。
定积分知识点总结数学

定积分知识点总结数学一、定积分的定义1. 定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分进行定义的一种方法。
定积分可以表示函数在一个区间上的“累积效果”,即函数在该区间上的总体积或总面积。
2. 定积分的符号表示定积分可以用符号∫ 来表示,即∫f(x)dx,其中f(x)是要积分的函数,dx表示自变量x的微元。
3. 定积分的定义设函数f(x)在区间[a, b]上连续,将区间[a, b]等分成n个小区间,每个小区间的长度为Δx,取每个小区间上任意一点ξi,计算出函数在每个小区间上的面积,然后将所有小区间上的面积相加,得到一个近似值。
当n趋于无穷大时,这个近似值趋于一个确定的值,称为定积分,记作∫a到b f(x)dx。
4. 定积分的几何意义定积分的几何意义是函数f(x)在区间[a, b]上的图像和坐标轴之间的面积,当函数为正值时,定积分表示曲线下面积;当函数为负值时,定积分表示曲线上面积减去曲线下面积。
二、定积分的性质1. 定积分的存在性定积分的存在性是指对于一个函数在一个区间上的定积分是否存在,存在的充分必要条件是函数在该区间上连续。
2. 定积分的线性性定积分具有线性性质,即若f(x)和g(x)在区间[a, b]上可积,c和d为常数,则有∫a到b(c*f(x)+d*g(x))dx=c*∫a到b f(x)dx+d*∫a到b g(x)dx。
3. 定积分的区间可加性若函数f(x)在区间[a, b]、[b, c]上都可积,则有∫a到c f(x)dx=∫a到b f(x)dx+∫b到c f(x)dx。
4. 定积分的不变性对于函数f(x)在区间[a, b]上的定积分,若将区间[a, b]内的点重新排列,定积分的结果不会受到影响。
5. 定积分的估值通过使用上下和左右长方形法、梯形法等方法,可以对定积分进行估值,获得定积分的近似值。
三、定积分的计算1. 定积分的基本计算方法定积分的基本计算方法是使用定积分的定义进行计算,即按照定义对函数在区间内每个小区间上的面积进行求和,并计算出极限值。
定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。
1. 概念。
- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。
在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。
当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。
- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。
2. 几何意义。
- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。
- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。
- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。
二、定积分的基本性质。
1. 线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
2. 区间可加性。
- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。
3. 比较性质。
- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。
- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。
(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
高三定积分知识点总结

高三定积分知识点总结高三阶段,定积分是数学学科中重要的一部分,掌握定积分的知识点对学生来说至关重要。
在这篇文章中,我将对高三阶段定积分的知识点进行总结和归纳,以便帮助同学们更好地复习和掌握这一部分内容。
一、定积分的概念定积分是微积分的重要概念之一,它可以理解为曲线与坐标轴之间的有界区域的面积。
定积分的基本概念包括定积分的上下限、积分区间的分割以及极限等。
二、定积分的计算方法1. 函数的原函数在计算定积分的过程中,首先需要找到被积函数的原函数,也就是导函数。
通过求导反过来求解原函数,即可得到被积函数的原函数。
2. 定积分的基本计算方法定积分的基本计算方法包括积分的线性性质、定积分的区间可加性、换元积分法等。
这些方法能够简化定积分的计算过程,使得计算更加方便快捷。
3. 特殊函数的定积分计算对于一些特殊函数,如指数函数、对数函数、三角函数等,需要掌握相应的定积分计算公式和技巧,以便能够快速准确地计算出定积分的结果。
三、定积分的应用1. 几何应用定积分在几何中有着广泛的应用。
通过定积分,可以计算曲线和坐标轴之间的面积、曲线的弧长以及曲线的旋转体体积等几何问题。
2. 物理应用定积分在物理学中也有着重要的应用。
例如,通过定积分可以计算物体的质量、质心位置、重心位置以及力学和流体力学中的有关问题。
3. 经济和金融应用定积分在经济学和金融学中也有广泛的应用。
例如,通过定积分可以计算收益曲线下的总收益、消费曲线下的总消费等经济和金融问题。
四、定积分的性质1. 积分的性质定积分具有线性性质、区间可加性、保号性等性质。
这些性质在定积分的计算过程中起到了重要的作用,可以帮助我们更好地理解和运用定积分。
2. 无穷定积分无穷定积分是定积分的一种特殊形式,其中上下限存在无穷大的情况。
掌握无穷定积分的计算方法和性质,可以更好地解决一些复杂的数学问题。
五、定积分的应用举例在高三阶段,定积分的应用举例如下:1. 计算曲线下的面积,如椭圆的面积、抛物线的面积等;2. 计算曲线的弧长,如圆的弧长、正弦曲线的弧长等;3. 计算平面图形的重心位置和质心位置,如矩形的质心位置、三角形的重心位置等;4. 计算物体的质量和质量分布情况,如线密度、面密度和体密度的计算等。
数学高三定积分知识点

数学高三定积分知识点在高三数学中,定积分是一个重要的概念,也是学生们常常遇到的题型之一。
定积分可以用于计算曲线与坐标轴之间的面积、求解曲线的弧长、质心等一系列数学问题。
本文将介绍高三数学中关于定积分的基本概念、性质和应用。
一、定积分的基本概念1. 无穷小量与无穷大量在定积分的定义中,我们需要先了解无穷小量与无穷大量的概念。
无穷小量指的是当自变量趋于某个值时,依附于其而趋于零的量;而无穷大量则是当自变量趋于某个值时,逐渐无限增大的量。
2. 定积分的定义定积分的定义是通过分割求和的方式来计算曲线与坐标轴之间的面积。
对于一个函数 f(x) 在区间 [a, b] 上的定积分表示为∫[a,b] f(x) dx,其中 f(x) 为被积函数,dx 为积分变量。
3. 定积分的几何意义定积分的几何意义是曲线与坐标轴之间包围的面积。
当被积函数 f(x) 大于零时,定积分表示曲线所围成的面积;当被积函数 f(x) 小于零时,定积分表示曲线下方所围成的面积。
二、定积分的性质1. 定积分的可加性定积分具有可加性,即∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx +∫[a,b] g(x) dx。
这意味着我们可以将被积函数进行分解,然后对每个部分进行积分,最后将结果进行求和。
2. 定积分的线性性质定积分还具有线性性质,即∫[a,b] (cf(x)) dx = c∫[a,b] f(x) dx,其中 c 为常数。
这意味着可以将常数提取出来,然后对函数进行积分。
3. 定积分的区间可加性定积分的区间可加性表示对于一个函数 f(x) 在区间 [a, b] 上的定积分,可以分为两部分进行计算,即∫[a,b] f(x) dx= ∫[a,c] f(x) dx + ∫[c,b] f(x) dx,其中 c 为 [a, b] 上的某一点。
三、定积分的应用1. 几何应用定积分在几何中有广泛的应用,可以用来计算曲线与坐标轴之间的面积。
高中数学知识点归纳定积分基础知识

高中数学知识点归纳定积分基础知识高中数学的定积分是数学中非常重要的一个概念,它是微积分的核心内容之一。
在学习定积分的过程中,我们需要了解一些基础知识,本文将对高中数学中定积分的基础知识进行归纳总结。
一、定积分的概念定积分是积分学中重要的概念之一,它可以看作是函数在一个区间上的加权平均。
定积分的定义是:设函数f(x)在区间[a,b]上有定义,将[a,b]等分成n个小区间,每个小区间的长度为Δx,然后在每个小区间上取一点ξ_i,构成一个积分和S_n,当n趋向于无穷大时,若极限存在且与ξ_i的选法无关,则称该极限为函数f(x)在区间[a,b]上的定积分,记作∫(a,b)f(x)dx。
二、定积分的计算方法在计算定积分时,可以使用不同的方法,具体的计算方法如下:1. 几何意义法:根据定积分的几何意义,可以将定积分看作是曲线与坐标轴所围成的面积。
根据几何图形的性质,可以求得定积分的值。
2. 定积分的性质法:根据定积分的性质,可以利用一些性质对定积分进行化简。
比如定积分的线性性质、区间可加性等。
3. 换元法:对于一些较复杂的函数,可以通过变量代换的方法将其化简为简单的形式,然后进行定积分的计算。
4. 分部积分法:对于一些乘积形式的函数,可以通过分部积分的方法将其化简为简单的形式,然后进行定积分的计算。
5. 积分表法:对于一些常见的函数,可以通过积分表中的公式直接进行定积分的计算。
三、定积分的应用领域定积分在数学中有广泛的应用领域,具体包括以下几个方面:1. 几何应用:定积分可以用来计算曲线与坐标轴所围成的面积、曲线的弧长、曲线的平均值等。
2. 物理应用:在物理学中,定积分可以用来求解物体在一定时间内的位移、速度、加速度等。
3. 统计学应用:在统计学中,定积分可以用来计算概率密度函数下的概率、求解统计分布的期望值等。
4. 经济应用:在经济学中,定积分可以用来计算收入曲线下的总收入、成本曲线下的总成本等。
总结:高中数学中的定积分是微积分学习的重要内容,通过学习定积分的基础知识,我们可以更好地理解和应用定积分。
定积分求解知识点总结

定积分求解知识点总结一、定积分的引入1. 定积分的概念:在数学中,定积分是微积分的一个重要概念,它是函数在一个区间上的“累积总和”。
定积分通常表示为∫abf(x)dx,其中a、b为区间端点,f(x)为被积函数,dx表示自变量的微小变化量。
2. 定积分的引入:定积分最初是由数学家魏尔斯特拉斯引入的,它在物理学、经济学、工程学等领域都有广泛的应用。
3. 定积分的几何意义:定积分也可以理解为曲线与坐标轴之间的“面积”,这是由牛顿和莱布尼兹最初提出的。
它可以用来描述曲线下方的面积、弧长、旋转体的体积等几何量。
4. 定积分的物理学意义:在物理学中,定积分通常表示为对时间、空间或其他物理量的积分,可以用来求解速度、加速度、质量、能量等物理量。
二、定积分的计算方法1. 定积分的求解:定积分的求解通常需要用到数学中的积分技巧,如不定积分、换元积分、分部积分、积分表等。
2. 定积分的区间划分:对于一些复杂函数,可以通过区间划分来简化定积分的计算,将积分区间等分为若干小区间,然后对各小区间进行求和,再求出极限值即可得到定积分的值。
3. 定积分的数值计算:对于一些无法用解析方法求解的定积分,可以通过数值积分方法,如梯形法、辛普森法、龙贝格积分法等来近似计算定积分的值。
4. 定积分的工程应用:在工程学中,定积分经常用来计算曲线下的面积、求解旋转体的体积、计算弹簧的弹性势能等。
三、定积分的性质1. 定积分的线性性质:对于任意函数f(x)和g(x),定积分具有线性性质,即∫ab[f(x) +g(x)]dx = ∫abf(x)dx + ∫abg(x)dx。
2. 定积分的区间可加性:如果a < c < b,那么∫abf(x)dx = ∫acf(x)dx + ∫cbf(x)dx。
3. 定积分的保号性:如果在[a, b]区间上f(x)≥0,则∫abf(x)dx≥0;如果f(x)在[a, b]区间上非负,则∫abf(x)dx = 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:用导数求函数单调区间的步骤: ①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。
(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
[注]:实际问题的开区间唯一极值点就是所求的最值点;9.求曲边梯形的思想和步骤 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1a b dx ba-=⎰1性质5 若[]b a x x f ,,0)(∈≥,则0)(≥⎰b adx x f①推广:1212[()()()]()()()bb bbm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x 轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x 轴上方图形面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x 轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。
(2)力的积分为功。
二、推理与证明知识点13.归纳推理的定义: 从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体..,由个别到一般..的推理。
14.归纳推理的思维过程大致如图:15.归纳推理的特点:①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。
②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。
③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。
类比推理是由特殊..到特殊..的推理。
17.类比推理的思维过程18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。
演绎推理是由一般..到特殊..的推理。
19.演绎推理的主要形式:三段论20.“三段论”可以表示为:①大前题:M 是P ②小前提:S 是M ③结论:S 是P 。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。
直接证明包括综合法和分析法。
22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证A ,只要证B ,B 应是A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。
24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。
25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不.正确..,即所求证命题正确。
2627.反证法的思维方法:正难则反....28.归缪矛盾 (1)与已知条件....矛盾: (2)与已有公理、定理、定义..........矛盾; (3)自相..矛盾.29.数学归纳法(只能证明与正整数...有关的数学命题)的步骤 (1)证明:当n 取第一个值....()00n n N *∈时命题成立; (2)假设当n=k (k ∈N *,且k ≥n 0)时命题成立,证明当n=k+1.....时命题也成立. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
三、数系的扩充和复数的概念知识点30.复数的概念:形如a+bi ....的数叫做复数,其中i 叫虚数单位,a 叫实部, b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。
规定:a bi c di +=+⇔a=c ...且.b=d ..., 强调:两复数不能比较大小,只有相等或不相等。
31.数集的关系:0000b Z a b a =⎧⎪≠⎧⎨⎪≠⎨⎪=⎪⎩⎩实数 ()复数一般虚数()虚数 ()纯虚数()32.复数的几何意义:复数与平面内的点或有序实数对一一对应。
33.复平面:根据复数相等的定义,任何一个复数bi a z +=,都可以由一个有序实数对),(b a 唯一确定。
由于有序实数对),(b a 与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。
这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。
34.求复数的模(绝对值)与复数z 对应的向量OZ 的模r 叫做复数bi a z +=的模(也叫绝对值)记作bi a z +或。
由模的定义可知:22b a bi a z +=+=35.复数的加、减法运算及几何意义①复数的加、减法法则:12z a bi c di =+=+与z ,则12()z z a c b d i ±=±+±。
注:复数的加、减法运算也可以按向量..的加、减法来进行。
②复数的乘法法则:()()()()a bi c di ac bd ad bc i ++=-++。
③复数的除法法则:2222()()()()a bi a bi c di ac bd bc adi c di c di c di c d c d ++-+-==+++-++其中c di -叫做实数化因子 36.共轭复数:两复数a bi a bi +-与互为共轭复数,当0b ≠时,它们叫做共轭虚数。
常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n ii iii i++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω。