高中数学定积分知识点说课材料
定积分的概念说课稿

定积分的概念说课稿定积分的概念说课稿作为一名默默奉献的教育工作者,就有可能用到说课稿,说课稿有助于提高教师的语言表达能力。
说课稿要怎么写呢?下面是小编为大家整理的定积分的概念说课稿,仅供参考,大家一起来看看吧。
众所周知,高等数学是工科专业最重要的课程之一。
其重要的原因不仅在于可以学到一些数学概念、公式和结论,为其他数学课和专业课的学习打好基础,更重要的是通过学习数学可以培育人的理性思维品格和思辩能力,能启迪智慧,开发创造力。
下面,笔者将从教材、教法、设计理念以及教学设计四个方面,介绍“定积分的概念”这节课。
一、说教材分析课程定位:高等数学在高职(专)院校的教学计划中是一门重要的公共基础理论课。
通过本课程的学习,使学生获得够用的微积分、向量代数及空间解析几何的基本知识、必要的基础理论和常用的运算方法,为学习后续课程,特别是专业课程的学习和进一步扩展数学知识奠定必要的基础。
地位作用:本节课选自世纪数学教育信息化精品教材《高等数学》第五章第一节定积分的概念,是高等数学中最主要的经典理论,是学生进入“积分”世界必须跨过的第一道门槛。
这节课上承导数、不定积分,下接定积分在几何、物理、经济、电工学等其他学科中的应用。
教学内容:本节内容为定积分概念,主要包括三方面内容:两个引例——曲边梯形的.面积和变速直线运动的路程;定积分的定义及几何意义;定积分的性质。
教学目标:知识目标——通过探求曲边梯形的面积,使学生了解“分割、近似、求和、取极限”的思想方法;能力目标——通过类比“割圆术”,引导学生萌发“以直代曲”的想法,逐步培养学生的辨证思维能力和知识迁移的能力;情感目标——从实践中创设情境,渗透“化整为零零积整”的辨证唯物观,培养学生的创新意识和科技服务于生活的人文精神。
二、说教学方法学情分析:学生参加过高考,具备一定初等数学基础知识,但学生学高等数学的基础不扎实。
教学方法:数学课程对于高职学生来说,往往难度很大,教学时力求从学生已有知识和实际学习情况出发引入新课,启发、诱导学生参与教学活动,提出问题、分析问题、解决问题,适当采用自学辅导法(阅读教材)、通过以上方法的运用,让学生掌握重点知识,突破难点,提高应用知识的能力。
定积分定义-说课稿公开课一等奖课件省赛课获奖课件

i 1
f
(i )xi
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t ) 是 时 间 间 隔[T1 ,T2 ] 上t 的 一 个 连 续 函 数 , 且 v(t ) 0,求物体在这段时间内所经过的路程.
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
bx
解决环节:
1) 分割. 在区间 [a, b] 内插入若干个分点,
a x0 x1 x2 xn1 xn b,
把区间 [a,b] 分成 n y
个小区间 [ xi1, xi ], 长度为 xi xi xi1;
在每个小区间 [ xi1, xi ]
上任取一点
,
i
o a x1
b xi1i xi xn1
(i 1, 2,, n)
则
f
(i )xi
i2xi
i2 n3
o
y x2
i 1x
n
n
i1
f
(i )xi
1 n3
n
i2
i1
1 n3
1 n(n 6
1)(2n
1)
1 (1 1)(2 1) 6n n
1 0
x2
dx
lim
0
n
i 1
i
2xi
y
y x2
lim 1 (1 1)(2 1)
n 6 n n
1
lim
n
n i 1
sin
i
n
n
1
sin xdx.
0
i xi
[a ,
b]上的定积分,
高中数学定积分的概念教案新人教版选修

高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的基本性质和计算方法。
2. 能够运用定积分解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 定积分的概念介绍定积分的定义、性质和计算方法,引导学生理解定积分的本质。
2. 定积分的计算讲解定积分的计算法则,包括牛顿-莱布尼茨公式、换元积分法、分部积分法等,让学生掌握定积分的计算技巧。
3. 定积分在实际问题中的应用通过实际问题,引导学生运用定积分解决面积、体积、弧长等问题,提高学生的数学应用能力。
三、教学重点与难点1. 定积分的概念与性质2. 定积分的计算方法3. 定积分在实际问题中的应用四、教学方法1. 采用讲授法,讲解定积分的概念、性质和计算方法。
2. 利用例题,引导学生掌握定积分的计算技巧。
3. 结合实际问题,培养学生运用定积分解决实际问题的能力。
4. 组织讨论,让学生在探讨中深化对定积分概念的理解。
五、教学过程1. 引入:通过复习初中数学中的积分概念,引导学生思考如何将积分概念推广到无限区间。
2. 讲解:讲解定积分的定义、性质和计算方法,让学生理解定积分的本质。
3. 练习:布置定积分的计算练习题,让学生巩固所学知识。
4. 应用:结合实际问题,讲解定积分在面积、体积、弧长等方面的应用,让学生体会定积分的实用价值。
6. 作业:布置课后作业,巩固所学知识。
六、定积分的性质与计算法则1. 性质:定积分具有线性性质,即$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = \int_{a}^{b} (f(x) + g(x)) \, dx$。
定积分与积分区间有关,即$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$。
定积分与积分函数的单调性有关,即若$f(x)$ 在$[a, b]$ 上单调递增,则$\int_{a}^{b} f(x) \, dx$ 可以表示为$F(b) F(a)$,其中$F(x)$ 是$f(x)$ 的一个原函数。
【最新】定积分说课word版本 (12页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==定积分说课篇一:定积分的概念说课稿定积分的概念说课稿xxxx各位专家:大家好!我今天说课的题目是定积分的概念。
下面我从课程标准、教材分析、教学目标、教法学法、教学过程、板书设计六方面谈一下自己的理解和认识。
一、说课程标准根据专科学校高等数学课程要求,结合我校学生实际,对定积分的概念这节课提出三点要求:1、让学生认识到学习定积分的重要性。
2、了解定积分的定义和几何意义。
3、使学生建立变量的思想。
二、说教材1、定积分的概念的地位、作用及前后联系定积分定义是从曲边梯形的面积及变速直线运动的路程引出的,抓住其数量关系上的共同本质与特征加以概括,就可以抽象出定积分的概念,进而给出可积的条件及定积分的几何意义.正确理解定积分的概念及几何意义有助于进一步讨论定积分的性质与计算方法。
2、知识结构定积分的经典背景是曲边梯形的面积,而定积分的定义是一种特定的极限模式,它分为任意分割区间、任意在各区间内取点、做和式、取极限四步,简称“四步构造法”。
3、重点、难点、关键重点是定积分的概念,难点是利用定义计算定积分,关键是理解定积分定义的“四步构造法”及定积分的几何意义。
三、说教学目标1、知识目标:理解定积分的定义与几何意义,掌握可积的条件,会用定义与几何意义求简单函数的定积分。
2、能力目标:培养学生的抽象思维能力,探索能力和高等数学语言表达能力。
3、情感、态度目标:培养学生勇于探索新知的科学态度,克服畏难心理。
四、说教法学法定积分的定义既抽象又难懂,为了克服学生学习中的畏难心理,我在教学中设计了由曲边梯形的面积引出定积分的定义的如下探索方案:教法:引导探究法与讲解法1、曲边梯形→ 若干窄曲边梯形→ 若干窄矩形。
2、曲边梯形的面积可近似用若干窄矩形的面积和来近似。
3、取和式的极限,引出定积分的定义。
定积分的概念讲课稿课件

实例2 (求变速直线运动的路程)
n
s
lim
0
i 1
v(
i
)ti
二、定积分的概念
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 23
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 33
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 43
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 53
1
A1
A2
-1 o
1x
11 x dx 2 A1
2 1 11 1 2
例4 利用定义计算定积分 1 x2dx. 0
解
将[0,1]n 等分,分点为xi
i ,(i n
1,2,, n )
小区间[ xi1 ,
xi ]的长度xi
1 ,(i n
1,2,, n )
取xi xi,(i 1,2,, n)
n
xn-1 b x
n
A lim 0 i1
f
(xi )xi
实例2 (求变速直线运动的路程)
设物体作直线运动,已知速度 v v(t) 是时间间隔
[T1,T2 ]上的连续函数,且 v(t) 0, 计算在这段时间
内物体所经过的路程。
V(T)
A
B
(1)分割 T1 t0 t1 t2 tn1 tn T2,ti ti ti1
高中数定积分教案模板

课时安排:2课时教学目标:1. 让学生理解定积分的概念,掌握定积分的几何意义。
2. 通过实例,让学生学会运用定积分求解实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 定积分的概念2. 定积分的几何意义3. 定积分的应用教学难点:1. 定积分的概念理解2. 定积分的几何意义与实际问题的联系教学过程:第一课时一、导入1. 回顾函数、导数等知识,引出定积分的概念。
2. 提出问题:如何求解曲边图形的面积?二、新课讲解1. 定积分的概念(1)定义:如果函数f(x)在区间[a, b]上连续,那么积分∫[a, b]f(x)dx表示由曲线y=f(x)、直线x=a、直线x=b、直线y=0所围成的平面图形的面积。
(2)性质:定积分与积分变量的字母无关,只与积分上、下限的大小有关。
2. 定积分的几何意义(1)几何直观:定积分表示由曲线y=f(x)、直线x=a、直线x=b、直线y=0所围成的平面图形的面积。
(2)应用:求解平面图形的面积、体积等实际问题。
三、例题讲解1. 例1:求由曲线y=x^2、直线x=0、直线x=1所围成的平面图形的面积。
2. 例2:求由曲线y=sin(x)、直线x=0、直线x=π所围成的平面图形的面积。
四、课堂小结1. 回顾本节课所学内容,强调定积分的概念和几何意义。
2. 强调定积分在实际问题中的应用。
第二课时一、复习1. 回顾定积分的概念和几何意义。
2. 回顾定积分在实际问题中的应用。
二、新课讲解1. 定积分的计算方法(1)牛顿-莱布尼茨公式:如果函数f(x)在区间[a, b]上连续,且F(x)是f(x)的一个原函数,那么∫[a, b]f(x)dx = F(b) - F(a)。
(2)换元积分法:通过适当的换元,将定积分转化为基本积分公式表中的某一形式,再求不定积分。
2. 定积分的应用(1)求解平面图形的面积(2)求解立体图形的体积三、例题讲解1. 例1:求由曲线y=x^2、直线x=0、直线x=2所围成的平面图形的面积。
高中数学教学定积分教案

高中数学教学定积分教案1. 理解定积分的概念;2. 掌握定积分的计算方法;3. 能够应用定积分解决实际问题。
教学重点:1. 定积分的概念;2. 定积分的计算方法。
教学难点:1. 定积分计算中的技巧问题;2. 定积分的应用问题。
教学内容:一、定积分的概念1. 定积分的定义;2. 定积分的性质。
二、定积分的计算方法1. 定积分的基本性质;2. 定积分的计算公式;3. 定积分的计算方法。
三、定积分的应用1. 定积分的几何意义;2. 定积分的物理意义;3. 定积分的应用举例。
教学过程:一、导入教师引入积分的概念,介绍定积分的定义及意义,激发学生对定积分的兴趣。
二、讲解1. 讲解定积分的性质和基本概念;2. 分步讲解定积分的计算方法,包括不定积分的转换和定积分的计算公式。
三、示范教师展示一些定积分的计算例题,让学生跟随计算步骤进行练习。
四、练习学生进行练习,巩固定积分的计算方法,提高解题能力。
五、应用教师介绍定积分在几何和物理问题中的应用,引导学生进行实际问题的解决。
六、总结对本节课的内容进行总结,强调定积分的重要性和应用价值。
七、作业布置相关的定积分作业,检验学生对定积分的掌握程度。
教学反思:本节课针对高中学生的实际情况,通过梳理定积分的基本概念、计算方法和应用,帮助学生理解和掌握定积分的内容,提高解题能力和问题应用能力。
应灵活运用多种教学方法,引导学生参与课堂互动,激发学生的学习兴趣,达到教学目标。
高中数学定积分讲义

高中数学定积分讲义一、理解定积分的概念1、产生背景:2、曲边梯形的概念:如图所示,我们把由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形.yi记n 个小曲边梯形的面积分别为:△S 1, △S 2,…, △S n , 则曲边梯形的面积S=△S 1+△S 2+…+△S n 第二步 近似代替在每个小区间],[1i i x x -上任取一点),,2,1(,n i i =ξ 则i i i x f s ∆⋅≈∆)(ξ, 第三步 求和 i i ni x f s ∆⋅≈∑=)(1ξ第四步 取极限∑=∞→∆⋅=ni ii n x f s1)(lim ξ阿基米德问题:求由抛物线y=x 2与直线x=1,y=0所围成的平面图形的面积.°分割:将区间[0,1]分成n 等份: △s1,,,1n n -⎡⎡⎢⎢⎣⎣2°近似代替:x n i xn i f s s ii ∆-=∆-='∆≈∆2)1()1(),,2,1(1)1(2n i nn i =⋅-=3°求和: S n =n n i x n i f s sni ni ni i ni i1)1()1(21111⋅-=∆-='∆≈∆∑∑∑∑====nn n n n n n n 1)1(1)2(1)1(10222⋅-+⋅+⋅+⋅= ])1(321[122223-++++=n n6)12()1(13--⋅=n n n n )211)(11(31nn --= 4°取极限: 31)211)(11(31lim lim 1=--='∆=∞→=∞→∑n n s s n ni i n 求曲边梯形面积的“四步曲”:1°分割 化整为零以直代曲3°求和积零为整刨光磨平1、定积分的概念:例2、已知二次函数c bx ax x f ++=2)(,直线2:1=x l ,直线t t y l 8:22+-=(其中0≤t ≤2,t 为常数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,()用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
[注]:实际问题的开区间唯一极值点就是所求的最值点;9.求曲边梯形的思想和步骤:分割→近似代替→求和→取极限 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1a b dx ba-=⎰1性质5 若[]b a x x f ,,0)(∈≥,则0)(≥⎰b adx x f①推广:1212[()()()]()()()bbbbm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰L L②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰L11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x 轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x 轴上方图形面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x 轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。
(2)力的积分为功。
二、推理与证明知识点13.归纳推理的定义: 从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体..,由个别到一般..的推理。
14.归纳推理的思维过程大致如图:15.归纳推理的特点:实验、观察概括、推广猜测一般性结论①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。
②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。
③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。
类比推理是由特殊..的推理。
..到特殊17.类比推理的思维过程18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。
演绎推理是由一般..的推理。
..到特殊19.演绎推理的主要形式:三段论20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。
直接证明包括综合法和分析法。
22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。
24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。
25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确...,即所求证命题正确。
26常见的“结论词”与“反义词”27.反证法的思维方法:正难则反....28.归缪矛盾 (1)与已知条件....矛盾: (2)与已有公理、定理、定义..........矛盾; (3)自相..矛盾.29.数学归纳法(只能证明与正整数...有关的数学命题)的步骤 (1)证明:当n 取第一个值....()00n n N *∈时命题成立;(2)假设当n=k (k ∈N *,且k ≥n 0)时命题成立,证明当n=k+1.....时命题也成立. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
三、数系的扩充和复数的概念知识点30.复数的概念:形如a+bi ....的数叫做复数,其中i 叫虚数单位,a 叫实部, b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。
规定:a bi c di +=+⇔a=c ...且.b=d ..., 强调:两复数不能比较大小,只有相等或不相等。
31.数集的关系:0000b Z a b a =⎧⎪≠⎧⎨⎪≠⎨⎪=⎪⎩⎩实数 ()复数一般虚数()虚数 ()纯虚数()32.复数的几何意义:复数与平面内的点或有序实数对一一对应。
33.复平面:根据复数相等的定义,任何一个复数bi a z +=,都可以由一个有序实数对),(b a 唯一确定。
由于有序实数对),(b a 与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。
这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。
34.求复数的模(绝对值)与复数z 对应的向量OZ 的模r 叫做复数bi a z +=的模(也叫绝对值)记作bi a z +或。
由模的定义可知:22b a bi a z +=+=35.复数的加、减法运算及几何意义①复数的加、减法法则:12z a bi c di =+=+与z ,则12()z z a c b d i ±=±+±。
注:复数的加、减法运算也可以按向量..的加、减法来进行。
②复数的乘法法则:()()()()a bi c di ac bd ad bc i ++=-++。
③复数的除法法则:2222()()()()a bi a bi c di ac bd bc adi c di c di c di c d c d++-+-==+++-++其中c di -叫做实数化因子 36.共轭复数:两复数a bi a bi +-与互为共轭复数,当0b ≠时,它们叫做共轭虚数。
常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n ii iii i++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω。