数学建模——水塔流量问题
数学建模——水塔流量问题

数学建模——⽔塔流量问题实验⼗四⽔塔流量问题【实验⽬的】1.了解有关数据处理的基本概念和原理。
2.初步了解处理数据插值与拟合的基本⽅法,如样条插值、分段插值等。
3.学习掌握⽤MATLAB 命令处理数据插值与拟合问题。
【实验内容】某居民区有⼀供居民⽤⽔的圆形⽔塔,⼀般可以通过测量其⽔位来估计⽔的流量。
但⾯临的困难是,当⽔塔⽔位下降到设定的最低⽔位时,⽔泵⾃动启动向⽔塔供⽔,到设定的最⾼⽔位时停⽌供⽔,这段时间是⽆法测量⽔塔的⽔位和⽔泵的供⽔量。
通常⽔泵每天供⽔⼀两次,每次约两⼩时。
⽔塔是⼀个⾼⽶、直径⽶的正圆柱。
按照设计,⽔塔⽔位降到约⽶时,⽔泵⾃动启动,⽔位升到约⽶时⽔泵停⽌⼯作。
某⼀天的⽔位测量记录如表1所⽰,试估计任何时刻(包括⽔泵正供⽔时)从⽔塔流出的⽔流量,及⼀天的总⽤⽔量。
表1 ⽔位测量启⽰录(0101001111012012)(2x L )(2ξL )(ξf y )(x f n 0x 1x n x 0y 1y n y n n )(x L n )(x L n m x a 011-m x a x a m 1-m a n )(k n x L k y k n )(ξn L )(ξf )(x L n )(x f n m n )(x L n )(x f x )(x L n )(x f a 0x 1x nx b )(x P 11----i i i i y x x x x i i i i y x x x x 11----1-i x x i x i n 0x 0y 1x 1y n x n y a b )(x S k )(x S k )(x S i i y )(x S a b k n i x i y i n i x y )(x f )(x f )(x f )(11x r a )(22x r a )(x r a m m )(x r k k a k m m n k a Q∑=-ni ix f 12i)y )((10t t t t t t t t t dt3;%% ⽤差分计算t(22)和t(23)的流量S 2.8/8.>> t3=[20 t(22) t(23)];% 取第2时段20,两点和第3时段,两点>> xx3=[abs(polyval(a2,t3(1:2))),dht3]; 取第2时段20,两点和第3时段,两点的流量>> c3=polyfit(t3,xx3,3)% 拟合出第2⽔泵供⽔时段的流量函数>> tp3=::24;>> x3=polyval(c3,tp3);% 输出第2供⽔时段(外推到t=24)各时刻的流量求第1、2时段和第1、2供⽔时段流量的积分之和,就是⼀天总⽤⽔量。
案例6 估计水塔水流量

f ( t )dt 335329 (加仑) f ( t )dt 336480 (加仑)
25.5 1.5
相差只约1%
[0,24]区间内检验
第一次充水 前总用水量 第一次充水后, 第二次充水前 总用水量 第一次充水 期间用水量 第二次充水 期间用水量
V1= 606125-514872=91253(加仑)
充水时间约为2.1189小时
3. 由Vi—ti关系产生水流量 fi—ti的关系
注:亦可以由Vi—ti关系拟合 V(t),再求微商得到 f(t)
关于水流量 fi
Vi 1 Vi f i f (t i ) t i 1 t i V i V i 1 与 f i f (t i ) t i t i 1
水体积的误差为0.5% 用样条逼近的用水量其误差可用抽样计算得5.1%
一天 总量 误差
2 2 2 2 SV [ SV0 SV8.9678 SV p SV10.9542 SV20.8392
1
2 2 2 2 SV p SV 22.9581 SV23.88 SV[ 23.88 , 24 ] ]1 2
水泵工作的时间为32284秒(8.9678 小时); 水泵结束时间为39435秒(10.9542小时); 充水时间约为1.9864小时
水泵工作的时间为75021秒(20.8392 小时),水 位26.97英尺 第 二 次 充 水 水泵结束时间为82649秒(22.9581小时), 补充水位35.50英尺
水流量值(表3)
时
(小时)
间
水 流 量
(加仑/小时)
时
(小时)
间
水流量
(加仑/小时)
时
水塔流量估计的数学建模

水塔流量估计的数学建模1. 引言水塔是现代城市供水系统中至关重要的组成部分,其作用是通过储存水源来保障城市居民日常用水,并且在有紧急情况时提供应急用水。
为了更好地保障全社会的用水需求,并降低供水系统建设和运营成本,对水塔的流量进行准确的估计和预测具有重要意义。
本文将探讨如何利用数学建模的方法对水塔流量进行估计和预测。
2. 水塔流量的影响因素水塔流量的大小受到多种因素的影响,主要包括以下几个方面:2.1 水塔容积水塔的容积越大,其流量也就越大。
因此,在进行水塔流量估计时,首先需要考虑其容积。
2.2 外部水压水塔的流量受到外部水压的影响。
如果外部水压较大,则水塔的流量也将较大。
2.3 水泵功率水泵功率的大小直接影响到水塔的流量大小。
水泵功率越大,水塔的流量也就越大。
2.4 关阀状态水塔流量还受到管道关阀状态的影响。
如果关阀状态较大,则水塔流量也将减小。
3. 水塔流量的数学建模方法水塔流量的数学建模方法主要包括以下几个步骤:3.1 收集数据收集水塔流量的相关数据,并对其进行初步的整理和分析。
3.2 设计建模方程根据已收集到的数据,设计合适的建模方程。
建模方程需要考虑到水塔容积、外部水压、水泵功率、关阀状态等多种因素。
3.3 参数估计利用已有的数据对建模方程中的参数进行估计。
参数估计是非常重要的一步,其准确性直接影响到模型的准确性和可靠性。
3.4 模型检验和优化使用已有的数据来对所建立的模型进行检验和优化。
检验过程中需要对模型的精度、准确性、鲁棒性等进行评估,如果出现问题,需要进行适当的调整。
4. 案例分析为了说明水塔流量估计的数学建模方法,我们以某市几座水塔为例进行分析。
4.1 收集数据在该市的几座水塔中,我们选取了其中一座水塔进行了数据的收集,主要包括该水塔的容积、水泵功率、外部水压等基本信息。
4.2 设计建模方程根据收集到的数据,我们设计了一个基础的建模方程,其中各项参数分别为:Q为流量,V为水塔容积,P为外部水压,H为水泵的扬程,K为关阀系数。
数学建模必做题

1、水塔流量的估计某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。
面临的困难是,当水塔水位下降到设定的最底水位时,水泵自动启动向水塔供水,到设定的最高水位的时候停止供水,这段时间无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一两次,每次约3h.水塔是一个高为12.2m ,直径为17.4m 的正圆柱。
按照设计。
水塔水位降至约8.2m 时,水泵自动启动,水位升至约10.8m 时水泵停止工作。
下表是某一天的水位测量记录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
2、最佳广告费用及其效应某装饰材料公司以每桶2元的价钱购进一批彩漆,为了尽快收回资金并获得较多的赢利,公司经理李先生打算做广告,于是便找到广告公司的王先生进行咨询。
李经理认为,随着彩漆售价的提高,预期销售量将减少,并对此进行了估算(见表1)。
他问王先生广告有多大效应。
王先生说:“投入一定的广告费后,销售量将有一个增长,这由销售增长因子来表示。
例如,投入3万元的广告费,销售增长因子为1.85,即销售量将是预期销售量的1.85倍。
据经验,广告费与销售增长因子的关系有表2。
”李经理听后,迫切想知道最佳广告费和售价为多少时预期的利润最大,试经过计算给出解答。
表1 售价与预期销售量 售价(元) 预期销售量(千桶) 2.00 41 2.50 38 3.00 34 3.50 32 4.00 29 4.50 28 5.00 25 5.50 22 6.00 20 表2 广告费与销售增长因子 广告费(元) 销售增长因子 0 1.00 10000 1.40 20000 1.70 30000 1.85 40000 1.95 50000 2.00 60000 1.95 70000 1.803、露天采矿某公司获准在一块200*200米的方形地上露天采矿。
因为土石滑坡,控坑的坑边坡度不能斜于45度,公表1 水位测量记录 (符号//表示水泵启动)司一得到不同位置不同深度的矿砂含纯金属的百分数的估计值。
MATLAB数学建模估计水塔的水流量问题Word版

估计水塔的水流量自动化12K2 许杨旸摘要:在估计某地区的用水速度和日总用水量的时候,在已知某时间t下的水位h,以及水塔直径,求出t时刻的水体积,由于没有具体函数,故用差商方法近似求出水体积对时间t的导数即用水速度,再利用三样条插值方法求出不同时刻的用水速度。
最终,通过数值积分方法求出日用水总量I。
符号及含义:t:时刻;h:水位高度;D:水塔直径;V:水体积;dV:水流速度;I:日用水总量。
一、提出问题某地区用水管理机构需要对居民的用水速度(单位时间的用水量)和日总用水量进行估计。
现有一居民区,其自来水是由一个圆柱形水塔提供,水塔高12.2m,塔的直径为17.4m。
水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次,按照设计,当水塔中的水位降至最低水位,约8.2m时,水泵自动启动加水;当水位升高到最高水位,约10.8m时,水泵停止工作。
表2给出的是某一天的测量数据,测量了28个时刻的数据,但由于水泵正向水塔供水,有三个时刻无法测到水位(表中用—表示),试建立数学模型,来估计居民的用水速度和日用水量。
表2 水塔中水位原始数据二、求解问题1、水塔中的水体积计算求解的问题的关键是求解出用水的速度,即单位时间内的用水体积,由于水塔可以近似成圆柱体,所以水塔的体积V可近似成:V=π4D2ℎ式中D为水塔直径D=17.4m,h为水位高度。
其中,在三个无法得到水位的时刻,其水位高度用一个负数表示,即该时刻水位为负值,显然现实当中无法出现这样的情况,现在我们用-1表示其水位。
现在开始计算水塔的体积:输入t=[0 0.921 1.843 2.949 3.871 4.978 5.900 ...7.006 7.928 8.967 9.981 10.925 10.954 12.032 ...12.954 13.875 14.982 15.903 16.826 17.931 19.037 ...19.959 20.839 22.015 22.958 23.880 24.986 25.908];h=[9.677 9.479 9.308 9.125 8.982 8.814 8.686 ...8.525 8.388 8.220 -1 -1 10.820 10.500 ...10.210 9.936 9.653 9.409 9.180 8.921 8.662 ...8.433 8.220 -1 10.820 10.591 10.354 10.180];D=17.4;V=pi/4*D^2*h;最终求得V= [2.3011 2.2540 2.2133 2.16982.1358 2.0959 2.0654 2.0271 1.9946 1.9546-0.2378 -0.2378 2.5729 2.4968 2.42782.3627 2.2954 2.2373 2.1829 2.1213 2.0597 2.0053 1.9546 -0.2378 2.5729 2.5184 2.4620 2.4207]。
MCM-1991年A题估计水塔的水流量

MCM-1991年A题:估计水塔的水流量逼近观察数据的一维样条模型在实际工作中,我们常会碰到这样一种情况:我们需要或希望了解某一性质或特征的运动规律,但是由于测量仪器设备的落后或缺乏等原因无法直接得到它,而只能代之以观察到较易得到的在特定时刻或距离上的一些数据,一般来说,虽然这些观察数据不可避免地会带有观察误差,它们还是反映了该性质或特征的主要规律,剩下的问题就是如何建立一个合理的模型,对这些观察数据进行拟合逼近,恢复出原有的规律。
这类问题是一类很典型的对已知数据进行数值拟合来建模的模型问题。
对这类问题,建模的关键在于提出合理的假设,设计出较好的拟合方法,尽量减少因方法不当带来的误差。
在这一讲里,我们就AMCM-91A题进行讨论,详细讲解解这类问题的样条模型。
内容是这样安排的。
在第1节,我们提出问题并作出合理的假设,在第2节,我们介绍建模必备的数学理论,即三次样条函数的概念与基本性质,最后,在第3节,我们给出问题的详细解答,并比较该题当年获优秀论文奖的三种解答的优点。
一、问题与假设在这一节里,我们先叙述AMCM-91A题,然后根据解题需要给出合理的假设。
AMCM-91A题:估计水塔的水流量[1]美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量。
但许多社区并没有测量流入或流出当地水塔的水量的设备,他们只能代之以每小时测量水塔中的水位,其精度在0.5%以内.更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位H,但也无法得到水泵的供水量的测量数据。
因此,在水泵正在工作时,人们不容易建立水塔的水位与水泵工作时的用水量之间的关系。
水泵每天向水塔充水一次或两次,每次约二小时。
试估计在任何时刻,甚至包括水泵正在工作的时间内,水从水塔流出的流量f(t) ,并估计一天的总用水量.表8-1给出了某个真实小镇某一天的真实数据.表8-1给出了从第一次测量开始的以秒为单位的时刻,以及该时刻的高度单位为百分之一英尺的水塔中水位的测量值,例如,3316秒后,水塔中的水位达到31.10英尺.水塔是一个垂直圆形柱体,高为40英尺,直径为57英尺.通常当水塔的水位降至约27.00英尺时水泵开始向水塔充水,而当水塔的水位升至约35.50英尺时水泵停止工作.我们很容易想到应通过对所给数据进行数值拟合来建模.在讨论具体的建模方法以前,我们先给出一些合理的假设. (1)影响水从水塔流出的流率的唯一因素是公众对水的传统要求.因为附表只给出了某一天(实际是近26小时)水塔的水位数据,并没有对这些数据的产生有影响的因素作出具体说明,我们只能假定所给数据反映了有代表性的一天,而不包括任何特殊情况,如自然灾害、火灾、水塔溢水、水塔漏水等对水的特殊要求.(2)水塔中水的水位不影响水流量的大小.据物理学的Torricelli 定律,水塔最大水流量是与水位的高度的平方根成正比的.针对表8-1所给的数据,最大高度是35.50英尺,最小高度是27.00英尺,所以两个高度的最大水流量之比是15.100.27/50.35 ,接近于1,所以我们假定水位不影响水流量,类似地,我们假定气候条件、条件变化等也不直接影响水流量.(3)水泵工作起止时间由水塔的水位决定.我们总是假定水位大约27.00英尺时,水泵就开始工作,直到水位升至大约35.50英尺时停止工作,每次充水时间约为两小时.水泵工作性能、效率总是一定的,不因使用次数多少而变化,水泵工作时不需要维修,也不中途停止工作.当然,水泵充水的水流量远大于水塔的水流量,以保证人们对水的需求. (4)表8-1中水位数据取得的时间准确在1秒以内.(5)水塔的水流量与水泵状态独立,并不因水泵工作而增加或减少水流量的大小.(6)水塔的水流量曲线可以用一条光滑的曲线来逼近.这时,在每一个数据点,水流量的两阶导数是连续的,因为水的消耗是基于社区公众一天的活动,如洗澡、做饭、洗衣服等,每一个使用者的要求与整个社会的要求相比是微不足道的,而整个社会的需求是不可能同时增加或减少的,由于水的消耗的自然性,可以设想水流量曲线是一条连续光滑的曲线. 二 三次样条函数的基本理论在这一节里,我们介绍对观察数据进行数值拟合逼近的一种有效的数学理论——三次样条函数的基本理论[2].熟悉这部分数学理论后,我们就能对何以说样条插值逼近比高次多项式拟合要优越有一个清楚的认识.如果读者已具备这方面的知识,可以跳过这一节直接进入第三节问题的解答部分.1.三次样条函数的力学背景在工程和数学应用中常有这第一类数据处理问题:在平面上给定了一组有序的离散点列,要求一条光滑的曲线把这些点按次序连接起来,这叫做插值(拟合是一种更广泛意义上的逼近方法).在过去很长的一段时间内,工程技术人员为了得到这条光滑的曲线,常常是用一条富有弹性的均匀细木条(或是有机玻璃条),让它们依次经过这些点,并用“压铁”在若干点处压住,然后沿这条细木条画出一条光滑的曲线,形象地称之为“样条曲线”. 在力学上,如果把细木条看成为弹性细梁,压铁看成是作用在梁上的集中载荷,“样条曲线”就可模拟为弹性细梁在外加集中载荷作用下的弯曲变形曲线.如果用A 表示细梁的刚度系数,M 表示弯矩,在建立坐标系后,由于“样条”是均匀细木条,在两个相邻压铁之间无任何外力,所以M 是x 的线性函数,A 为常数,由力学知识可得 Ak(x)=M(x) (1) 其中k(x)为“样条曲线”y=y(x)的曲率.由数学知识,对一条光滑曲线,k(x)=y"/(1+y ′2)3/2.一般来说,上述样条曲线所适合的微分方程(1)是非线性的,它的解是无法用初等函数表示的,但在通常称为“小挠度”的情况下,即细梁弯曲不大,|y ′|<<1时,可以忽略y ′的影响,从而得到近似的方程Ay"(x)=M(x),由M 的线性,就有y (4)(x)≡0,即“样条曲线”是分段三次多项式,且曲线的函数值、一阶导数、二阶导数都是连续的,而三阶导数是间断的.这就是三次样条函数的力学背景. 2.三次插值样条函数定义 设在区间[a,b ]上给定一个分割∏:a=x 0<x 1<…<x n-1<x n =b,定义在[a,b ]上的一个函数S(x)如果满足下列条件:①在每个小区间[x i-1,x i ](i=1,2, …,n)内S(x)是三次多项式; ②在整个区间[a,b ]上,S(x)为二阶连续可导函数,也就是说,在每个节点x i (i=1,2,…,n-1)处, S (k)(x i -0)=S (k)(x i +0),k=0,1,2 (2)则称S(x)为三次样条函数.对定义在区间[a,b ]上的函数f(x),如果存在三次样条函数S(x),使得在节点处还满足S(x i )=f(x i )(i=0,1, …,n),就称S(x)为插值于f(x)的三次样条函数. 对给定的一组有序数组y i (i=0,1, …,n),如果三次样条函数S(x)满足S(x i )=y i (i=0,1, …,n),就称S(x)为插值于{y i }的三次样条函数.现在,如果对函数f(x),我们并不知道其解析表达式,而只知道其在节点处的值f i =f(x i ) (i=0,1, …,n),如何估计f(x)?一个很自然的方法就是求插值于{f i }的三次样条函数S(x),以S(x)作为对f(x)的逼近.那么,如何求出S(x)?我们将利用f i 及一阶、二阶导数来建立求S(x)的表示式及连续性方程. (1)M连续性方程与S(x)的表示式记S(x)在节点x i 处的函数值、一阶导数和二阶导数分别为 S(x i )=f i ,S ′(x i )=m i ,,S"(x i )=M i , (i=0,1, …,n) (3)由于S(x)是分片三次多项式,在每个小区间[x i-1,x i ]上,S(x)的二阶导数是线性函数,记h i =x i -x i-1表示小区间长度,有S 〃(x)=M i-1i 1i ii i h x x M h x x --+-, (x i-1≤x ≤x i ) (4) 将(4)式积分一次,得S '(x)=-M i-1i 1i21i i 2i C h )x x (Mi h 2)x x (+-+-- , (x i-1≤x ≤x i ) (5)再将(5)式积分一次,有 S(x)=M i-1,C x C h 63)x x (Mi h 63)x x (i 2i 1i 1i i i ++-+-- (x i-1≤x ≤x i )(6)由插值条件(3),S (x i )=f i ,S(x i-1)=f i-1,代入(6)式,有⎪⎪⎩⎪⎪⎨⎧+-+-=---=-----1i i i i i i 1i i i 1i i 21i i i 1i f i 1x )6M h h f (x )6M h h f (C 6)M M (h hi f C i 而由(5)式,有⎪⎪⎩⎪⎪⎨⎧----=++---=-+++++--2h M 6)M M (h h f f )0x ('S 2h M 6)M M (h hi f f )0x ('S 1i ii 1i 1i 1i i 1i i i i 1i i i 1i i i (7)但由一阶导数连续,S '(x i -0)=S’(x i +0)(i=1,…,n-1),由(7)式就得到n-1个等式 μi M i-1+2M i +λi M i+1=d i , (i=1,…,n-1) (8) 其中λi=1i i 1i h h h +++,μi =i1i ih h h ++di=)h f f h f f (h h 6i1i i 1i i 1i 1i i -+++---+ (i=1,…,n-1)。
建模论文水塔问题

基于水塔问题的拟合优度分析摘要本文利用与水塔模型相关的四个问题,涉及到多项式拟合曲线、非线性最小二乘拟合参数等知识运用。
同时,借助高等数学中微分法的转换以及物理学中水力学知识解决了问题三四。
首先,利用Matlab优越的计算能力,根据表中水面高度h与水平截面圆的半径的r关系拟合出曲线ABC满足的方程r=r(ℎ)的方程,解决第一问。
其次,根据水塔水流速度v与水面高度ℎ有下面的有关系为:v=a√2g(ℎ+b),结合题目所给表中数据,拟合出a与b的值。
根据微分法,将不规则物体看成圆柱体,借助V=πr2ℎ,转化为dV=πr2dℎ,解决问题。
第四问依据从孔口流出的流量与通过孔口横截面水的体积和时间的关系,借助微分Matlab相关命令解答。
最后,针对r与h的关系,绘制Excel图表,选择不同模型,进行拟合优度比较,看哪一种模型更适合数据的分布,并进行相关分析与讨论。
关键词:多项式拟合曲线;非线性最小二乘拟合参数;微分微元法;线性、二次、指数模型;数学建模一、问题重述有一个几何形状不规则的水塔(如右图所示),它可以看成是曲线ABC绕垂线z旋转而成,水塔高12米,上顶圆的半径为9米,下底圆的半径为3米(1)测得水面高度h与水平截面圆的半径的r关系如下表1所示:拟合出曲线ABC满足的方程r=r(ℎ).(2)由流体力学的知识知道:水塔水流速度v与水面高度ℎ有下面的有关系为:v=a√2g(ℎ+b),其中g=9.8m/s为重力加速度,a为流速的系数,b为参数,利用表2中的数据,拟合a,b的数值。
(3)计算该水塔的容积是多少?(4) 该水塔装满了水,以后不再向水塔中放水。
在底部有一个截面为0.02平方米的小孔,试给出水塔中水全部流完需要多长时间?表1 水面高度h与水平截面圆的半径的r关系单位:米h0123456789101112 r3.00 3.78 4.40 4.91 5.32 5.68 6.00 6.33 6.687.807.608.239表2 水面高度h与水流速度的关系单位:立方米/小时h12111098765432110.6310.279.909.519.108.688.237.767.26 6.72 6.14 5.49二、模型假设1假设表1、表2数据具有随机性,存在一定的关系;2假设重力加速度g=9.8m/s符合当地实际实际重力加速度;3假设该不规则物体形似圆柱,可以运用圆柱公式计算;4假设水塔除底面有孔,其余地方再无漏出;5假设水塔从孔口流出的流量与通过孔口横截面水的体积和时间有一定关系;6假设水塔是光滑的;7假设所有模型求解时不会出现任何失误。
数学建模估计水塔的流量用数学软件求解拟合问题

算法设计与编程
1. 拟合第1、2时段的水位,并导出流量
2. 拟合供水时段的流量
3. 估计一天总用水量
4. 流量及总用水量的检验
1. 拟合第1时段的水位,并导出流量 设t,h为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第1时段各 时刻的流量可如下得: 1) c1=polyfit(t(1:10),h(1:10),3); %用3次多项式拟合第1时段水位,c1输出3次多项式的系数 2)a1=polyder(c1); % a1输出多项式(系数为c1)导数的系数
m 3 103 L
MATLAB(llgjz)
4. 流量及总用水量的检验
计算出的各时刻的流量可用水位记录的数值微分来检验.用水量y1可用第1时段水位测 量记录中下降高度968-822=146来检验,类似地,y2用1082-822=260检验. 供水时段流量的一种检验方法如下:供水时段的用水量加上水位上升值 260是该时段泵入 的水量,除以时段长度得到水泵的功率(单位时间泵入的水量),而两个供水时段水泵的 功率应大致相等.第1、2时段水泵的功率可计算如下: p1=(y12+260)/2; %第1供水时段水泵的功率 (水量仍以高度计) tp4=20.8:0.1:23; xp2=polyval(c3,tp4); % xp2输出第2供水时段 各时刻的流量 p2=(0.1*trapz(xp2)+260)/2.2; %第2供水时段水泵的功率 (水量仍以高度计) 计算结果:p1=154.5 ,p2=140.1
用非线性最小二乘拟合c(t)-用lsqcurvefit
1. 用M文件curvefun3.m定义函数
function f=curvefun3(x,tdata) d=300 f=(x(1)\d)*exp(-x(2)*tdata) % x(1)=v; x(2)=k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十四 水塔流量问题
【实验目的】
1.了解有关数据处理的基本概念和原理。
2.初步了解处理数据插值与拟合的基本方法,如样条插值、分段插值等。
3.学习掌握用MATLAB 命令处理数据插值与拟合问题。
【实验内容】
某居民区有一供居民用水的圆形水塔,一般可以通过测量其水位来估计水的流量。
但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间是无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一两次,每次约两小时。
水塔是一个高米、直径米的正圆柱。
按照设计,水塔水位降到约米时,水泵自动启动,水位升到约米时水泵停止工作。
某一天的水位测量记录如表1所示,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
表1 水位测量启示录(
0101001111012012)(2x L )(2ξL )(ξf y )(x f n 0x 1x n x 0y 1y n y n n )(x L n )(x L n m x a 011-m x a x a m 1-m a n )(k n x L k y k n )(ξn L )(ξf )(x L n )(x f n m n )(x L n )(x f x )(x L n )(x f a 0x 1x n
x b )
(x P 11----i i i i y x x x x i i i i y x x x x 1
1
----1-i x x i x i n 0x 0y 1x 1y n x n y a b )(x S k )(x S k )(x S i i y )(x S a b k n i x i y i n i x y )(x f )(x f )(x f )(11x r a )(22x r a )(x r a m m )(x r k k a k m m n k a Q
∑=-n
i i
x f 1
2
i
)
y )((
10t t t t t t t t t dt3;%% 用差分计算t(22)和t(23)的流量
S 2.8/8.
>> t3=[20 t(22) t(23)];% 取第2时段20,两点和第3时段,两点
>> xx3=[abs(polyval(a2,t3(1:2))),dht3]; 取第2时段20,两点和第3时段,两点的流量
>> c3=polyfit(t3,xx3,3)% 拟合出第2水泵供水时段的流量函数
>> tp3=::24;
>> x3=polyval(c3,tp3);% 输出第2供水时段(外推到t=24)各时刻的流量求第1、2时段和第1、2供水时段流量的积分之和,就是一天总用水量。
虽然诸时段的流量已表示为多项式函数,积分可以解析地算出,这里仍可用数值积分计算:
>> y1=*trapz(x1)% 第1时段用水量,为积分步长
y1 =
>> y2=*trapz(x2) % 第2时段用水量
y2 =
>> y12=*trapz(x12) % 第1水泵供水时段用水量
y12 =
>> y3=*trapz(x3) % 第2水泵供水时段用水量
y3 =
>> y=(y1+y2+y12+y3)**% 总用水量为水位差乘以水塔截面积,是因为流量单位为厘米y =
+003
【结果分析】
计算出来的各时段用水量可以用测量记录来检验,y1可用第1时段水位测量下降高度为968-822=146来检验,类似地,y2用1082-822=260来检验。
供水时段流量的一种检验方法如下:供水时段用水量加上水位上升值260是该时段泵入的水量,除以时间长度得到水泵的功率(单位时间泵入水量),而两个供水时段的功率应大致相等。
第1、2时段水泵的功率计算如下:
>> p1=(y12+260)/2
p1 =
>> tp2=::23;
>> xp2=polyval(c3,tp2);
>> p2=*trapz(x3)+260)/
p2 =
可以看到,两次水泵泵水的功率差别不大。
下面是水塔一天的流量曲线图:
图 当取三次多项式拟合的流量曲线图
由图我们可以看到,流量曲线与原始记录基本上相吻合,但在第1时段和第1泵水时段的交接处曲线不太光滑,这说明我们采用3次曲线通过4点的做法不够好,应该多取几点进行拟合。
0点到10点很流量很低,10点到下午3点即中午时间段是用水高峰期。
【练习与思考】
1.假定某天的气温变化见下表,试找出这一天的气温变化规律:
2.在化工生产中常常需要知道丙烷在各种温度T 和压力P 下的导热系数K 。
下面是实验得到的一组数据:
试求T =99(℃)和P =(103
2
/m kN )下的导热系数。
3.下表给出了某一海域以码为单位的直角坐标为X 、Y 的水面一点处以英尺为单位的水深
Z ,水深数据是在低潮时测得的。
船的吃水深度为5英尺,问在矩形区域(85200)×(-
40150)里,哪些地方船要避免进入。
水道测量数据——在低潮测得的水深。