函数的凹凸性与拐点知识讲稿

合集下载

函数的凹凸性ppt课件

函数的凹凸性ppt课件

② f (x1 x2 ) f (x1 ) f (x2 ) ;
③ f (x1 ) f (x2 ) 0; x1 x2
④ f ( x1 x2 ) f (x1 ) f (x2 ) .
2
2
当 f (x) lg x 时,上述结论中正确结论的序号

.
9
10
【详解】
对于①②可以用 f (x) lg x
f
(x ) 故函数 2
f
(x) 是
凹函数。
14
(2)由 f (x) 1 1 f (x) 1 1 ax2 x 1 ①
ax2 x 1

x
0时, a R ,当
x (0,1]时①即 ax2x恒成立1
a 即
a
1
x2 1
1
x 1
(1 1)2 x2
(1 1)2 1
1 4
恒成立,当
2
2

DC
x
轴交
f
(x)

D(
x1
2
x2
,
yD )
D

f (x)



yD
f
( x1
2
x2
)
yC
f (x1) f (x2 ) 故④不正确 2
11
点评:本题主要考查了 f (x) lg x 函数运算性质以及直
线斜率应用,题目较综合.判断④不正确也可直接利 用函数图象的上凸性作结论.
12
定 义 在 R 上 的 函 数 f (x) 满 足 : 如 果 对 任 意 x , x R 都 有 12
f
(
x 1
x 2
)
1
f (x ) f (x ) 则称函数 f (x) 是 R 上的凹函数,已知二次函

函数的凹凸性和拐点

函数的凹凸性和拐点

函数的凹凸性和拐点
函数的凹凸性和拐点是微积分中的重要概念,用于研究函数图像的形态和性质。

下面
将分别对凹凸性和拐点进行详细介绍。

一、凹凸性
在数学中,一个函数在某一区间上的凹凸性是指函数图像在该区间上是向上凸或向下凸。

几何上,一个曲线在某点处向上凸表明曲线凹向上方,而向下凸则表明曲线凹向下方。

凹凸性的判断方法是通过函数的二阶导数来进行。

如果函数的二阶导数大于零,则函
数在该点处向上凸;反之,如果函数的二阶导数小于零,则函数在该点处向下凸。

函数的图像如果是向上凸的,则可以将其形容为“形如碗状”,反之则形容为“形如
山状”或“钩状”。

在具体的分析中,凹凸性可作为确定函数的最值和极值的重要参考。

二、拐点
拐点是指函数图像上的一点,该点处曲线的凹凸性发生变化。

在拐点之前,函数图像
呈现一种凹凸性,而在拐点之后,则呈现相反的凹凸性。

因此,拐点也被称为凹凸性变化点。

拐点的判断方法是通过函数的二阶导数进行判断。

如果函数在某一点处的二阶导数发
生了从正数变成负数,或从负数变成正数的变化,则该点即为拐点。

在实际分析中,拐点
可用于确定函数的折线形态,以及确定函数的最值和极值。

综上所述,函数的凹凸性和拐点是微积分中的重要概念,用于研究函数图像的性质和
形态。

凹凸性可以帮助我们更好地理解函数的最值和极值,而拐点则可以帮助我们确定函
数的折线形态,以及确定函数的最值和极值。

在实际运用中,我们应该结合具体问题进行
分析,寻找函数的凹凸性和拐点,以便更好地解决问题。

《曲线凹凸与拐点》课件

《曲线凹凸与拐点》课件

曲线凹凸的计算方法
定义法
通过定义凹凸性,利用二阶导数正负来判断。如果二阶导数大于0,则曲线在相 应区间内是凹的;如果二阶导数小于0,则曲线在相应区间内是凸的。
切线法
通过切线斜率判断。在某点处做切线,如果切线斜率在相邻两点之间由负变正, 则该点为拐点。
拐点的计算方法
定义法
根据拐点的定义,即函数在某点的左 右极限不相等,来确定拐点。
具体应用
在气候学中,通过研究气候数据的曲线凹凸性,可以更好地理解气候变化的规律和趋势 。在金融学中,通过研究股票价格的拐点,可以更好地把握股票市场的变化和趋势。
导数符号变化法
通过判断函数在某点附近左右两 侧导数的符号变化来确定是否为
拐点。
二阶导数测试法
通过判断二阶导数的符号变化来确 定是否为拐点。如果二阶导数在某 点处从正变为负或从负变为正,则 该点为拐点。
切线方向变化法
通过观察曲线在某点处的切线方向 是否发生变化来确定是否为拐点。 如果切线方向发生改变,则该点为 拐点。
导数法
通过求函数的二阶导数,并令其为0 ,解出相应的x值,再判断该点是否为 拐点。
曲线凹凸与拐点计算中的注意事项
初始判断
在计算前应先大致判断 函数的形态,以便选择
合适的计算方法。
精确度要求
对于实际应用,应考虑 计算结果的精确度,选 择合适的数学工具和算
法。
拐点判断
在确定拐点时,应同时 考虑左右极限,避免误
拐点是曲线上的一个点,在该点处曲线的切线方向发变符号
在拐点处,曲线的导数由正变负或由 负变正。
拐点处凹凸性改变
拐点处切线方向变化
在拐点处,曲线的切线方向发生变化 ,由上升变为下降或由下降变为上升 。

曲线的凹凸性与拐点

曲线的凹凸性与拐点

曲线的凹凸性与拐点在数学中,曲线的凹凸性以及拐点对于研究曲线的性质和变化具有重要的意义。

凹凸性可以帮助我们理解曲线的弯曲程度以及变化趋势,而拐点则是曲线上的一个特殊点,表示曲线在该处发生方向的变化。

本文将介绍曲线的凹凸性与拐点的概念,以及它们在数学和其他实际应用中的重要性。

一、凹凸性的定义与判断凹凸性是描述曲线在某一区间上的弯曲程度的性质。

我们有以下两个定义来判断曲线的凹凸性:1. 凹曲线:如果曲线上的任意两点连线的下方部分都在曲线上方,则称该曲线为凹曲线。

换句话说,如果对于曲线上的任意两点A和B,A和B连线的下方不与曲线相交,则该曲线为凹曲线。

2. 凸曲线:如果曲线上的任意两点连线的下方部分都在曲线下方,则称该曲线为凸曲线。

换句话说,如果对于曲线上的任意两点A和B,A和B连线的下方不与曲线相交,则该曲线为凸曲线。

凹凸性的判断可以通过曲线的二阶导数来进行。

如果曲线的二阶导数大于0,则曲线为凹曲线;如果二阶导数小于0,则曲线为凸曲线。

而当二阶导数恰好为0时,需要考虑其他方法。

二、拐点的定义与判断拐点是曲线上的一个特殊点,表示曲线在该点处方向发生改变。

我们有以下定义来判断曲线是否存在拐点:1. 拐点:如果曲线在某一点处既没有切线也没有二阶切线(即曲线在该点处没有明确的方向),则称该点为拐点。

判断曲线是否存在拐点可以通过曲线的三阶导数来进行。

如果曲线的三阶导数存在不连续的点,则该点即为拐点。

值得注意的是,如果曲线的三阶导数的符号在该点的左右两侧不同,也可以判断该点为拐点。

三、凹凸性与拐点的应用与意义凹凸性和拐点不仅仅在数学领域中有重要性,还被广泛应用于其他学科和实际问题中,如物理学、经济学等。

在物理学中,凹凸性可以帮助解释某一物体的形状和弯曲程度,例如在光学中,曲率半径越小的曲面会导致光线的弯曲程度越大。

因此,通过研究光线在曲面上的传播可以利用凹凸性来分析光的折射和反射现象。

在经济学中,凹凸性可以用来描述供需曲线的变化趋势。

函数的凹凸性与拐点的判定

函数的凹凸性与拐点的判定

函数的凹凸性与拐点的判定在微积分中,函数的凹凸性与拐点是非常重要的概念。

凹凸性描述了函数曲线的弯曲情况,而拐点则表示曲线的方向发生改变的点。

凹凸性和拐点的判定对于函数的研究和应用具有重要作用。

本文将介绍函数凹凸性和拐点的概念,并讨论如何判定和应用。

一、函数的凹凸性函数的凹凸性是指函数曲线的弯曲情况。

我们可以通过函数的二阶导数来判断函数的凹凸性。

1. 定义设函数f(x)在区间I上具有二阶导数,如果对于任意x1和x2∈I,有f''(x)>0,则函数f(x)在区间I上是凹函数;如果对于任意x1和x2∈I,有f''(x)<0,则函数f(x)在区间I上是凸函数。

2. 凹凸点根据函数的凹凸性质,我们可以定义凹凸点。

若对于函数f(x)的定义域I上的某一点x0,存在一个区间(x0-δ,x0+δ),在该区间内f(x)是凹函数,那么称点(x0,f(x0))是函数f(x)的一个凹点;若在区间(x0-δ,x0+δ)内f(x)是凸函数,则称点(x0,f(x0))是函数f(x)的一个凸点。

二、拐点的判定拐点表示函数曲线的方向发生改变的点。

我们可以通过函数的二阶导数来判断拐点。

1. 定义设函数f(x)在区间I上具有二阶导数。

如果在某一点x0∈I处,f''(x0)=0,并且f''(x0-)和f''(x0+)的符号相反,则称点(x0,f(x0))是函数f(x)的一个拐点。

2. 拐点的性质拐点具有以下性质:- 在拐点处,函数的凹凸性发生改变,由凸转为凹或由凹转为凸。

- 拐点不一定存在,只有当函数曲线的凹凸性发生改变时,才会有拐点。

- 如果函数曲线有k个拐点,那么至多有k+1个不同的凹凸区间。

三、判定和应用判定函数的凹凸性和拐点的方法可以通过以下步骤进行。

1. 求导数首先,求出函数f(x)的一阶和二阶导数f'(x)和f''(x)。

函数的凹凸性与拐点

函数的凹凸性与拐点

函数的凹凸性与拐点函数的凹凸性和拐点是数学中的重要概念,它们可以帮助我们了解函数的特性和性质。

本文将介绍函数的凹凸性和拐点,并解释它们的意义和用法。

一、函数的凹凸性函数的凹凸性是指函数图像在某个区间上是否呈凹曲面或凸曲面。

具体来说,对于函数f(x)在区间I上连续二阶可导,若对于任意的x1,x2∈I且x1<x2,有f''(x)>0,则函数在区间I上是凹函数;若对于任意的x1,x2∈I且x1<x2,有f''(x)<0,则函数在区间I上是凸函数。

凹凸性可以从图像上观察得出。

对于凹函数而言,在函数图像的任意两点之间,曲线位于连接两点的弦的上方。

相反,凸函数在任意两点之间,曲线位于连接两点的弦的下方。

函数的凹凸性在数学和经济学中有广泛的应用。

在最优化问题中,我们常常需要求一个函数的极值点,而函数的凹凸性可以帮助我们判断极值点的性质。

此外,在经济学中,凸函数常用于描述生产函数、效用函数等经济关系。

二、拐点拐点是指函数图像由凹转为凸,或由凸转为凹的点。

具体来说,对于函数f(x)在区间I上连续二阶可导,若存在一个点c∈I,使得f在c 的左侧是凹函数,在c的右侧是凸函数(或反过来),则称c是函数f 的一个拐点。

拐点可以用来确定函数曲线上的转折点。

在拐点处,函数曲线的凹凸性发生变化,这也意味着函数的斜率也会发生变化。

拐点的确定可以通过求函数的二阶导数来实现。

当函数的二阶导数存在,且在某个点c处二阶导数为零,此时有可能存在拐点。

拐点的概念在工程、经济学和物理学等领域都有应用。

在工程中,拐点可以帮助我们确定材料的断裂点;在经济学中,拐点可以帮助我们分析市场供需关系的变化;在物理学中,拐点可以帮助我们理解物体的运动和变形特性。

综上所述,函数的凹凸性和拐点是数学中重要的概念,它们可以帮助我们分析函数的特性,并在实际问题中得到应用。

通过研究函数的凹凸性和拐点,我们可以更好地理解和运用数学知识。

《高等数学》曲线的凹凸性与拐点

《高等数学》曲线的凹凸性与拐点

曲线的凹凸性与拐点上一节我们利用导数研究了函数的单调性和极值。

函数的单调性反映在图形上,就是曲线的上升和下降,但曲线在上升或下降的过程中还有一个弯曲方向的问题。

例如,图143--中有两条曲线弧,虽然它们都是上升的,但图形却有显著不同,ACB 是向上凸的曲线弧,而ADB 是向上凹的曲线弧,它们的凹凸性不同,接下来我们就来研究曲线的凹凸性及其拐点。

一、曲线凹凸性的定义从几何上看,在有的曲线弧上,如果任取两点,则联结着两点间的弦总位于这两点间的弧段的上方(图)(243a --),而有的曲线弧,则正好相反(图)(243b --)。

曲线的这种性 图143-- 质就是曲线的凹凸性 。

因此曲线的凹凸性可以用联结曲线弧上任意两点的弦的中点与曲线弧上相应点(即具有相同横坐标的点)的位置关系来描述,下面给出曲线凹凸性的定义。

)(a )(b图243--定义1 设)(x f 在区间I 连续,若对于I 上任意两点1x 和2x ,恒有2)()()2(2121x f x f x x f +<+ 则称)(x f 在I 上的图形是(向上)凹的(或凹弧);若恒有2)()()2(2121x f x f x x f +>+ 则称)(x f 在I 上的图形是(向上)凸的(或凸弧)。

一般情况下,在函数的整个定义域内,其曲线的凹凸性并不一致。

通常把连续曲线上凹弧与凸弧的分界点称为曲线的拐点。

二、曲线凹凸性的判定曲线的凹凸性有明显的几何特征。

当x 逐渐增加时,对于凹曲线,其上每一点的切线斜率是逐渐增加的(如图)(343a --),即导函数)(x f '是单调增加函数;而对于凸曲线,其上每一点的切线斜率是逐渐减少的(如图)(343b --),即导函数)(x f '是单调减少函数。

与此几何特征相对应,有下述判断曲线凹凸性的定理。

)(a )(b图343--定理1 设函数)(x f 在I 内具有一阶和二阶导数,若在I 内 (1)0)(>''x f ,则曲线)(x f 在I 上的图形是凹的; (2)0)(<''x f ,则曲线)(x f 在I 上的图形是凸的。

曲线的凹凸性和拐点和图象课件公开课获奖课件

曲线的凹凸性和拐点和图象课件公开课获奖课件

令 ( x) 0, 得特殊点 x 1, x 1.
lim ( x) lim
1
x2
e 2 0,
x
x 2
得水平渐近线 y 0.
第19页
列表确定函数升降区间,凹凸区间及极值点与拐点:
x (,1) 1 (1,0) 0 (0,1) 1 (1,)
( x)
0
( x) ( x)
0
拐点
(1, 1 ) 2e
f (x ) 1
f
(
x 2
)
,
那末称
f (x)
2
2
在 I 上的图形是(向上)凸的(或凸弧).
第4页
y
y f (x) B
y y f (x)
B
A
oa
bx
f (x) 递增 y 0
A oa
f ( x) 递减
bx
y 0
定理2 如果 f (x) 在 [a,b] 上连续,在 (a,b)内具有 一阶和二阶导数 ,若在 (a,b)内 (1) f (x) 0,则 f (x) 在 [a,b] 上的图形是凹的 ; (2) f (x) 0,则 f (x) 在 [a,b] 上的图形是凸的 .
4x
3
1 x

令 y 0 ,

x
1 4
,又当
x
0
时,y
不存在.列表考察 y 的符号:
第11页
x (,0) 0
y

不存在
(0, 1 ) 4

1
(1 ,)
4
4


曲线y ︶
拐点

拐点

由上表可知,
曲线在
(,0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 1 )如 果 f(x ) 0 ,x (a ,b ), 则曲线 y f ( x) 在[a, b] 上是凹的;
( 2 )如 果 f(x ) 0 ,x (a ,b ), 则曲线 y f ( x) 在[a, b] 上是凸的. (证略)
拐点的计算: 1、找出二阶导数为零的点或二阶导数不存在的点; 2、若它两侧的二阶导数值异号,则为拐点;
不等式证明的方法:
1、拉格朗日中值定理; 2、函数的单调性、极值; 3、函数的凹凸性;
16
作业:
P134 3
17
2
定理(极值的第一充分条件)
y
(1) 若x(x0,x0)时,f(x)0,
x(x0,x0)时,f(x)0, o
则x0为极大值点;
y
x0
x
(2) 若x(x0,x0)时,f(x)0,
x(x0,x0)时,f(x)0, o x 0
x
则x0为极小值点;
(3)如 果 在 上 述 两 个 区 间 内 f(x)同 号 ,则 x0 不 是 极 值 点 .
o x1
x1 x2 x2
2
xo
f ( x1 x2 ) 2
yf(x)
f(x1) f(x2) 2
凸 (下凹、上凸)
x1 x1 x2 x2
x
2
图形上任意弧段位于 所张弦的下方:凹
图形上任意弧段位于 所张弦的上方:凸
f(x1x2) f(x1)f(x2). f(x1x2)f(x1)f(x2).
2
2
2
2
5
定义 设 f(x)在 (a,b )内连 ,如续 果 (a,b )内 对任
两x1 点 ,x2, x1x2,恒有
f(x1x2)f(x1)f(x2),
2 ()
2
则 称 f( x ) 在 ( a ,b ) 内 的 图 形 是 凹 的 (凸的).
y
yf(x)
y yf(x)
o x1
x2 x
o x1
x2 x
6
第五节 函数的凹凸性与拐点
在绘制函数图像时, 仅知道函数的单调性(函数是上升 还是下降)是不够的, 还需知道曲线的弯曲方向.
曲线的弯曲方向也是曲线的基本特性之一.
问题:如何研究曲线的凹凸性? y
曲线的凹凸 性
o
x
1
一、曲线凹凸性的定义
y
yf(x)
y
f(x1) f(x2)
2
f ( x1 x2 )
凹(上2 凹、下凸)

x y
(,
1 )
1
( 1 ,0)
55
5
0 (0, )
0 不存在
y
拐点 非拐点
f(x)的 凹 区 间 为 ( 1
5
,
+
);凸区间为(
,
1 5
].
拐点: (1,6 1 ).
5 5 3 25
13
例4 求曲线 y3 x的拐.点

y
1
x
2 3
,
y
2
x
5 3
,
(x0)
3
9
x0是不,可 y,y均 导不 点 . 存在
解D(,).y52x3
2
1
x3
,
33
y10x13 2x43 (2 5 x 1) ,
99
93 x4
令y 0, x 1 ,又f(0)不存在 .
5
x
(, 1) 1 ( 1 ,0)
55
5
0 (0, )
y
0 不存在
y
拐点 非拐点
12
例3 求 曲 线 y (x 1 )3x 2 的 凹 凸 区 间 与 拐 点 .
二、曲线凹凸性的判定
当曲线是凹的时, f (x)单调增加. 当曲线是凸的时, f (x)单调减少. 曲线凹凸性发生改变的点称为曲线的拐点. 研究曲线的凹凸性与拐点问题相当于研究一阶导函数
f (x) 的单调性与极值问题.
拐点


7
定理(曲线凹凸性的判别法)
设函数 f ( x) 在[a, b] 上连续,在 (a, b) 内二阶可导
2
22
令f(t)tlnt,则 f(t)在 (0, )上 连 续 .
f(t)lnt1,f ( t ) 1 0t(0,) t
从 而 f(t)在 (0 , )上 是 凹 的 . 由函数凹性定义,
即 xfln (xx ) y fl(n yy )(fx ( xy)yl)n(xy) 得证.
2 2
22 2
15
3
x (,0)
0
(0, 23)
2 3
(23,)
f (x) 0
0
f (x)
拐点
拐点
f(x)的 凹 区 间 为 (, 0), ( 2 , +)
凸区间为 [ 0 , 2 ] 3
3
拐 点 : (0,1), (23,1127).
11
例3 求 曲 线 y (x 1 )3x 2 的 凹 凸 区 间 与 拐 点 .
Ox
点(0,0)是曲线的拐点. 常见错误: x0是 曲 线 的 拐 点 .
拐点是平面点,有两个坐标.
9
例2 求 曲 线 y 3 x 4 4 x 3 1 的 凹 凸 区 间 及 拐 点 .
解 D(,).
y1x 2 31x 2 2,
y36x224x
36x(x
2 )
.
令y0,
得x1
0,
x2
2. 3
但 (,在 0 ) 内 ,y 0 , 在 (0 ,) 内 ,y 0 ,
点 (0,0)是曲 y3线 x的拐 . 点
14
利用凹凸性证明不等式
例5 证 明 : xln x ylny (x y )ln (x y) 2
(x0,y0,xy)
证 xlnxylny(xy)ln(xy)
2
xlnxylny(xy)ln(xy)
极值点是函数单调性发生改变的点, 即为单调区间 的分界点.
4
定理3(极值的第二充分条件)
设 函 数 f ( x )在 它 的 驻 点 x 0处 二 阶 可 导 , 则
(1)如果f(x0)0,则x0 为极小值点; (2)如果f(x0)0,则x0 为极大值点; (3) 如果f(x0)0,则无法判断. 当第二充分条件失效时, 需用第一充分条件或定义法 进行判断.
若同号则不是拐点.
注意:拐点是平面上的点, 要写出纵坐标.
8
例1 判 断 曲 线 y x 3 的 凹 凸 性 , 并 求 拐 点 . 解 D(,). y 3 x 2 , y 6x,
当x0时,y 0,
曲 线 在 ( ,0 ]上 是 凸 的 ;
y
y x3
当x0时,y 0,
曲 线 在 [0 , )上 是 凹 的 ;
相关文档
最新文档