函数的凹凸性与拐点

合集下载

二次函数的拐点与凹凸性判断

二次函数的拐点与凹凸性判断

二次函数的拐点与凹凸性判断二次函数是一种常见的数学函数形式,其一般表示形式为y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

二次函数的图像通常呈现出抛物线的形状,而拐点和凹凸性是抛物线特征之一。

在本文中,将讨论如何判断二次函数的拐点以及凹凸性。

一、拐点的判断拐点也被称为转折点,是指函数曲线由凸向上转为凸向下,或由凸向下转为凸向上的点。

对于二次函数y = ax^2 + bx + c,其拐点可以通过函数的导数来确定。

首先,我们需要求出二次函数的导数。

二次函数的导数是一次函数,其一般表示形式为y' = 2ax + b。

由于二次函数是曲线而非直线,因此存在拐点的情况。

当导数y' = 0时,表示函数的斜率为零,即函数出现了拐点。

那么我们可以通过求导数y' = 0的解来确定二次函数的拐点。

假设y' = 2ax + b = 0,则有x = -b / (2a)。

这样,我们就获得了二次函数的拐点横坐标x值。

将该x值代入原函数中,即可求得拐点的纵坐标y值。

通过上述步骤,我们可以准确地确定二次函数的拐点坐标。

需要提醒的是,在判断二次函数的拐点时,应先求出导数,再求导数为零时的解,最后代入求得拐点坐标。

二、凹凸性的判断凹凸性是指函数图像曲线的凹凸形状,即函数图像的上凸与下凸。

同样地,二次函数的凹凸性可以通过二次函数的导数来判断。

凹凸性与导数的正负相关。

当导数y' > 0时,函数图像为凸向上的抛物线;当导数y' < 0时,函数图像为凸向下的抛物线。

因此,我们只需求出二次函数的导数,并判断导数的正负性即可确定二次函数的凹凸性。

需要注意的是,二次函数的凹凸性在拐点处发生改变。

在拐点左侧,二次函数的凹凸性与导数的正负性一致;而在拐点右侧,二次函数的凹凸性与导数的正负性相反。

由于凹凸性与导数的正负有关,若要确定二次函数的凹凸性,可按照以下步骤进行:1. 求出二次函数的导数y'。

函数的凹凸性和拐点

函数的凹凸性和拐点

函数的凹凸性和拐点
函数的凹凸性和拐点是微积分中的重要概念,用于研究函数图像的形态和性质。

下面
将分别对凹凸性和拐点进行详细介绍。

一、凹凸性
在数学中,一个函数在某一区间上的凹凸性是指函数图像在该区间上是向上凸或向下凸。

几何上,一个曲线在某点处向上凸表明曲线凹向上方,而向下凸则表明曲线凹向下方。

凹凸性的判断方法是通过函数的二阶导数来进行。

如果函数的二阶导数大于零,则函
数在该点处向上凸;反之,如果函数的二阶导数小于零,则函数在该点处向下凸。

函数的图像如果是向上凸的,则可以将其形容为“形如碗状”,反之则形容为“形如
山状”或“钩状”。

在具体的分析中,凹凸性可作为确定函数的最值和极值的重要参考。

二、拐点
拐点是指函数图像上的一点,该点处曲线的凹凸性发生变化。

在拐点之前,函数图像
呈现一种凹凸性,而在拐点之后,则呈现相反的凹凸性。

因此,拐点也被称为凹凸性变化点。

拐点的判断方法是通过函数的二阶导数进行判断。

如果函数在某一点处的二阶导数发
生了从正数变成负数,或从负数变成正数的变化,则该点即为拐点。

在实际分析中,拐点
可用于确定函数的折线形态,以及确定函数的最值和极值。

综上所述,函数的凹凸性和拐点是微积分中的重要概念,用于研究函数图像的性质和
形态。

凹凸性可以帮助我们更好地理解函数的最值和极值,而拐点则可以帮助我们确定函
数的折线形态,以及确定函数的最值和极值。

在实际运用中,我们应该结合具体问题进行
分析,寻找函数的凹凸性和拐点,以便更好地解决问题。

函数的凹凸性与拐点的定义与求法

函数的凹凸性与拐点的定义与求法

f ′′( x0 ) = 0, 而 f ′′′( x0 ) ≠ 0 , 那末 ( x0 , f ( x0 )) 是曲 线 y = f ( x ) 的拐点.
例3 求曲线 y = sin x + cos x ([0,2π ]内) 的拐点. 解 y′ = cos x − sin x , y′′ = − sin x − cos x ,
注意:拐点处的切线必在拐点处穿过曲线 注意 拐点处的切线必在拐点处穿过曲线. 拐点处的切线必在拐点处穿过曲线 2.拐点的求法 2.拐点的求法
( 理2 定 2 如 f (x)在 x0 − δ , x0 + δ )内 在 阶 理 果 存 二 导
( x0 , f ( x0 ))是拐点的必要条件是f "( x0 ) = 0. 数则 , 点
一、曲线凹凸的定义
问题:如何研究曲线的弯曲方向 问题 如何研究曲线的弯曲方向? 如何研究曲线的弯曲方向
y
C
B
A
o
x
y
y = f (x)
y
y = f (x)
o
x1
x2 x
o
x1
x2
x
图形上任意弧段位 于所张弦的下方
图形上任意弧段位 于所张弦的上方
( 定义 设f ( x)在 a, b)内连续, 如果对(a, b)内任意 x1 + x2 f ( x1 ) + f ( x2 ) )< , 两点x1, x2 , 恒有 f ( 2 2 ( 那末称 f ( x)在 a, b)内的图形是凹的; 如果对 a, b)内任意两点 x1, x2 , 恒有 ( x1 + x2 f ( x1 ) + f ( x2 ) f( )> , 2 2 ( 那末称 f ( x)在 a, b)内的图形是凸的;

函数的凹凸性与拐点的判定

函数的凹凸性与拐点的判定

函数的凹凸性与拐点的判定在微积分中,函数的凹凸性与拐点是非常重要的概念。

凹凸性描述了函数曲线的弯曲情况,而拐点则表示曲线的方向发生改变的点。

凹凸性和拐点的判定对于函数的研究和应用具有重要作用。

本文将介绍函数凹凸性和拐点的概念,并讨论如何判定和应用。

一、函数的凹凸性函数的凹凸性是指函数曲线的弯曲情况。

我们可以通过函数的二阶导数来判断函数的凹凸性。

1. 定义设函数f(x)在区间I上具有二阶导数,如果对于任意x1和x2∈I,有f''(x)>0,则函数f(x)在区间I上是凹函数;如果对于任意x1和x2∈I,有f''(x)<0,则函数f(x)在区间I上是凸函数。

2. 凹凸点根据函数的凹凸性质,我们可以定义凹凸点。

若对于函数f(x)的定义域I上的某一点x0,存在一个区间(x0-δ,x0+δ),在该区间内f(x)是凹函数,那么称点(x0,f(x0))是函数f(x)的一个凹点;若在区间(x0-δ,x0+δ)内f(x)是凸函数,则称点(x0,f(x0))是函数f(x)的一个凸点。

二、拐点的判定拐点表示函数曲线的方向发生改变的点。

我们可以通过函数的二阶导数来判断拐点。

1. 定义设函数f(x)在区间I上具有二阶导数。

如果在某一点x0∈I处,f''(x0)=0,并且f''(x0-)和f''(x0+)的符号相反,则称点(x0,f(x0))是函数f(x)的一个拐点。

2. 拐点的性质拐点具有以下性质:- 在拐点处,函数的凹凸性发生改变,由凸转为凹或由凹转为凸。

- 拐点不一定存在,只有当函数曲线的凹凸性发生改变时,才会有拐点。

- 如果函数曲线有k个拐点,那么至多有k+1个不同的凹凸区间。

三、判定和应用判定函数的凹凸性和拐点的方法可以通过以下步骤进行。

1. 求导数首先,求出函数f(x)的一阶和二阶导数f'(x)和f''(x)。

第三章第三节函数的凹凸性与拐点及函数作图

第三章第三节函数的凹凸性与拐点及函数作图

x
f ( x )
(,0)
0 0


(0,1)
f ( x)
f ( x)

极大值2


0
拐点(1, )
4 3
1
(1,2)
2
(2,)



极小值2 3
0

(4)无渐近线 (5) 与 y 轴交点(0,2) (6) 作图,如右图。
y
2
0
1
2
x
例5 作函数 y e
x2
的图形
(, ) 解 (1)函数定义域:
x
y
y
(,2)


2 0
(2,2) 拐点
(2,ห้องสมุดไป่ตู้)


曲线在区间( ,2) 是凸的,在区间 ( 2,) 内是凹的,拐点 (2,2) ,如下图。
y
0
1 2
x
二、曲线的渐近线
定义3 曲线 y f ( x)上的动点沿曲线无限远离 原点时,如果动点与定直线L的距离趋于零,则称 L为曲线的渐近线。 曲线的渐近线可分为水平、铅直和斜渐近线。 1、水平渐近线
, lim arctan x
x

2
,
及 y

2
y
是曲线的两条水平渐近线。

2
0


2
x
2、铅直渐近线 如果函数 y f ( x) 有 lim f ( x) 或 lim f ( x) , 则称直线 x a是曲线 y f ( x) 的一条铅直渐近线。
1 例3 求曲线 y 的水平和铅直渐近线。 x2
定理 设函数 y f ( x) 在区间[a,b]内具有二阶导 数, (1) 如果在区间[a, b]内 f ( x) 0 ,则曲线在 区间[a, b]内是凹的; (2) 如果在区间[a, b]内 f ( x) 0 ,则曲线在 区间[a, b]内是凸的; 定义2 连续曲线上凹弧和凸弧的分界点称为

函数的凹凸性与拐点

函数的凹凸性与拐点
5
课程思政
课程思政:奥运精神 播放视频《谷爱凌自由式滑雪夺冠》
播放视频
曲线的凹凸性正如滑雪运动员在跳台上滑过的优美曲线。北京2022 年冬奥会自由式滑雪女子大跳台决赛,中国选手谷爱凌在最后一跳中 首次跳出了1620的超高难度,夺得金牌! 赛后,谷爱凌表示,采取超 高难度动作,想要挑战自己,并不是为了赢对手,展示自己的体育精 神。谷爱凌希望自己的精神,让大家能够体会体育精神,做到打破和 突破,成就最好的自己。我们在学习和生活中也应该向她学习不屈不 挠的奥运精神,突破自己,展现自我。
凹的
99
2凹凸性的定理 练习2 求函数y x4的凹凸性
1100
谢谢观看
2凹凸性的定理
定理 设函数 y f (x) 在 (a,b)内有二阶导数。 那么(1)若在 (a,b) 内 f (x) 0,则曲线在 (a,b) 内上凹。 (2)若在 (a,b) 内 f (x) 0,则曲线在 (a,b)内下凹。
7
2凹凸性的定理
拐点:如果点P的两侧,函数的凹凸性不一样,那么 这样的点P叫做函数的拐点。
8
2凹凸性的定理
例2 求曲线 y 3x4 4x3 1的拐点及凹、凸的区间
解: D : (,)
y 12x3 令y 0,
12x2 , 得 x1
0,
y x2
36x(x 2. 3
2). 3
x
(,0)
0
(0, 23)
2 3
(
2 3
,)
f (x)
00Biblioteka 拐点拐点f (x)
凹的
0,1 凸的
(2,11) 3 27
曲线的凹凸性与拐点
数学教研室
目录
CONTENT

函数的凹凸性与拐点

函数的凹凸性与拐点
则 x0 为极大值点;
o
y
x0
x
(2) 若 x ( x0 , x0 ) 时, f ( x) 0 ,

x ( x0 , x0 ) 时, f ( x) 0 , o
x0

x
则 x0 为极小值点;
(3) 如果在上述两个区间内 f ( x) 同号,则x0 不是极值点.
极值点是函数单调性发生改变的点, 即为单调区间 的分界点.
f ( x1 x2 )
凹(上2 凹、下凸)
o x1 x1 x2 x2
2
xo
f ( x1 x2 ) 2
y f (x)
f ( x1 ) f ( x2 ) 2
凸 (下凹、上凸)
x1 x1 x2 x2
x
2
图形上任意弧段位于 所张弦的下方:凹
图形上任意弧段位于 所张弦的上方:凸
f ( x1 x2 ) f (x1) f (x2 ) . f ( x1 x2 ) f (x1) f (x2 ) .
令y 0,

x1
0,
x2

2. 3
3
x
(,0)
0
(0, 2 3)
2 3
(23 ,)
f ( x)
0
0

f ( x) 拐点
拐点

f (x)的凹区间为(, 0), ( 2 , +)
凸区间为 [0, 2] 3
3
拐点:(0,1),(2 3 ,1127).
11
例3 求曲线 y (x 1) 3 x2 的凹凸区间与拐点.
y
拐点 非拐点
12
例3 求曲线 y (x 1) 3 x2 的凹凸区间与拐点.

函数的凹凸性与拐点

函数的凹凸性与拐点

图1函数的单调性可用函数的一阶导函数来判定,对于同样的递增函数有着不同的增法,如向上凸的增或凹的增,那么对于这两种不同的增法我们如何刻画呢?一、曲线的凹凸与拐点1.曲线的凹凸定义和判定法从图1可以看出曲线弧ABC 在区间()c a ,内是向下凹入的,此时曲线弧ABC 位于该弧上任一点切线的上方;曲线弧CDE 在区间()b c ,内是向上凸起的,此时曲线弧CDE 位于该弧上任一点切线的下方.关于曲线的弯曲方向,我们给出下面的定义:定义1 如果在某区间内的曲线弧位于其任一点切线的上方,那么此曲线弧叫做在该区间内是凹的;如果在某区间内的曲线弧位于其任一点切线的下方,那么此曲线弧叫做在该区间内是凸的.例如,图1中曲线弧ABC 在区间()c a ,内是凹的,曲线弧CDE 在区间()b c ,内是凸的. 由图1还可以看出,对于凹的曲线弧,切线的斜率随x 的增大而增大;对于凸的曲线弧,切线的斜率随x 的增大而减小.由于切线的斜率就是函数()x f y =的导数,因此凹的曲线弧,导数是单调增加的,而凸的曲线弧,导数是单调减少的.由此可见,曲线()x f y =的凹凸性可以用导数()x f '的单调性来判定.而()x f '的单调性又可以用它的导数,即()x f y =的二阶导数()x f ''的符号来判定,故曲线()x f y =的凹凸性与()x f ''的符号有关.由此提出了函数曲线的凹凸性判定定理:定理1 设函数()x f y =在()b a ,内具有二阶导数.(1)如果在()b a ,内,()x f ''>0,那么曲线在()b a ,内是凹的;(2)如果在()b a ,内,()x f ''<0,那么曲线在()b a ,内是凸的. x y o ()y f x =A B x yo ()y f x =A B图2例1 判定曲线3x y =的凹凸性.2.拐点的定义和求法定义2 连续曲线上凹的曲线弧和凸的曲线弧的分界点叫做曲线的拐点. 定理2(拐点存在的必要条件) 若函数()x f 在0x 处的二阶导数存在,且点()()00,x f x 为曲线()x f y =的拐点,则().00=''x f我们知道由()x f ''的符号可以判定曲线的凹凸.如果()x f ''连续,那么当()x f ''的符号由正变负或由负变正时,必定有一点0x 使()0x f ''=0.这样,点()()00,x f x 就是曲线的一个拐点.因此,如果()x f y =在区间()b a ,内具有二阶导数,我们就可以按下面的步骤来判定曲线()x f y =的拐点:(1) 确定函数()x f y =的定义域;(2) 求()x f y ''='';令()x f ''=0,解出这个方程在区间()b a ,内的实根;(3) 对解出的每一个实根0x ,考察()x f ''在0x 的左右两侧邻近的符号.如果()x f ''在0x 的左右两侧邻近的符号相反,那么点()()00,x f x 就是一个拐点,如果()x f ''在0x 的左右两侧邻近的符号相同,那么点()()00,x f x 就不是拐点.例2 求曲线233x x y -=的凹凸区间和拐点.解 (1)函数的定义域为()+∞∞-,;(2)()1666,632-=-=''-='x x y x x y ;令0=''y ,得1=x ;(3)列表考察y ''的符号(表中“∪”表示曲线是凹的,“∩” 表示曲线是凸的): x()1,∞- 1 ()+∞,1 y ''- 0 + 曲线y ∩ 拐点 ()2,1- ∪由上表可知,曲线在()1,∞-内是凸的,在()+∞,1内是凹的;曲线的拐点为()2,1-.例3 已知点(1,3)为曲线32y ax bx =+的拐点,求,a b的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16 次理论课教学安排
图1
2.4导数的应用----曲线的凹凸与拐点
课题: 曲线的凹凸与拐点
目的要求:理解曲线凹凸性的概念、掌握判断函数图形的凹凸性、求函数图形
的拐点等方法。

重、难点:判断函数图形的凹凸性、求函数图形的拐点 教学方法:讲练结合 教学时数:1课时 教学进程:
函数的单调性可用函数的一阶到函数来判定,对于同样的递增函数有着不同的增法,如向上凸的增或凹的增,那么对于这两种不同的增法我们如何刻画那?
一、曲线的凹凸与拐点
1.曲线的凹凸定义和判定法
从图1可以看出曲线弧ABC 在区间()c a ,内是向下凹入的,此时曲线弧ABC 位于该弧上任一点切线的上方;曲线弧CDE 在区间()b c ,内是向上凸起的,此时曲线弧CDE 位于该弧上任一点切线的下方.关于曲线的弯曲方向,我们给出下面的定义:
定义1 如果在某区间内的曲线弧位于其任一点切线的上方,那么此曲线弧叫做在该区间内是凹的;如果在某区间内的曲线弧位于其任一点切线的下方,那么此曲线弧叫做在该区间内是凸的.
例如,图1中曲线弧ABC 在区间()c a ,内是凹的,曲线弧CDE 在区间()b c ,内是凸的.
由图1还可以看出,对于凹的曲线弧,切线的斜率随x 的增大而增大;对于凸
x
y
o
()
y f x =A
B
x
y
o
()
y f x =A
B
的曲线弧,切线的斜率随x 的增大而减小.由于切线的斜率就是函数()x f y =的导数,因此凹的曲线弧,导数是单调增加的,而凸的曲线弧,导数是单调减少的.由此可见,曲线()x f y =的凹凸性可以用导数()x f '的单调性来判定.而()x f '的单调性又可以用它的导数,即()x f y =的二阶导数()x f ''的符号来判定,故曲线
()x f y =的凹凸性与()x f ''的符号有关.由此提出了函数曲线的凹凸性判定定理:
定理1 设函数()x f y =在()b a ,内具有二阶导数.
(1)如果在()b a ,内,()x f ''>0,那么曲线在()b a ,内是凹的; (2)如果在()b a ,内,()x f ''<0,那么曲线在()b a ,内是凸的.
例1 判定曲线3
x y =的凹凸性.
2.拐点的定义和求法
定义2 连续曲线上凹的曲线弧和凸的曲线弧的分界点叫做曲线的拐点.
定理2(拐点存在的必要条件) 若函数()x f 在0x 处的二阶导数存在,且点
()()00,x f x 为曲线()x f y =的拐点,则().00=''x f
我们知道由()x f ''的符号可以判定曲线的凹凸.如果()x f ''连续,那么当()x f ''的符号由正变负或由负变正时,必定有一点0x 使()0x f ''=0.这样,点()()00,x f x 就是曲线的一个拐点.因此,如果()x f y =在区间()b a ,内具有二阶导数,我们就可以按下面的步骤来判定曲线()x f y =的拐点:
(1) 确定函数()x f y =的定义域;
(2) 求()x f y ''='';令()x f ''=0,解出这个方程在区间()b a ,内的实根; (3) 对解出的每一个实根0x ,考察()x f ''在0x 的左右两侧邻近的符号.如果()x f ''在0x 的左右两侧邻近的符号相反,那么点()()00,x f x 就是一个拐点,如果()x f ''在0x 的左右两侧邻近的符号相同,那么点()()00,x f x 就不是拐点.
例2 求曲线2
3
3x x y -=的凹凸区间和拐点. 解 (1)函数的定义域为()+∞∞-,;
(2)()1666,632
-=-=''-='x x y x x y ;令0=''y ,得1=x ;
(3)列表考察y ''的符号(表中“”表示曲线是凹的,“” 表示曲线
是凸的):
x
()1,∞-
1 ()+∞,1
y ''
-
0 +
曲线y
拐点
()2,1-
图2
由上表可知,曲线在()1,∞-内是凸的,在()+∞,1内是凹的;曲线的拐点为()2,1-.
例3 已知点(1,3)为曲线32
y ax bx =+的拐点,求,a b 的值。

要注意的是,如果()x f 在点0x 处的二阶导数不存在,那么点()()00,x f x 也可能是曲线的拐点.例如,函数3x y =在点()0,0处的二阶导数不存在,但是点()0,0是该函数的拐点(图2).
小结本讲内容:1.函数图形凹凸性的判断、函数图形的拐点求法。

2.描绘简单的常用函数的图形(包括水平渐近线和铅直渐近
线)。

作业: 作业册 第二章 单元练习四。

相关文档
最新文档