周期型方形信号的傅里叶级数展开

合集下载

周期信号的分解-傅里叶级数

周期信号的分解-傅里叶级数
傅里叶级数的定义基于三角函数的正 交性,即不同频率的正弦波在时间上 相互独立,且在频率域上相互正交。
傅里叶级数的性质
唯一性
01
对于给定的周期信号,其傅里叶级数展开是唯一的,即不存在
不同的
傅里叶级数展开后的项数越多,其与原信号的误差越小,即收
敛于原信号。
能量守恒
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
图像特征提取
利用傅里叶级数分析图像的频率特性,可以提取图像的特征点、线条 等结构信息,用于图像识别和目标检测。
PART 05
傅里叶级数的限制和挑战
频域混叠问题
当信号的频率成分接近时,傅里 叶级数可能无法准确分辨这些频
率成分,导致频域混叠现象。
频域混叠可能导致信号失真,影 响信号处理和通信系统的性能。
傅里叶变换、小波变换等。这些方法在处理非周期信号、时频分析等方面具有 更好的性能,为信号处理领域的发展做出了重要贡献。
PART 06
傅里叶级数的发展前景
快速傅里叶变换(FFT)算法的发展
快速傅里叶变换(FFT)算法的出现,极大地提 高了傅里叶分析的效率,使其在信号处理、图 像处理、频谱分析等领域得到广泛应用。
滤波器设计
利用傅里叶级数可以设计各种类型的滤波器,用于提取或 抑制特定频率范围的信号。这在噪声消除、图像处理等领 域有重要应用。
数字信号处理
在数字信号处理中,傅里叶级数的离散形式(离散傅里叶 变换)用于分析数字信号的频域特性,实现信号的频域分 析和滤波等操作。
PART 02

周期信号的傅里叶级数分解

周期信号的傅里叶级数分解

正弦形式
f ( t ) d 0 d n sinn 1 t n
2 2 d n an bn
d 0 a0 an d n sin n
bn d n cos n
bn n arctan a n
X

4、幅度频率特性和相位频率特性
0
T1 2 T1 2 T1
t
E 1 1 1 f (t ) [sin(1t ) sin(21t ) sin(31t ) sin(51t )] 2 3 5
X

3.奇谐函数
若波形沿时间轴平移半个周 期并相对于该轴上下反转, 此时波形并不发生变化: O T T T 2 T f (t ) f t 2 f(t)的傅氏级数偶次谐波为零,只含有奇次谐波。 a0 0 n 2,4,6时 an bn 0
利用欧拉公式
F n
1 T1 1 T1 f ( t ) cos n1 t d t j f ( t ) sinn1 t d t T1 0 T1 0 1 1 a n jbn An e j n 2 2 1 T1 1 T1 f ( t ) cos n1 t d t j f ( t ) sinn1 t d t T1 0 T1 0 1 1 a n jbn An e j n 2 2

T1
0
4 f ( t ) sinn1 t d t T1

T1
2
0
f ( t ) sinn1 t d t 0
1 1 Fn F ( n 1 ) an jbn jbn 2 2 傅里叶级数中无余弦分 量,Fn为虚函数。
X
第 15 页

周期信号的傅里叶级数分析

周期信号的傅里叶级数分析

~
T1 )或(
1 2 T1
~
1 2 T1 )
1

f (t) a0 (an cos n1t bn sin n1t) n1

f (t) c0 cn cos(n1t n ) n1

c0 cncos n1t cosn sin n1t sin n n1
T1 t0

f (t) a0 (an cos n1t bn sin n1t) n1
P

c0 2

1 2

cn 2
n1


Fn
n
2
周期信号的平均功率等于傅里叶级数展开式各谐 波分量有效值的平方和。该式称为帕塞瓦尔定理
7
三、函数的对称性与傅里叶系数的关系
1、偶函数 f t f t
2
2
15
a0

1 T1
T1
2 T1
2
f (t)dt 1 T1

2

2
Edt

E
T1
an

2 T1
T1
2 T1
2
f (t) cos(n1t)dt

2 T1

2

E
c os (n1t )dt
2

2E
T1n1

s
in(n1t
)
2

2

2E
n
sin( n1
2

2 T1
t0 T1 t0
f (t) sin(n1t)dt
4
二、指数形式的傅里叶级数

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

§3.2 周期信号的傅立叶级数展开

§3.2 周期信号的傅立叶级数展开

sin n 0tdt
0 T
t0
2
mn mn0 mn0
t0 T
sin m 0t cosn 0tdt 0
t0
mn
mn0
一、周期信号的傅立叶级数
指, 2, }
2
T
0
在区间 (t0 , t0 T)内也是一完备正交函数集。
正交性:(m 和 n 都是整数)
t0T
简称功率谱。
的变化称为信号的幅度谱。
而把各个分量的相位 n 或 n 随频率或角频率 n0 的变化
称为信号的相位谱。 幅度谱和相位谱通称为信号的频谱。 三角形式的傅立叶级数频率为非负的,对应的频谱一般称为单边谱, 指数形式的傅立叶级数频率为整个实轴,所以称为双边谱。
二、周期信号的频谱与功率谱
例 f (t) A0 A1 cos(0t 1) A2 cos(0t 2 )
=
F0
F e-j0t 1
F1e j0t
F e- j20t 2
F2e j20t
An A1 A0
幅度谱
A2
0
0 20
n0
a
n 1
相位谱
2
0 0 20
n0
b
单边谱
F1 F2
Fn 幅度谱
F0 F1 F2
0 20 0
0 20
n0
c
20 0
n
相位谱
1 2
0
0 20
n0
2
1 d
双边谱
F0 A0
F1
A1 e j1 2
f t
1
0 T/2 T
t
1
解:直接代入公式有
a0
1 T
T 0

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

周期信号的傅里叶级数表


傅里叶级数与复变函数的关系
傅里叶级数可以看作是复数域中的三角函数,即复数域中的正弦和余弦。在复数域中,正弦和余弦函数表现为复指数函数的 形式。
复数的使用使得傅里叶级数的系数可以表示为实数,从而简化了计算。此外,复数的共轭也提供了相位信息,这在信号处理 中非常重要。
傅里叶级数与小波分析的关系
小波分析是傅里叶分析的进一步发展,它提供了更灵活的时频分析工具。小波变 换可以看作是傅里叶变换的一种扩展,它允许我们在不同的频率段使用不同的基 本函数。
三角函数形式
傅里叶级数的另一种表示形式,利用三角函数来表示周期信号。
傅里叶级数的三角函数形式
01
02
03
正弦形式
余弦形式
系数
傅里叶级数的正弦函数形式,用 于表示只包含正弦波的周期信号。
傅里叶级数的余弦函数形式,用 于表示只包含余弦波的周期信号。
在傅里叶级数中,每个正弦或余 弦函数都对应一个系数,表示该 函数在周期信号中的贡献程度。
03
傅里叶级数的性质
傅里叶级数的收敛性
傅里叶级数在数学上具有收敛性,意味着它可以将一个 周期函数表示为无穷级数,每个项都是正弦或余弦函数。
收敛的速度取决于函数的特性,例如,对于具有快速衰 减的周期函数,傅里叶级数收敛得更快。
傅里叶级数的对称性
傅里叶级数的对称性质是指,对于一个周期函数,其傅里叶级数的正弦和余弦项具有对称性。 这意味着,对于一个给定的周期函数,其傅里叶级数的正弦和余弦项的系数是相同的。
周期信号的傅里叶级 数表
目录
• 傅里叶级数简介 • 周期信号的傅里叶级数表示 • 傅里叶级数的性质 • 傅里叶级数的应用实例 • 傅里叶级数与其他数学工具的关系
01

信号与系统 第三章 周期信号的傅里叶级数展开

1 T
2 n 2

T1
f (t ) dt

F ( n1 )
左边是周期信号f(t)在一个周期里的平均功率(即单位时间内的能量)
2 2 1 1 2 jnt F ( n ) e dt F ( n ) dt F ( n ) 而同时有 T 1 1 1 T1 1 T1 T1
n 1
——余弦形式
x(t ) d 0 d n sin( n1t n )
n 1
——正弦形式
(1). f (t ) a0 an cosnt bn sin nt
n1

三角函数形式
(2). f (t ) A0 An cos(nt n )
而无物理意义。将来可以看出,指数函数形式比正弦函数形式在数 学上处理起来要方便的多。
§3.2 周期矩形脉冲的谱线特点
x(t )
E

T1

t
2 2
T1
脉冲为 ,脉冲高度为E,周期为T1
1 21 1 E 1 jn1t jn1t 2 X (n1 ) T1 x(t )e dt E e dt e jn1t T1 2 T1 2 T1 jn1 jn jn 1 2E 1 1 2 2 e sin(n1 ) e jn1T1 2 n1T1 sin(n1 ) E E 2 Sa (n1 ) T1 n T1 2 1 2
电子信息与电气工程学院
本章内容
连续时间周期信号的傅立叶级数表示 周期矩形脉冲的谱线特点
§3.1 连续时间周期信号的傅立叶级数表示
{1, cos n1t ,sin n1t} n=1,2, , 是一个完备的正交函数集

周期信号傅里叶级数

07
分析公式 (正变换)
连续时间傅里叶级数对:
称为傅里叶系数或频谱系数
综合公式 (反变换)
3.三角形式傅立叶级数
若 f (t)为实函数,则有 利用这个性质可以将指数Fourier级数表示写为 令 由于C0是实的,所以b0=0,故 由此可以推出:
三角形式傅立叶级数
傅里叶系数 连续时间周期信号三角形式傅立叶级数为:
建议同学多看国外电子与通信教材系列 ,先看翻译版,再看英文硬印版
集成电路版图基础(英文影印版) (4小时出库)
Layout Basics:A Practical Guide
作者: CHRISTOPHER SAINT,JUDY SAINT
市场价: ¥45.00
模拟CMOS集成电路设计(英文影印版) (4小时出库) sign of Analog CMOS Integrated Circuits 作者: (美)BEHZAD RAZAVI 市场价: ¥68.00
四、周期信号的功率谱
周期信号属于功率信号,周期信号f(t)在1欧姆电阻上消耗的平均功率为:
单击此处添加小标题
由下面关系可以推导出,帕什瓦尔(Parseval)功率守恒定理:
单击此处添加小标题
01
02
四、周期信号的功率谱
物理意义:任意周期信号的平均功率等于信号所包含的直流、基波以及各次谐波的平均功率之和。
[解] 周期矩形脉冲的傅立叶系数为
将A=1,T=1/4,=1/20,w0=2p/T=8p 代入上式 功率谱
信号的平均功率为 包含在有效带宽(0~2p/t)内的各谐波平均功率为 周期矩形脉冲信号包含在有效带宽内的各谐波平均功率之和占整个信号平均功率的90%。
求f (t)的功率。

周期信号的分解-傅里叶级数


傅里叶级数
傅里叶级数是一种将周期信号分 解为不同频率的正弦和余弦函数 的数学方法。
三角函数系
傅里叶级数使用正弦和余弦函数 作为基底,将周期信号表示为这 些函数的线性组合。
频谱分析
通过傅里叶级数,可以分析周期 信号的频谱,了解信号中各个频 率分量的强度和分布。
周期信号的频谱分析
频谱图
频谱图是用来表示周期信 号中各个频率分量强度的 图形,横轴表示频率,纵 轴表示幅度。
傅里叶级数的发展经历了多个阶段, 包括早期的数学证明和后来的完善, 最终成为数学和工程领域中分析周期 信号的重要工具。
傅里叶级数的应用领域
1 2 3
通信领域
傅里叶级数用于信号处理和调制解调,例如在频 分复用(FDM)和调频(FM)中分析信号的频 谱特性。
振动分析
傅里叶级数用于分析机械振动,通过将振动信号 分解为不同频率的分量,可以研究振动的模式和 频率成分。
图像处理
傅里叶变换在图像处理中广泛应用,通过将图像 信号表示为傅里叶级数,可以实现图像的滤波、 去噪、压缩等处理。
02 傅里叶级数的数学基础
三角函数和正弦函数三角Fra bibliotek数包括正弦函数、余弦函数、正切函数 等,它们在周期信号的分解中起着关 键作用。
正弦函数
正弦函数是周期函数,其基本周期为 $2pi$,在信号处理中常用于描述周 期信号。
周期信号的频谱分析
频谱分析
通过将周期信号分解为不同频率的正弦波分量,可以分析信号中各频率分量的 幅度和相位。
频谱密度函数
描述了信号中各频率分量的分布情况,其图形称为频谱图或频谱密度图。
傅里叶级数的收敛性
傅里叶级数
是一个无穷级数,可以用来表示任何周期信号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期方形信号的傅里叶级数展开
提出问题:
用有限项傅里叶级数展开逼近周期方波信号。

设周期为1的方波信号由以下函数给出
⎪⎩
⎪⎨⎧<=>=-<>=<->=+=)2且1(1)1且0()0且1(1)x (x x x x x x x x x f 。

利用Matlab 软件符号运算及绘图功能,观察方形信号由有限项傅里叶级数展开式的合成情况。

问题背景:
在信号分析与处理,特别是工程中,对于周期信号的处理通常采用傅里叶级数展开来进行分析,即频率分析法。

在实际信号处理过程中,可以借助Matlab 软件来模拟傅里叶级数对于信号的逼近情况。

知识基础:
周期函数的傅里叶级数展开,Matlab 软件
实验过程:
对于周期为2π函数()f t , 满足Dirichlet 条件,则可展为傅里叶级数
经过傅里叶变换得到: ⎪⎪⎪⎩⎪⎪⎪⎨⎧---
+-
=∑∑∑∞∞∞111))
1(2sin(21)2sin(2
1))1(2sin(2
1)(x
k x k x k x f πππ 将级数展开式截断到有限项可用来逼近周期函数。

利用Matlab 软件,编写程序如下: clear;clc;x=linspace(-1,2,3000);
y=(x+1).*(x<0)+x.*(x>=0&x<1)+(x-1).*(x>=1&x<=2); y1=0;
01()(cos sin ).2n n n a f t a nt b nt ∞==++∑1()cos n a f t ntdt πππ
-=⎰1()sin n b f t ntdt πππ-=⎰
0,1,2n = 1,2,3n =
for k=1:10;
y1=y1+1/(k*pi)*sin(2*k*pi*(x+1)).*(x<0);
end
y1=1/2-y1;
y2=0;
for k=1:50;
y2=y2+1/(k*pi)*sin(2*k*pi*x).*(x>=0 & x<1);
end
y2=1/2-y2;y3=0;
for k=1:100;
y3=y3+1/(k*pi)*sin(2*k*pi*(x-1)).*(x>=1&x<=2);
end
y3=1/2-y3;plot(x,y1)hold on plot(x,y2)
plot(x,y3)plot(x,y,'r') axis equal
此图当x 属于(-1,0)时,傅里叶级数取了前10项
此图当x 属于(0,1)时,傅里叶级数取了前50项
此图当x 属于(1,2)时,傅里叶级数取了前100项
红线代表实际函数,蓝线代表傅里叶级数展开函数
拓展练习:
1. 可将周期2π扩展为任意周期T ,则此时方波信号的角频率2/T ωπ=,当方波信号
()f t 满足Dirichlet 条件时,则可展为傅里叶级数:
01()(cos sin ).2n n n a f t a n t b n t ωω∞==++∑ 0 02()d T a f t t T
=⎰
从而该傅里叶级数展开形式可以更实际用于频谱分析。

2. 考虑周期矩形或周期锯齿形,及非周期信号的傅里叶级数展开
答:非周期信号可以利用傅里叶变换,傅里叶积分 ⎰⎰∞
∞--∞∞-==
ω
ωωωπωωd e t f F d e F t f t i t i )()()(21)(
知识点: 第12章第八节 一般周期函数的傅里叶级数
参考文献:
1. 王彦良,用有限项傅里叶级数三维趋近周期性方波信号,沈阳工程学院学报(自然科学版), 2006,2,
187-189.
2. 汪逸新,方波信号的傅里叶分解实验,大学物理,1996,15, 30-32.
3. 宋复成,方波信号的傅里叶合成演示,徐州师范大学学报(自然科学版),1998,16,30-32. 0
2()cos d T n a f t n t t T ω=⎰ 02()sin d T n b f t n t t T ω=⎰。

相关文档
最新文档