叙述影响柴油机性能的因素

叙述影响柴油机性能的因素
叙述影响柴油机性能的因素

叙述影响柴油机性能的因素

1 前言

燃料在柴油机气缸中的燃烧过程,就是燃料与空气中的氧发生剧烈氧化反应,并产生大量热的过程。燃烧过程对柴油机性能的影响是至关重要的,它在本质上决定了柴油机性能的优劣,柴油机的燃烧过程是整个工作过程中最重要的环节。为了使柴油机能够充分燃烧,必须要有足够的空气。理论上,lkg柴油完全燃烧需要14.3kg空气,故对柴油机而言,理论可燃混合气的空燃比为143。对于不同的燃料,其理论空燃比是不同的。

目前,提高柴油机性能、改善柴油机排放主要从提高燃油品质、改善燃烧过程和采取排气后处理这三个方面着手,由于柴油机的有害排放物主要是在缸内燃烧过程中产生的,所以改善缸内燃烧是提高燃油经济性和减少有害排放物的根本途径,而柴油机的燃烧过程的好坏取决于缸内的气流运动、燃油喷射和燃烧室结构三者之间的匹配。同时,柴油机缸内燃烧过程也是极其复杂的,它包含有燃料的喷射雾化、受热蒸发、与空气混合及氧化燃烧等诸多复杂过程,具有典型的高温、高压、高湍动性和不定常化学反应的特点。

2 影响柴油机性能的主要因素

2.1 从燃料性质分析

2.1.1 柴油的十六烷值

在稳态工况下,随燃料十六烷值的降低,着火始点延迟;滞燃期、预混合燃烧量、缸内压力峰值、放热率峰值及压力升高率有所增加,燃烧速率加快,致使燃烧持续期、扩散燃烧期有所缩短,当燃料十六烷值大于55时,滞燃期差别较小。

在恒转速增转矩瞬态工况下,随循环数的增加,缸内压力、温度、放热率峰值、燃烧持续期、扩散燃烧期和扩散燃烧量逐渐增加,预混合燃烧期和预混合燃烧量降低。

在增负荷工况下,随燃料十六烷值的增加,滞燃期、预混合燃烧期及预混合燃烧量降低,燃烧持续期、扩散燃烧期及扩散燃烧量均有所增加,致使缸内压力峰值和放热率峰值有所降低,适当提高燃料十六烷值,有助于降低NOx排放和燃烧噪声。

2.1.1 生物柴油

江苏大学利用可视化装置,分析比较了直喷式柴油机燃用生物柴油与常规柴油的喷雾燃烧过程。研究结果表明:生物柴油的喷油时刻较早,着火时刻提前,着火滞燃期缩短,在早期预混燃烧阶段的燃烧速度大于柴油,而在扩散燃烧阶段的燃烧速度比柴油低。通过分析燃料性质、转速和喷油压力这3种因素对生物柴油燃料喷雾燃烧过程的影响,从而得出影响规律为:混合燃料喷油始点、着火时刻均有所提前,滞燃期变短,BS混合燃料的最高燃烧压力最高且出现稍早;生物柴油在最高转速工况时的燃烧速度大,且最高燃烧压力也略高;随着喷油压力的提高,滞燃期缩短,燃烧持续期相应缩短,最高燃烧压力升高。

2.2 从柴油机固有性质分析

2.2.1 工作温度

当柴油机温度较高时,则燃料的蒸发和氧化反应速度较快.进而着火延迟期缩短,柴油机工作比较柔和,经济性较好;当柴油机温度较低时,则燃料的蒸发和氧化反应速度较慢,进而着火延迟期增加,柴油机工作比较粗暴,经济性较差,甚至不能着火。因此,柴油机工作中应该保持正常的温度。

2.2.2 压缩比

压缩比就是气缸总容积与燃烧室容积之比。压缩比对混合气的形成和燃烧影响重大,因此也对功柴油机的动力性和经济性有影响。柴油机采取较高的压缩比,是为了提高压缩终了时气体的温度和压力,以便缩短着火延迟时期,使柴油机工作柔和。如果压缩比减小,会造成混合燃烧不完全,使发动机功率下降,油耗增加;如果压缩比增大,虽能提高柴油机的功率,但柴油机工作较为粗暴。

2.2.3 燃烧室形状

为确保燃油的良好燃烧过程,柴油机设计了不同形状的燃烧室和不同形态的燃油喷雾状态,两者互相配合,使高速空气形成强烈的涡流运动,进而形成良好的雾化混合气和良好的燃烧条件。天津大学利用片状激光诱导荧光技术在定容燃烧室喷雾模拟试验装置中针对BUMP燃烧室进行了研究,结果表明,BUMP的位置、高度、形状和角度不同对撞壁油束形成二次空间射流及稀混合气的作用也不相同,进而对燃烧过程影响不同。北京理工大学在20世纪90年代为解决6V 150柴油机“双高”(爆压高、油耗高)难题而开发的双卷流燃烧系统采用了浅的双盘形燃烧室。结果表明燃烧室形状的改变对双卷流燃烧系统结构影响较大。山西车用发动机研究所闭采用A VL657数字分析系统测量油管压力和气缸压力,通过计算、绘制放热率曲线在增压单缸机上研究分析了不同燃烧室对快速混合燃烧过程的影响,结果表明紊流I型燃烧室具有较好的低速性能,圆型燃烧室具有较好的高速性能。

2.2.4 喷雾质量

柴油机喷雾的研究是柴油机燃烧过程研究中的一个十分活跃的领域,且柴油机喷雾属于三维瞬态密集型喷雾,喷雾过程受到多种因素影响。柴油机喷雾特性包括贯穿度、喷雾锥角、分裂长度和雾化微滴尺寸分布。为保证良好的燃烧过程,需要求喷出的柴油具有一定的喷雾长度、雾化锥角和雾化细度。否则就会造成燃烧不良,油耗增加,功率下降,影响柴油机的动力性和经济性。北京航空航天大学利用CFD软件对一台6缸增压柴油机的喷雾与燃烧过程进行模拟,研究了喷雾锥角对燃烧过程的影响规律以及喷雾锥角对碳烟和NOx生成的影响,结果表明喷雾锥角对燃烧过程有着很大影响,随着喷雾锥角的变大,缸内平均温度升高,NOx生成量变大,碳烟生成量减少。中南大学以CFD软件为计算平台,对CZ175F一型直喷式柴油机在额定转速工作下进行了缸内燃烧过程的数值模拟,研究了不同喷油夹角、喷油提前角以及不同的进气涡流比对燃烧过程各参数的影响,并提出了优化意见。

2.3 从柴油机工况分析:

2.3.1 供油规律

供油规律是指喷人燃烧室的燃料量与曲轴转角的关系。对供油规律的要求是:开始供油量不宜过多,在中期和末期要求供油量多些,这样可以避免在着火延迟时期喷人过多的柴油,而造成柴油机工作粗暴。同时,供油持续时间不宜过长,以免造成后燃严重。吉林大学和广州汽车集团股份有限责任公司利用循环控制的柴油机起动过程测控系统,研究了启动油量对柴油机冷起动过程燃烧的影响规律,并对起动过程的油量进行了优化。试验结果表明:通过调节柴油机起动时的喷油量可以有效减少在起动过渡期的失火和不完全燃烧循环,改善起动过程燃烧。广东韶关学院对两种喷油嘴应用在某型柴油机上不同的烟度特性进行了分析,认为不同喷油嘴的头部结构差异使喷油嘴具有不同的喷油规律,从而影响到燃烧过程。海军工程大学对重型直喷式柴油机典型多次喷射方案进行了燃烧过程计算,通过与试验结果对比,对计算过程参数进行了修正。计算结果反映了不同喷油速率形状、喷射脉冲的油量分配比例和喷射脉冲间隔角对燃烧放热率的影响规律。

2.3.2 喷油定时

柴油机的燃烧过程存在一个着火延迟期,虽然这个时期很短,但是曲轴在这个时间内旋转角度的变化却很明显。如果喷油提角过小或者活塞到达上止点时才开始喷油,那么气缸内

的燃烧将在活塞向下止点运动与气缸体积逐渐增大的情况下进行,这样不仅最高压力会下降,热损失增加,而且后燃严重,机温增加,功率不足,启动困难,大大降低了柴油机的动力性和经济性;如果喷油提前角过大,着火延迟期会增长,而且燃烧在活塞到达上止点之前就已进行,导致气缸内压力增加速度很快,最高压力很高,活塞受到较大反压力,造成柴油机的工作粗暴,产生敲缸,单缸启动时,容易反转,动力性和经济性显著下降。

可见,喷油时间过早、过晚都会使柴油机的动力性和经济性降低,只有恰当的喷油时间才能保证气缸里适中的的压力升高速度和最高压力(活塞在上止点之后8°~10°时达到最高较好),进而使柴油机获得更佳的工作状态。

2.3.3 柴油机负荷

柴油机工作中,如果转速不变,充气量也不会变。但是,当负荷变化时,供油量将随之变化,过量空气系数也会改变,这将影响燃烧的完全性、及时性和放出热量的多少,从而影响柴油机的动力性和经济性。当柴油机负荷过小时,供油量很小,此时虽然空气流较大,但是燃烧放出的热量较少,整个工作循环的温度和机件温度较低,着火延迟期增长,不利于柴油机工作;当柴油机负荷过大时,供油量较多,过量空气系数较小,燃烧的持续时间增长,造成后燃严重,机温增加,柴油机的动力性和经济性下降。因此,柴油机不适宜长时间在负荷过大或负荷过小工况下工作,通常在中等负荷工况下工作较好。

军事交通学院应用柴油机工作过程可视化装置对柴油机在不同负荷下的混合气形成与燃烧过程进行了试验研究。研究结果表明:在小负荷时柴油机的混合气形成与燃烧过程表现为预混合多点同时压燃;在一定范围内,随喷油量的减少和喷油提前角的加大,柴油机着火滞燃期延长,有利于形成混合压燃。

2.3.4 柴油机转速

柴油机起动时,属于非稳态工况,燃烧属于不稳定、瞬变过程。随着柴油机转速的逐渐升高,压缩过程所经历的时间缩短,漏气损失和散热损失减少,压缩终了时的温度和压力升高,同时气体的涡流运动增强,使着火延迟时期缩短,燃烧比较迅速、安全。但转速过高或过低,都会降低充气系数,使燃烧条件恶化,导致柴油机动力性和经济性下降。因此,柴油机必须在额定转速下工作。天津大学在一台经过改装的单缸直喷式柴油机上进行了不同辛烷值基础燃料下发动机转速对均质压燃燃烧特性、工况范围和排放特性影响的试验研究。结果表明,发动机转速升高,不同辛烷值燃料着火燃烧时刻推迟。

3 结语:

以上所述是影响柴油机燃烧过程的主要因素。这些因素不是孤立的,它们是相互影响、相互联系的。决不可孤立地、静止地去看待它们。

燃烧过程是柴油机工作循环的核心,包括气流运动、传热、传质和化学反应等复杂的物理化学过程,直接影响着柴油机的动力性、经济性、噪声及排放性能。影响燃烧过程的因素很多,本文仅分析了柴油机温度和压缩比、燃烧室形状、柴油机负荷、柴油机转速、燃料性质、喷油定时、供油规律和喷雾质量等因素对柴油机燃烧过程的影响规律,为正常使用和维护柴油机以及进一步提高燃油经济性提供理论依据和指导。

参考文献:

[1] 王威张云飞关立哲. 柴油机燃烧过程的影响因素分析[M]. 军事交通学院

[2] 孙万臣解方喜刘忠长李国良. 燃料着火性对小型柴油机燃烧特性的影响[M]. 燃烧科学与技术,2009:134.

柴油机设计参数

387柴油机主要性能参数: 转速2400 r / min 功率20 kW 燃油消耗率≤243 g / kW. H 缸径:87mm; 设计: 1)汽缸数:i=3 2)冲程数:τ=4 3)缸径:d=87mm 4)行程:s=96 mm 由于s/d大约为1.05—1.2 s/d=1.103 5)总排量:V s=3×π/4×8.72×9.6=1711.20 ml=1.71 (l) 6)有效功率:Pe=20 kW 7)活塞平均速度:Cm=sn/30=0.096×2400÷30=7.68 m/s 8)平均有效压力:Pme=Pe·30τ/(Vh·Z·n)=20×30×4÷(1.71÷3)÷3÷2400=0.585 MPa 9)曲轴半径:R=s/2=96÷2=48 mm 10)连杆比:R/L取值为1/3--1/5,R/L可取1/4 连杆长度L=192 mm 11)缸心距L0/D=1.35---1.40 12) 取缸心距L0=1.40×87=121.8 13)压缩比:ε=18 朱仙鼎14~18 14)燃烧室形式:ω型半分开式 15)大气状态:P0=1 bar=0.1 Mpa,To=290 K 16)燃烧平均重量成分:C=0.87,H=0.126,O=0.004 17)燃料低热值:H u=441000kg/kg燃料 『1』参数选择 过量空气系数α=1.75 最高燃烧压力P z=70 bar=7 Mpa 热量利用率ξz=0.75 残余废气系数Φr=0.04 排气终点温度T r=800K 示功图丰满系数φi=0.96 机械效率ηm=0.80 『2』燃烧热计算: 1、理论所需空气量朱仙鼎热力计算 L0=1/0.21·(gC/12﹢gH/4-gO/32)=1/0.21×(0.87/12+0.126/4-0.004/32)=0.495 kgmol/kg燃料 2、新鲜空气量M1 M1=αL0=1.75×0.495=0.866 kgmol/kg燃料 3、理论上完全燃烧(α=1)时的燃烧产物M0 不一样 M0=C/12+H/2+0.79L0=0.87/12+0.126/2+0.79×0.495=0.5265 kgmol/kg燃料 4、当α=1.75时的多余空气量为 (α-1)L0=(1.75-1)×0.495=0.371 kgmol/kg燃料 5、燃烧产物总量M2 M2=M0+(α-1)L0=0.5265+0.371=0.8975 kgmol/kg燃料 6、理论分子变更系数μ0

柴油机速度特性和负荷特性试验报告

柴油机性能试验报告 班级:汽91 姓名:周子超 学号:2009010741 试验时间:2012年4月20日 组别:13 试验目的: 1.掌握通过测功机等试验设备测量柴油机的速度特性的方法; 2.了解试验中对柴油机发动机功率、转矩、转速、燃油消耗率、排气温度的测量方法; 3.通过整理试验数据点,得到柴油机的速度特性曲线,做出相关分析总结分析对比; 4.分析柴油机速度特性和负荷特性曲线的变化规律及变化趋势,分析原因。 5.进行汽油机、柴油机速度特性的对比,总结汽油机柴油机的不同。

实验对象:

二、试验设备: 名称 测试内容型号主要参数备注 电涡流测功功率、转OSWALD 250kW, 4980rpm , f max = 165Hz 电涡机矩、转速QD122.3 n max = 10010rpm , M max = 580Nm 流型油耗仪油耗中国湘仪测量精度:土 0.5% 重量 时间分辨率:土 0.1s 式 油耗分辨率:土 0.1g 空气流量计空气流量同园量程:0-1200kg/h 精度:土 1% 热膜 ToceiL 分辨率:土 0.1kg/h 式 表2 :主要测试设备表 四、试验台架系统简图: 排气系统 表1:柴油机参数 空气 实验控制系统(计唱算 机)編

图1 :台架系统简图 第一部分:速度特性 五、实验原理: 柴油速度特性的实验基于发动机速度特性的定义,即保持发动机节气门或者是油量 调节位置不变,发动机的性能指标和特性参数(主要指功率、转矩、燃油消耗率、 进气量、排气温度、充量系数)随发动机转速的变化规律。实验基于负载系统的 6 种控制模式:①恒扭矩/恒转速控制(M/n [②恒转速/恒扭矩控制(n/M )③恒扭矩/恒油门位置控制(M/P [④恒转速/恒油门位置控制(n/P [⑤P1/P⑥M/n 2,首先选择油门到指定的开度,然后不断改变负荷转速测得数据。 六、实验要求及方法: 1.实验要求:用给定仪器测量给定发动机的速度特性,要求发动机油门开度为46% ; 2.实验方法:

耐热金属材料机械性能影响因素

耐热金属材料机械性能影响因素 摘要:本文主要根据实践经验进行研究分析,对金属材料的机械性能所产生的影响一般具有几方面的重要因素,例如,蠕变极限、焊接工艺、在金属材料当中所产生的化学成分等,所以通过对这些因素的分析,提出了相应的解决措施。 关键词:耐热金属材料;机械性能;蠕变极限;化学成分 引言 在很多企业中譬如说航空、电力、冶金、化工、石油等,这些行业中材料都是在比较高的温度背景下运行,所以必须利用耐高温的金属原料。在耐高温的金属原料的运行背景下,耐高温的金属原料必须具备以下两个方面的性能,金属原料在高温下具有稳定的化学性和高温强度。必须要仔细研习解析耐高温原料的影响元素,才能根据原因运用适当的方法以便提升耐高温金属原料的机械能力。 一、探讨耐热金属材料机械性能影响原因的意义 如果从耐热金属材料所使用的环境观察,其性能主要包括在两个方面,也就是它的高温强度以及它的化学稳定性能。但是,如果要是针对耐热金属材料,就必须要认真的分析研究它主要的影响因素,再根据具体原因采用相应的解决措施,从而提高金属材料的性能。耐热材料指的是具有蠕变变形小、断裂强度高等特点,同时在正常的使用过程中必须要具有一定的稳定性。然而在使用耐热材料的一些设备时,其设计概念却产生了一定的变化,曾经把坚决不破坏的设计思想是作为一个安全寿命进行设计的,从思想上主要是以安全设计以及允许损伤设计进行转变的。所谓运行安全设计指的是当局部材料出现破损时,其余下的部分仍然可以承受起破损部位的应力,而不会导致全部的零件出现破损情况,而设计允许损伤时主要是通过假设情况下出现裂纹,而当裂纹在扩展期间内的设备则仍然可以继续使用,对此,基于这种思想变化,对于开发者在设计考虑方法时就必须要做相应的转变,也就是要从一种材料的耐高温度以及对它蠕变的强度极限选择材料,找对方向。 二、耐热金属材料的性能特点 一般耐热的金属材料通常是与能源相关的条件下相互作用的,主要可以分成两种,(1)在静止状态下所应用的部件,例如有喷钼、材料电池电解质、透平叶片、人造卫星使用的热防护板等,但是如果根据卡诺循环基理观察,如果是有关能源的使用材料其温度越高,它的使用效率也会越高,当应用棱聚变能的状态时,如果所使用的温度过高时,其要求也会越高。(2)有动作机械部件,也就是透平喷气发动机可以对其使用离心力的部件。它的具体要求就是必须要具有蠕变性能以及抗氧化的性能。此外,如果要更好的使用自然能源,在各方面的要求上也会更为严格,如果要使用复合材料,也就是这种耐热结构的材料。通常情况下,如果金属材料在一定的室温下,其变形以及塑性主要是根据位错运动实现的,一般晶界的强调会很高,所以当位错运动时它就会具有很大阻力,因此,在室温下的

柴油的质量要求与性能指标

柴油的质量要求及性能指标 (一)柴油的质量要求:为了保证柴油在高速柴油发动机中能正常燃烧, 对柴油的质 量要求如下: l. 良好的燃烧性, 十六烷值适宜, 自燃点低, 燃烧完全, 发动机工作稳定性好, 不发生爆震现象。 2. 良好的蒸发性能, 蒸发速度要适宜, 轻馏分所占比例应大些, 否则会使发动机油耗增大, 磨损加剧, 功率下降。 3. 柴油的粘度应适宜, 即具有良好的流动性, 以保证高压油泵的润滑和喷油雾化的质量, 形成良好的混合气。 4. 含硫量小, 以保证不腐蚀发动帆。含硫量较低是我国国产柴油的特点之一。 5. 安定性好, 在储存时生成胶质及燃烧后形成积炭的倾向都较小。 ( 二)评价柴油性能的指标: l. 柴油的燃烧性能及其评价指标 (l) 柴油机的工作粗暴与柴油的发火性为使读者对柴油的发火性能有一个更为全面的理解, 我们先介绍柴油在柴油机气缸燃烧的情况。柴油机在压缩终了时,缸温度可达500'C 一600'C,压力达3~4MPa这时柴油以高压呈细雾状喷入燃烧室, 由于燃烧室的温度巳超过柴油和自燃点, 故从理论上而言, 柴油-- 喷入燃烧室, 便具备了着火燃烧的基本条件。但从柴油喷入至自燃, 往往还有一定的时问间隔, 这是因为在这一时问问隔, 柴油需完成与空气的充分混合、先期氧化及形成局部着火点等物理化学的进一步准备, 我们将从喷油开始到柴油开始燃烧的时间问隔称之为着火延迟期。如果着火延迟期长则喷入燃烧室的柴油量增多, 着火前形成的混合气数量就多, 一旦着火, 就有过量的柴油着火燃烧, 这会造成缸压力剧增, 气缸便将产生强烈的震击作用, 通常把这种震击作用称为柴油机工作粗暴。柴油机工作粗暴的后果与汽油机爆 震一样, 会使发动机曲柄连杆机构承受过大的冲击力作用, 产生强烈的金属敲击声, 加速零件的磨损并且使柴油机起动困难, 造成柴油机功率下降, 油耗增大。影响着火延迟期的因素较多, 其中柴油的发火性是主要因素之一。柴油的发火性是指柴油自燃的能力, 发火性好的柴油, 着火延迟期短, 着火燃烧后缸压力上升平缓柴油机工作柔和。 另外需要指出的一点是柴油机的工作粗暴与汽油机的爆震在本质上是有很大区别的。汽油机的爆震是由于点火燃着的火焰前沿还没传播到的那部分混合气生成过氧化物, 自行燃烧而致, 一般发生在燃烧末期; 而柴油机工作粗暴却是由于柴油的发火性差使得着火延迟期过长而致、一般发生在燃烧的初期。因此, 各种影响汽油机爆震与柴油机工作粗暴的因素也完全不同。如汽油机若提高压缩比或增高气缸温度会促发爆震, 而柴油帆若提高压缩比或增高气缸温度却能减轻其工作粗暴的倾向。汽油中的正构烷烃易使汽油机发生爆震, 而对于柴油而言, 所含的正构烷烃却能减轻柴油机工作粗暴。由此, 我们可了解汽油机爆震与柴油机工作粗暴的根本区别。 可见, 柴油的发火性, 是评价柴油燃烧性能的一个重要指标。 (2) 柴油的十六烷值十六烷值是代表柴油在柴油发动帆中发火性能的一个约定量值。它是在规定条件下的标准发动机试验中, 通过和标准燃料进行比较来测定, 采用和被测定燃料具有相同着火延迟期的标准燃料中十六烷的体积百分数来表示。供参比用的标准燃料是用两种发火性相差破为悬殊的烃作为基准物对比得出的数渣。一种烃是正十六烷, 它在高温条件下可迅速形成过氧化物.着火延迟期最短,即自燃点低,发火性好,规定它的十六烷值为100。另一种烃是a-甲基茶, 属于芳烃.它的着火延迟期

影响Informix数据库性能的主要参数

影响Informix数据库性能的主要参数 影响CPU使用率的配置参数和环境变量 Online 配置文件onconfig中的下列参数对CPU的利用率有明显的影响: ? NUMCPUVPS ? SINGLE_CPU_VP ? MULTIPROCESSOR ? AFF_NPROCS ? AFF_SPROC ? NUMAIOVPS ? OPTCOMPAND ? NETTYPE NUMCPUVPS、MULTIPROCESSOR和SINGL_CPU_VP NUMCPUVPS参数规定了Online 开始启动的CPU VP的数量。分配的CPU VP 的个数不要超过可以为它们服务的CPU的个数。 ?对于单处理器的计算机系统,Informix 建议使用一个CPU VP。 ?对于有4个以上CPU,主要用做数据库服务器的多处理器系统,Informix 建议设置NUMCPUVPS的值等于处理器总数减一。 ?对于双处理器系统,运行两个CPU VP可能会改善性能。这需要监控操作系统的CPU使用情况。可以使用操作系统命令sar 或vmstat。 如果运行多个CPU VP,应将MULTIPROCESSOR 设置为1,当设置MULTIPROCESSOR 为1时,Online 以对应于多处理器的方式执行锁定。否则,设置该参数为0。 注意:如果设置SINGLE_CPU_VP参数为,则NUMCPUVPS 参数的值也必须是1,如果后者大于1,Online就不能初始化并显示下面的错误信息: Cannot have 'SINGLE_CPU_VP' now-zero and 'NUMCPUVPS' greater t han 1 AFF_NPROCS 和AFF_SPROC 在支持Online和客户应用的系统上,可以通过操作系统把应用连接到某些特定的CPU。这样做可以有效地保留剩余的CPU给Online CPU VP使用,它们是用AFF--NPROCES和AFF_SPROC配置参数连接到剩余CPU的。 AFF_NPROCS指定了连接到Online的CPU VP上的CPU的个数。连接一个CPU VP 到一个CPU 会引起该CPU VP在这个CPU上的排它性运行。 AFF_SPROC指定了Online把CPU VP连接到CPU上时所启动的CPU。

发动机负荷特性曲线(精)

发动机负荷特性曲线 2006-9-6 发动机诸性能特性中有一个叫做负荷特性,它是指当发动机转速一定时,经济性指标的有效比燃油消耗量随发动机负荷的变化关系。利用这一变化曲线,可最全面地确定发动机在各种负荷和转速时的经济性。 在了解负荷特性前,首先要知道有效比燃油消耗量是什么。 衡量汽车耗油量大小一般用汽车在规定的速度下行驶100公里路程的实际耗油量(升)计算。例如汽车技术参数上常见有“90公里/小时等速”时100公里耗油量的参数,这是衡量汽车经济性指标。衡量发动机经济性指标,工程技术人员用有效比燃油消耗量这一个指标,简称油耗率,用ge表示,它指每小时单位有效功率消耗的燃油量,单位是g/kw.h。当然,衡量发动机经济性还有其它指标,由于与本文关系不大不作介绍。 发动机分为汽油机和柴油机两大类。汽油机是依靠节气门调节负荷的,因此汽油机负荷特性又称节流特性;柴油机是靠改变喷油量来调节负荷的,通过喷油量变化改变混合气成份,因此柴油机负荷特性又称燃油调整特性。 由于发动机转速是经常变化的,需要测定发动机不同转速下的负荷特性,才能全面评价不同转速和不同负荷下发动机的燃油经济性。发动机负荷特性的读取在试验台架上进行。以汽油机为例,启动发动机后逐渐开启节气门,直至最大,同时调节载荷使发动机保持某一转速稳定运行,测定此工况下发动机输出功率及燃油消耗量。然后再关小节气门,调整载荷使发动机保持转速不变再测定。如此依次进行下去,直到发动机能保持稳定工作的最小节气门开度,得到不同负荷和转速下的燃油消耗量。不同转速下的发动机负荷特性曲线变化的趋势是差不多,只是具体数值的不同。 普通汽油机负荷特性曲线的特征,开始启动时ge最大(此时需要浓混合气),但随节气门逐渐开启负荷增大而ge减少直至最低点,此时节气门接近全开。继续开大节气门,ge又会开始上升,曲线呈现一条内凹抛物线。曲线的最小ge值越低越好,同时ge随负荷的变化越平缓,发动机在不同负荷下工作的经济牲越好。从曲线的形状,可以分析出哪一个负荷区域是最经济的。 汽油机负荷特性曲线

影响材料吸声性能的因素

离心玻璃棉的建筑声学特征及应用 离心玻璃棉内部纤维蓬松交错,存在大量微小的孔隙,就是典型的多孔性吸声材料,具有良好的吸声特性。离心玻璃棉可以制成墙板、天花板、空间吸声体等,可以大量吸收房间内的声能,降低混响时间,有利于提高语言清晰度,也有利于减少室内噪声。在轻体隔墙的空腔内填入离心玻璃棉,不但起到良好的保温作用,还可以较大幅度地提高墙体的隔声性能,有利于隔绝噪声,也有利于保证室内谈话的私密性。使用离心玻璃棉制成管道或风机罩的衬里可以起到消声作用,有利于降低管道中气流与机械振动产生的噪声,使空调系统更加安静。离心玻璃棉具有良好的弹性,可以作为楼板减振垫层的主要材料,显著地降低楼上的脚步、奔跑、拖动物品等撞击产生的噪声对楼下房间的影响。? 离心玻璃棉的声学特性不但与厚度与容重有关,也与罩面材料、结构构造等因素有关。在建筑应用中还需同时兼顾造价、美观、防火、防潮、粉尘、耐老化等多方面问题。本文将就离心玻璃棉 相关的建筑声学基本概念、建筑吸声应用、建筑隔声应用、建筑消声应用、国内外不同声学产品 对比,以及相关的国家规范标准等方面近可能详细地讨论离心玻璃棉的建筑声学特性及应用。 一、建筑声学的基本概念 1)声音???物体的振动产生“声”,振动的传播形成“音”。人们通过听觉器官感受声音,声音就是物理现象,不同的声音人们有不同的感受,相同声音的感受也会因人而异。美妙的音乐令人陶醉,清晰激昂的演讲令人鼓舞,但有时侯,邻居传来的音乐声使人难以入睡,她人之间的甜言蜜语也许令人烦恼。建筑声学不同于其她物理声学,主要研究目的在于如何使人们在建筑中获得良好的声音环境,涉及的问题不局限于声音本身,还包括心理感受、建筑学、结构学、材料学甚至群体行为学等多方面问题。? 人耳的听觉下限就是0db,低于15db的环境就是极为安静的环境,安静的会使人不知所措。乡村 的夜晚大多就是25-30db,除了细心才能够体会到的流水、风、小动物等自然声音以外,其她感觉 一片宁静,这也就是生活在喧嚣之中的城市人所追求的净土。城市的夜晚会因区域不同而有所不同。较为安静区域的室内一般在30-35db,如果您住在繁华的闹市区或就是交通干线附近,将不得不忍受40-50db(甚至更高)的噪声,如果碰巧邻居就是一位不通情达理的人,夜深人静时蹦蹦跳跳、高声喧哗,也许更要饱受煎熬了。人们正常讲话的声音大约就是60-70db,大声呼喊可达100db。 在中式餐馆中,往往由于缺乏吸声处理,人声鼎沸,声音将达到70-80db,有国外研究报道噪声中进餐会影响健康。人耳的听觉上限一般就是120db,超过120db的声音会造成听觉器官的损伤,140db的声音会使人失去听觉。高分贝喇叭、重型机械、喷气飞机引擎等都能够产生超过120db的声音。?人耳听觉非常敏感,正常人能够察觉1db的声音变化,3db的差异将感到明显不同。人耳存在掩蔽效应,当一个声音高于另一个声音10db时,较小的声音因掩蔽而难于被听到与理解,由于掩蔽效应,在90-100db的环境中,即使近距离讲话也会听不清。人耳有感知声音频率的能力,频率高的声音人们会有“高音”的感觉,频率低的声音人们会有“低音”的感觉,人耳正常的听觉频率范围就是20-20khz。人耳耳道类似一个2-3cm的小管,由于频率共振的原因,在2000-3000hz的范围内声音被增强,这一频率在语言中的辅音中占主导地位,有利于听清语言与交流,但人耳最先老化的频率也在这个范围内。一般认为,500hz以下为低频,500hz-2000hz为中频,2000hz以上为高频。语言的频率范围主要集中在中频。人耳听觉敏感性由于频率的不同有所不同,频率越低或越高时敏感度变差,也就就是说,同样大小的声音,中频听起来要比低频与高频的声音响。? 2)频率特性??声音可以分解为若干(甚至无限多)频率分量的合成。为了测量与描述声音频率特性,人们使用频谱。频率的表示方法常用倍频程与1/3倍频程。倍频程的中心频率就是31、5、63、125、250、500、1k、2k、4k、8k、16khz十个频率,后一个频率均为前一个频率的两倍,因此被称为倍频程,而且后一个频率的频率带宽也就是前一个频率的两倍。在有些更为精细的要求下,将频率更细地划分,形成1/3倍频程,也就就是把每个倍频程再划分成三个频带,中心频率就是20、31、5、40、50、63、80、100、125、160、200、250、315、400、500、630、800、1k、1、25k、1、6k、2k、2、5k、3、15k、4k、5k、6、3k、8k、10k、12、5k、16k、20khz等三十个频率,后一个频率均为前一个频率的21/3倍。在实际工程中更关心人耳敏感的部分,因此,除进行必要的科学研究以外,大多数情况下考虑的频率范围在100hz到5khz。如果将声音的频 率分量绘制成曲线就形成了频谱。 对于各种建筑声学材料来讲,不同频率条件下声学性能就是不同的。有的材料具有良好的高频吸

船舶柴油机复习资料

1.柴油机特性曲线:用曲线形式表现的柴油机性能指标和工作参数随运转工况变化的规律。2.扫气过量空气系数:每一循环中通过扫气口的全部扫气量与进气状态下充满气缸工作容积的理论容气量之比 3.封缸运行:航行时船舶柴油机的一个或一个以上的气缸发生了一时无法排除的故障,所采取的停止有故障气缸运转的措施。 4.12小时功率:柴油机允许连续运行12小时的最大有效功率。 5.有效燃油消耗率:每一千瓦有效功率每小时所消耗的燃油数量。 6.示功图:是气缸内工质压力随气缸容积或曲轴转角变化的图形。 7.燃烧过量空气系数:对于1kg燃料,实际供给的空气量与理论空气需要量之比。 8.敲缸:柴油机在运行中产生有规律性的不正常异音或敲击声的现象。 9.1小时功率:柴油机允许连续运行1小时的最大有效功率。(是超负荷功率,为持续功率的110%。) 10.平均有效压力:柴油机单位气缸工作容积每循环所作的有效功。 11.热机:把热能转换成机械能的动力机械。 12.内燃机:两次能量转化(即第一次燃料的化学能转化成热能,第二次热能转化成机械能)过程在同一机械设备的内部完成的热机。 13.外燃机: 14.柴油机:以柴油或劣质燃料油为燃料,压缩发火的往复式内燃机。 15.上止点:活塞在气缸中运动的最上端位置,也是活塞离曲轴中心线最远的位置。下止点 16.行程:活塞从上止点移动到丅止点间的位移,等于曲轴曲柄半径R的两倍。 17.气缸工作容积:活塞在气缸中从上止点移动到丅止点时扫过的容积。 18.压缩比:气缸总容积与压缩室容积之比值,也称几何压缩比。 19.气阀定时:进排气阀在上.丅止点前启闭的时刻称为气阀定时,通常气阀定时用距相应止点的曲轴转角表示。 20.气阀重叠角:同一气缸在上止点前后进气阀与排气阀同时开启的曲轴转角。(进排气阀相通,依靠废气流动惯性,利用新鲜空气将燃烧室内废气扫出气缸) 21.扫气:二冲程柴油机进气和排气几乎重叠在丅止点前后120-150曲轴转角内同时进行,用新气驱赶废气的过程。 22.直流扫气:气流在缸内的流动方向是自下而上的直线运动。(空气从气缸下部扫气口,沿气缸中心线上行驱赶废气从气缸盖排气阀排出气缸) 23.弯流扫气:扫气空气由下而上,然后由上而下清扫废气。 24.横流扫气:进排气口位于气缸中心线两侧,空气从进气口一侧沿气缸中心线向上,然后再燃烧室部位回转到排气口的另一侧,再沿中心线向下,把废气从排气口清扫出气缸。 25.回流扫气:进排气口在气缸下部同一侧,排气口在进气口上方,进气流沿活塞顶面向对侧的缸壁流动并沿缸壁向上流动,到气缸盖转向下流动,把废气从排气口中清扫出气缸。 26.增压:提高气缸进气压力的方法,使进入气缸的空气密度增加,从而增加喷入气缸的燃油量,提高柴油机平均有效压力和功率。 27.指示指标:以气缸内工作循环示功图为基础确定的一些列指标。只考虑缸内燃烧不完全及传热等方面的热损失,不考虑各运动副件存在的摩擦损失,评定缸内工作循环的完善程度。 28.有效指标:以柴油机输出轴得到的有效功为基础,考虑热损失,也考虑机械损失,是评定柴油机工作性能的最终指标。 29.平均指示压力:一个工作循环中每单位气缸工作容积的指示功。 30.指示功率:柴油机气缸内的工质在单位时间所做的指示功。 31.有效功率:从柴油机曲轴飞轮端传出的功率。

数据库选型的五大要素

数据库选型的五大要素 面对品种繁多的数据库产品,如何才能独具慧眼,选中适合自己的数据库产品呢?众所周知,正确的评估、选型与数据库技术本身同样重要。而通常,数据库厂商都会在性能清单和技术基准表中尽量展现产品最佳的一面,对产品弱点却避免提及或进行遮掩,关于这一点,业界已经是人尽皆知了。其实在挑选和评估过程中,首要目标是选择一款能够满足甚至超过预定要求的技术或解决方案。选型的正确方法将使用户在面对众多产品时,提高其做出最佳选择的能力。 数据库选型时,必须考虑以下五大因素: 1. 开发要求 2. 性能/成本 3. 数据库运行和管理 4. 可升级性 5. 总体拥有成本 开发要求 首先,需要清楚自己究竟想使用什么开发技术。例如,你是要以https://www.360docs.net/doc/288369036.html,访问传统的关系型数据库?还是要以纯面向对象技术构建J2EE应用平台?又或是需要建设XML Web Services?如果你要实现的是纯关系型的开发典范,那么实际要 使用的受支持的标准(和非标准)SQL功能有多少? 如果你要规划的是面向对象开发策略,那么在原计划里的数据库支持真正的面向对象吗?它是如何支持的?若有需要, 它能同时提供SQL的功能吗?数据库支持这个功能吗?虽然,有些关系型数据库声称支持对象开发,但实际上并不是直 接支持的。这种非直接的体系结构将导致更多的事务处理故障,以及潜在的可升级性和性能问题。 另外,你还需要确定自己的前端技术如何与后端进行“对话”。你的业务逻辑是放在客户机一端呢?还是放在服务器一端?你要使用哪些脚本语言?它们与后端服务器的兼容性如何?它们是快速应用开发(RAD)环境吗? 目前,实现基于关系型数据库的应用可以选择传统的主流品牌,这些数据库产品有着很成熟的关系技术以及广泛的应用资源。但是,如果实现的是基于面向对象技术的应用、又或是数据结构更为复杂时,不妨考虑目前一些公司推出的所谓 后关系数据库。它所代表的正好是关系数据库和面向对象技术的融合,以多维数据引擎作为核心,从根本上支持复杂的对象存储及主流的二维表,同时也已经配备了功能强大的应用服务引擎,可作对象逻辑操作的平台。它的出现已经为传统数据库领域带来了冲击,而在面向对象数据库方面更是广受欢迎。 性能/成本 测量数据库性能最常见的方法是TPC基准。TPC明确地定义了数据库方案、数据量以及SQL查询。测量的结果是,在特 定的操作系统上,配置了特定的数据库版本,以及在惊人的硬件条件下,每项事务的成本是多少——其中的事务可以是TPC测试中定义的任何数据库操作。 从理论上来讲,这类基准旨在提供不同产品间客观的比较值。但在现实中,这些方案又有多少能准确反映并回答你在挑选技术时所存在的疑惑?其次,所有技术厂商发布的TPC基准都会超过以前发布的结果。这样,TPC基准在更大程度上 反映的是为解决问题而投入的内存和CPU量,而不是数据库性能的任何真实表现。 以笔者多年所见,只有在真实的环境中进行实际的比较测试才可以推断出数据库的预期性能及评估所需成本。常用的方法包括平衡移植,把原来的数据转移到类似硬件上的另一套数据库,然后以真实的客户端连接这套测试对象。又或是以数据产生器针对真实的数据模型,建立出庞大的数据量,再以客户端连接作测试。 这种做法跟实验室中的做法的不同之处有以下几点:第一,试验中的硬件构架跟你预期的方案不会有太大的差别;第二,所测试的事务在宽度和深度方面跟未来计划的也差不太远;第三,如果是硬件条件一样,我们可以直接看出测试对象跟原来方案有着多少差异。

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

船舶柴油机主推进动力装置832 第七章 柴油机的特性91题

第七章柴油机的特性91题 第一节船舶柴油机的工况和运转特性的基本概念11题 考点1:船舶柴油机的运转工况5题 1 发电机工况 电力传动的船舶主机和发电副机按发电机工况运行。在这种工况下,为了保持电网电压稳定和一定的电流频率,由调速器控制柴油机保持恒速运转。它的功率随着航行条件的变化或船舶用电量的变化,可以从零变化到最大许用值。因此,柴油机的发电机工况是转速不变而功率随时发生变化的工况。 2 螺旋桨工况 用来直接驱动螺旋桨的船舶主机是按螺旋桨工况运行的。在此工况下,柴油机按一定的转速将其功率通过轴系传给螺旋桨,螺旋桨在水中旋转产生推力克服船舶航行阻力使船保持航速。螺旋桨的吸收功率就等于主机发出的功率(忽略轴系的传递损失情况)。在螺旋桨工况下,柴油机发出的功率和其转速都是改变的。螺旋桨在工作时其吸收功率与转速的m次方成比例(P p=cn m)。通常在稳定运转时,螺旋桨吸收功率P p与转速n的三次方成比例,即P p∝n3。相应柴油机功率Pe 与转速的关系可写成Pe=cn3。我们把柴油机按此关系运转的工况称为柴油机的螺旋桨工况。 3 其他工况 柴油机在此类工况下运行时,它的功率与转速之间没有一定的关系。柴油机的转速是由工作机械所需的速度决定的,而功率则由运行中所遇到的阻力决定。比如驱动调距桨的主机是根据不同的调距桨叶的角度在某一转速下要求不同的功率;驱动应急救火泵或应急空压机的柴油机分别要求符合水泵或空压机的工况;即使直接驱动螺旋桨的主机,当航行条件和运行状态发生变化时(海面状况、气象条件、航区、装载、船舶污底以及船舶转向等),船舶阻力发生改变,通过螺旋桨影响主机的功率和转速。 A1.柴油机转速不变而功率随时发生变化的工况,称为()。 A.发电机工况 B.螺旋桨工况 C.面工况 D.应急柴油机工况 B2. 柴油机的功率随转速按三次方关系而变化的工况,称为()。 A.发电机工况 B.螺旋桨工况 C.面工况 D.应急柴油机工况 C3. 柴油机在同一转速下可有不同输出功率,在同一功率下可有不同转速,这种工况称为()。 A.发电机工况 B.螺旋桨工况 C.面工况 D.应急发电机工况

数据库选型的五大要素

数据库选型的五大要素 ■ 余詠衡 如果引用结构化的决策方法,确保本文所介绍的数据库选型应考虑的五大要素都得到全面及客观的评估,那么根据其与项目、产品和组织的关系进行利害权衡,就能做出理智的数据库选型决策。 面对品种繁多的数据库产品,如何才能独具慧眼,选中适合自己的数据库产品呢?众所周知,正确的评估、选型与数据库技术本身同样重要。而通常,数据库厂商都会在性能清单和技术基准表中尽量展现产品最佳的一面,对产品弱点却避免提及或进行遮掩,关于这一点,业界已经是人尽皆知了。其实在挑选和评估过程中,首要目标是选择一款能够满足甚至超过预定要求的技术或解决方案。选型的正确方法将使用户在面对众多产品时,提高其做出最佳选择的能力。而数据库选型时,必须考虑以下五大因素。 开发要求 首先,需要清楚自己究竟想使用什么开发技术。例如,你是要以https://www.360docs.net/doc/288369036.html,访问传统的关系型数据库?还是要以纯面向对象技术构建J2EE应用平台?又或是需要建设XML Web Services?如果你要实现的是纯关系型的开发典范,那么实际要使用的受支持的标准(和非标准)SQL功能有多少? 如果你要规划的是面向对象开发策略,那么在原计划里的数据库支持真正的面向对象吗?它是如何支持的?若有需要,它能同时提供SQL的功能吗?数据库支持这个功能吗?虽然有些关系型数据库声称支持面向对象开发,但实际上并不是直接支持的。这种非直接的体系结构将导致更多的事务处理故障,以及潜在的可升级性和性能问题。 另外,你还需要确定自己的前端技术如何与后端进行“对话”。你的业务逻辑是放在客户机一端呢?还是放在服务器一端?你要使用哪些脚本语言?它们与后端服务器的兼容性如何?它们是 快速应用开发(RAD)环境吗? 目前,实现基于关系型数据库的应用可以选择传统的主流品牌,这些数据库产品有着很成熟的关系技术以及广泛的应用资源。但是,如果实现的是基于面向对象技术的应用、又或是数据结构更为复杂时,不妨考虑目前一些公司推出的所谓后关系数据库。它所代表的正好是关系数据库和面向对象技术的融合,以多维数据引擎作为核心,从根本上支持复杂的对象存储及主流的二维表,同时也已经配备了功能强大的应用服务引擎,可作对象逻辑操作的平台。它的出现已经为传统数据库领域带来了冲击,而在面向对象数据库方面更是广受欢迎。 平衡性能与成本 测量数据库性能最常见的方法是TPC基准。TPC明确地定义了数据库方案、数据量以及SQL查询。测量的结果是,在特定的操作系统上,配置了特定的数据库版本,以及在惊人的硬件条件下,每项事

柴油机负荷特性

实验二柴油机负荷特性 1、掌物柴油机负荷特性的试验方法。 2、学会对实验数据进行处理以及对实验结果进行分析,并绘制柴油机负荷特性曲线图。 二、实验条件 1、SOFIM-8140增压柴油发动机(Pemax=76kw/3800r/min)一台 2、CW150型电涡流测功机一台 3、FCM-D转速油耗测量仪一台 4、液体密度计一只 5、温度计一只 6、大气压力计一只 7、柴油 10升 三、实验原理 柴油机负荷特性:在保持柴油机转速 n不变的情况下,调节柴油机喷油泵齿条或拉杆的位置,改变每循环供油量,研究发动机的燃油消耗量B、燃油消耗率 be与功率Pe之间的关系。 四、实验内容和要求 1、调节柴油机喷油泵拉杆(油门)开度及指挥全组协调动作,一人;当发动机出现异常情况时应立即减小或关闭节气门。 2、调整测功机负荷,一人;测功机负荷的调整应均匀、准确,尽量避免大幅度增加或减小测功机负荷,造成发动机的转速剧烈波动。 3、监视发动机转速和测量油耗,一人;监视转速时,应注意转速的上下波动情况,当转速的波动值超过±20r/min,该组实验数据应视为无效并重做。 4、调节,监视发动机冷却水出水温度,一人;保持发动机动机冷却水出水温度稳定在80±5℃范围内,出现气阻现象(无冷却水排除或冷却水出水温度超过100℃),应立即报告,以便及时停机。 5、监视发动机机油压力、温度,一人;出现异常情况应及时报告。

6、记录测功机读数W、发动机转速n、耗油质量△m和耗油时间△t, 一人;实验数据记录应准确无误。 7、绘制实验监督曲线,一人;当发现实验过程中因某些特殊原因而引起误差过大的点,应及时指出,以便立即补测校正。

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

柴油发电机主要性能指标

柴油发电机组的主要性能指标有哪些 柴油发电机的技术性能指标,是衡量机组供电质量和经济指标的主要依据。其主要技术性能通常指机组的功率因数从0.8~1.0,三相对称负载在0~100%或100%~0额定值的范围内渐变或突变时,应达到的性能。 (一)稳定电压调整率δu 式中U1——负载变化后的温度电源的最大值(或最小值); U——空载整定电压值。 Ⅰ~Ⅲ类机组δu为±(1~3)%;Ⅳ类机组δu不超过±5%。 (二)稳态频率调整率δf 式中f1——负载渐变后的稳态频率的最大值(或最小值); f2——额定负载时的频率; f——额定频率。 Ⅰ~Ⅲ类机组δf为0.5%~3%;Ⅳ类机组δf不超过5%。

(三)电压稳定时间 从负载突变时算起到电压开始稳定所需的时间,通常用示波器来测量。 Ⅰ~Ⅲ类机组电压稳定时间为0.5~1s;Ⅳ类机组电压稳定时间为3s。 (四)频率稳定时间 从负载突变时起算到频率开始稳定多需的时间,通常也是用示波器来测量。 Ⅰ~Ⅲ类机组频率稳定时间为2~5s;Ⅳ类机组频率稳定时间为7s。 (五)空载电压整定范围 机组整定电压应能在额定值的95%~105%范围内调节和稳定工作。例如额定电压为400V的机组,其空载电压可在380~420V之间调整。 (六)在三相不对称负载下运行电压的稳定度

机组供电在三相不对称负载下运行时,如果每相电流都不超过额定值,而且各相电流之差不超过额定值的25%,则各线电压与三相电压平均值之差应不超过三相线电压平均值的5%。 (七)机组的并机性能 两台规格型号完全相同的三相机组,在额定功率因数下,应能在20%~100%额定功率范围内稳定并联运行。为了提高有功功率和无功功率,合理分配精度和运行的稳定性,要求机组中柴油机调速器具有在稳态调速率2%~5%范围内调节的装置。在控制箱(屏)内的调压装置可使稳态电压调整率在5%范围内调整。 此外,还有电压、频率波动率、超载运行时限、瞬态电压、频率调整率及直接启动空载异步电动机等性能。随着及时的发展,国产和引进的各类机组还具有其他特殊的性能,这类不多介绍。

发动机特性曲线

161 161 第11章 发动机特性 11.1基本概念 全面了解发动机在所有工况下的性能指标的变化,对合理使用、检查与维修发动机,都有很强的适用价值。 11.1.1 发动机特性与特性曲线 1.发动机特性 发动机性能指标随调整情况及运转情况而变化的关系称为发动机特性。发动机性能指标主要有功率、转 矩、燃料消耗率、排气温度、排气烟度等; 调整情况主要指柴油机的供油提前角、汽油 机的点火提前角、发动机燃料等可调因素对 发动机性能的影响;运转情况一般指发动机 转速和负荷等。 2.特性曲线 为了直观显示发动机的特 性,常以曲线形式表示,称为发动机特性曲 线。图11-1为Audi (奥迪) 2.4L 四缸5 气门汽油机的外特性曲线。 3.发动机特性分类 发动机特性分调节特性和性能特性两大 类。 (1)调节特性 指发动机的性能指标随 调节情况而变化的关系。如柴油机的供油提 前角调节特性、汽油机的点火提前角调节特 性、汽油机的燃料调节特性等。 (2)性能特性 指内燃机的性能指标随 运行工况而变化的关系。如负荷特性、速度特性、调速特性、万有特性、螺旋桨特性等。 图11-1 发动机特性曲线 (Audi 2.4L5气门V6汽油机外特性)

162 162 11.1.2 发动机特性的制取 发动机特性需在专门的试 验台(俗称发动机台架)上进 行,图11-2显示了带水力测功 器的试验台的基本组成。它可 以模拟发动机的实际工况,使 其在要求的转速和负荷下工 作,并可以同步测量发动机在 各种工况下的功率、燃料消耗、 废气排放、气缸压力等性能参 数。 发动机特性试验,国家已 有标准,需按有关标准,在规 定的条件下进行。 11.2 发动机调节特性 发动机调节特性对发动机的正确调整、使用与维修关系 密切,值得重视。 11.2.1 柴油机供油提前角 调节特性 它是指在发动机转速一定和油量控制机构(如喷油泵的供油拉杆)位置一定条件下,其功率、燃料消耗率等性能指标随供 油提前角变化而变化的关系。 图11-3为柴油机供油提前角调节特性曲 线。由曲线可见,随着供油提前角θ的改变, 发动机的功率与燃料消耗率也随着变化。对应 于最大功率和最小燃料消耗率的供油提前角即 为最佳供油提前角。发动机使用维修时,应注 意按照使用说明书要求,检查调整发动机静态 最佳供油提前角。 最佳供油提前角是随着发动机的转速变化 而变化的,它一般由供油提前角自动调节装置 来控制。对于电控柴油机,则由ECU 根据发动 机工况精确控制。 11.2.2 汽油机点火提前角调节特性 它是指在发动机转速和节气门开度一定条件下,其功率、燃料消耗率等性能指标随点火提前角变化而变化的关系。 图11-2 发动机试验台 1-发动机 2-数显水温表 3-数显油压表 4-数显排温表 5-油门执行器 6-转速表 7- 负荷表 8-水门执行器 9-水温传感器 10-油压传感器 11-排温传感器 12-气 缸压力传感器 13-油压传感器 14-针阀升程仪 15-电 荷放大器 16-电荷放大器 17-霍尔针阀传感器 18-示波器 19-水力测功器 20-转角信号发生器 21-电荷放大器 22-A/D转换板 23-微机 24-打印机 25-显示器 图11-3 柴油机供油提前角调

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

相关文档
最新文档