算法设计与实验报告讲解
算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法设计实验报告

算法设计实验报告一、实验目的本次算法设计实验的主要目的是通过实际操作和分析,深入理解算法的原理和应用,提高解决实际问题的能力,培养创新思维和逻辑推理能力。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
同时,为了进行算法的性能分析和可视化,还使用了一些相关的库,如 time 用于计算时间开销,matplotlib 用于绘制图表。
三、实验内容(一)排序算法的实现与比较1、冒泡排序冒泡排序是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
以下是冒泡排序的 Python 代码实现:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n i 1):if arrj > arrj + 1 :arrj, arrj + 1 = arrj + 1, arrj```2、快速排序快速排序是对冒泡排序的一种改进。
它采用了分治的策略,通过选择一个基准元素,将待排序的序列分割成两个子序列,其中一个子序列的所有元素都小于等于基准元素,另一个子序列的所有元素都大于等于基准元素,然后对这两个子序列分别进行快速排序。
以下是快速排序的 Python 代码实现:```pythondef quick_sort(arr, low, high):if low < high:pi = partition(arr, low, high)quick_sort(arr, low, pi 1)quick_sort(arr, pi + 1, high)def partition(arr, low, high):pivot = arrhighi =(low 1)for j in range(low, high):if arrj <= pivot:i = i + 1arri, arrj = arrj, arriarri + 1, arrhigh = arrhigh, arri + 1return (i + 1)```(二)搜索算法的实现与比较1、顺序搜索顺序搜索是一种最简单的搜索算法,它从数组的开头开始,依次比较每个元素,直到找到目标元素或者遍历完整个数组。
算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。
算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。
本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。
二、算法分析算法分析是评估算法性能的过程。
在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。
常用的算法分析方法包括时间复杂度和空间复杂度。
1. 时间复杂度时间复杂度衡量了算法执行所需的时间。
通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。
常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。
2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。
通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。
常见的空间复杂度有O(1)、O(n)和O(n^2)等。
其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。
三、算法设计算法设计是构思和实现算法的过程。
好的算法设计能够提高算法的效率和可靠性。
常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。
1. 贪心算法贪心算法是一种简单而高效的算法设计方法。
它通过每一步选择局部最优解,最终得到全局最优解。
贪心算法的时间复杂度通常较低,但不能保证得到最优解。
2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。
它通过保存子问题的解,避免重复计算,提高算法的效率。
动态规划适用于具有重叠子问题和最优子结构的问题。
3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。
算法设计与分析实验报告

算法设计与分析实验报告算法设计与分析实验报告引言:算法设计与分析是计算机科学中的重要课程,它旨在培养学生解决实际问题的能力。
本次实验旨在通过设计和分析不同类型的算法,加深对算法的理解,并探索其在实际应用中的效果。
一、实验背景算法是解决问题的步骤和方法的描述,是计算机程序的核心。
在本次实验中,我们将重点研究几种经典的算法,包括贪心算法、动态规划算法和分治算法。
通过对这些算法的设计和分析,我们可以更好地理解它们的原理和应用场景。
二、贪心算法贪心算法是一种基于局部最优选择的算法,它每一步都选择当前状态下的最优解,最终得到全局最优解。
在实验中,我们以背包问题为例,通过贪心算法求解背包能够装下的最大价值物品。
我们首先将物品按照单位重量的价值从大到小排序,然后依次将能够装入背包的物品放入,直到背包无法再装下物品为止。
三、动态规划算法动态规划算法是一种通过将问题分解为子问题,并记录子问题的解来求解整体问题的算法。
在实验中,我们以斐波那契数列为例,通过动态规划算法计算斐波那契数列的第n项。
我们定义一个数组来保存已经计算过的斐波那契数列的值,然后通过递推公式将前两项的值相加得到后一项的值,最终得到第n项的值。
四、分治算法分治算法是一种将问题分解为更小的子问题,并通过递归求解子问题的算法。
在实验中,我们以归并排序为例,通过分治算法对一个无序数组进行排序。
我们首先将数组分成两个子数组,然后对子数组进行递归排序,最后将两个有序的子数组合并成一个有序的数组。
五、实验结果与分析通过对以上三种算法的设计和分析,我们得到了以下实验结果。
在贪心算法中,我们发现该算法能够在有限的时间内得到一个近似最优解,但并不能保证一定得到全局最优解。
在动态规划算法中,我们发现该算法能够通过记忆化搜索的方式得到准确的结果,但在问题规模较大时,其时间复杂度较高。
在分治算法中,我们发现该算法能够将问题分解为更小的子问题,并通过递归求解子问题,最终得到整体问题的解。
算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。
2. 了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。
2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=,Yn-1=,Zk-1=。
最长公共子序列问题具有最优子结构性质。
由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
《算法设计与分析》课程实验报告 (贪心算法(一))

《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。
编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。
若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。
用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。
3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。
设计一个有效的贪心算法进行安排。
(这个问题实际上是著名的图着色问题。
若将每一个活动作为图的一个顶点,不相容活动间用边相连。
使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。
)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。
(2)掌握通过迭代求最优的程序实现技巧。
(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。
三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。
(2)给出题1的贪心选择性质的证明。
(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计与分析实验报告学院:信息学院专业:物联网1101姓名:黄振亮学号:20113379 2013年11月目录作业1 0-1背包问题的动态规划算法 (7)1.1算法应用背景 (3)1.2算法原理 (3)1.3算法描述 (4)1.4程序实现及程序截图 (4)1.4.1程序源码 (4)1.4.2程序截图 (5)1.5学习或程序调试心得 (6)作业2 0-1背包问题的回溯算法 (7)2.1算法应用背景 (3)2.2算法原理 (3)2.3算法描述 (4)2.4程序实现及程序截图 (4)2.4.1程序源码 (4)2.4.2程序截图 (5)2.5学习或程序调试心得 (6)作业3循环赛日程表的分治算法 (7)3.1算法应用背景 (3)3.2算法原理 (3)3.3算法描述 (4)3.4程序实现及程序截图 (4)3.4.1程序源码 (4)3.4.2程序截图 (5)3.5学习或程序调试心得 (6)作业4活动安排的贪心算法 (7)4.1算法应用背景 (3)4.2算法原理 (3)4.3算法描述 (4)4.4程序实现及程序截图 (4)4.4.1程序源码 (4)4.4.2程序截图 (5)4.5学习或程序调试心得 (6)作业1 0-1背包问题的动态规划算法1.1算法应用背景从计算复杂性来看,背包问题是一个NP难解问题。
半个世纪以来,该问题一直是算法与复杂性研究的热点之一。
另外,背包问题在信息加密、预算控制、项目选择、材料切割、货物装载、网络信息安全等应用中具有重要的价值。
如果能够解决这个问题那么则具有很高的经济价值和决策价值,在上述领域可以获得最大的价值。
本文从动态规划角度给出一种解决背包问题的算法。
1.2算法原理1.2.1、问题描述:给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi ∈{0,1}, ∋∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
1.2.2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:证明:使用反证法。
若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。
1.2.3、递推关系:设所给0-1背包问题的子问题的最优值为m(i ,j),即m(i ,j)是背包容量为j ,可选择物品为i ,i+1,…,n 时0-1背包问题的最优值。
由0-1背包问题的最优子结构性质,可以建立计算m(i ,j)的递归式:注:(3.4.3)式此时背包容量为j ,可选择物品为i 。
此时在对xi 作出决策之后,问题处于两种状态之一:(1)背包剩余容量是j,没产生任何效益; (2)剩余容量j-wi,效益值增长了vi ;1.3算法描述int m[100][100];//前i 个物品装入容量为j 的背包中获得的最大价值 int s;//获得的最大价值 int w[15];//物品的重量 int v[15];//物品的价值int x[15];//物品的选取状态,1表示被选中 0表示未选中 int n,i;int c;//背包最大容量int max(int a,int b)//获得最大值 int min(int a,int b)//获得最小值void KnapSack(int n,int w[],int v[],int c)//背包问题主算法先为m[n][j] 初始化初值然后根据递归方程式进行穷举递归直到 m[1][c], m[1][c] 即为所获得的最大价值。
void Traceback(int n,int w[],int x[],int c)//回溯算法,依次标注被选中的物品通过一个循环过程检验装入第i 个物品与装入i+1个物品的价值如果相同,则x[i]=0。
1.4程序实现及程序截图 1.4.1程序源码#include<iostream> using namespace std;int m[100][100];//前i 个物品装入容量为j 的背包中获得的最大价值 int max(int a,int b) {if(a>=b) return a; else return b; }int min(int a,int b){if(a>=b)return b;else return a;}void KnapSack(int n,int w[],int v[],int c){int i,j;int jMax=min(w[n]-1,c);for(j=0;j<=jMax;j++) m[n][j]=0;for(j=w[n];j<=c;j++) m[n][j]=v[n];for(i=n-1;i>1;i--){jMax=min(w[i]-1,c);for(j=0;j<=jMax;j++) m[i][j]=m[i+1][j];for(j=w[i];j<c;j++)m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c]=m[2][c];if(c>=w[1])m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);}void Traceback(int n,int w[],int x[],int c){int i;for(i=1;i<n;i++)if(m[i][c]==m[i+1][c]) x[i]=0;else{x[i]=1;c-=w[i];}x[n]=(m[n][c])?1:0;}int main() {int s;//获得的最大价值int w[15];//物品的重量int v[15];//物品的价值int x[15];//物品的选取状态int n,i;int c;//背包最大容量cout <<"请输入背包的最大容量:"<< endl;cin>>c;cout<<"输入物品数:\n"<<endl;cin>>n;cout<<"请分别输入物品的重量:"<<endl;for(i=1;i<=n;i++)cin>>w[i];cout<<"请分别输入物品的价值:"<<endl;for(i=1;i<=n;i++)cin>>v[i];KnapSack(n,w,v,c);Traceback(n,w,x,c);s=m[1][c];cout<<"最大物品价值为:"<<endl;cout<<s<<endl;cout<<"选中的物品为:"<<endl;for(i=1;i<=n;i++)cout<<x[i];return 0;}1.4.2程序截图1.5学习或程序调试心得利用动态规划求解0-1背包问题的复杂度为0(min{nc,2n}。
动态规划主要是求解最优决策序列,当最优决策序列中包含最优决策子序列时,可建立动态规划递归方程,它可以帮助高效地解决问题。
作业2 0-1背包问题的回溯算法1.1算法应用背景背包问题是一个在运筹学领域里常见的典型NP-C 难题,也是算法设计分析中的经典问题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有重要意义。
对这个问题的求解已经研究出了不少的经典方法,对该问题的探索和应用研究一直在进行。
在先进理论指导下,求解0-1背包问题具有科学、高效、经济、灵活、方便等显著特点。
那么要解决背包问题,首要的前提就是设计出好的算法,想求得背包问题的解,就要先设计出算法,本文采用回溯法对背包问题给出具体算法设计和实现过程。
如何将背包问题应用于实际问题中,有针对性地设计适合求解实际0-1背包问题的算法,并很好地解决实际问题,是计算机工作者不断思索、研究的一个领域。
2.2算法原理 2.2.1 问题描述问题的一般描述是:旅行者背包登山,背包的最大承重为M ,现有n 个物品可供选择装入背包,第i 个物品莺量为wi ,价值为pi ,假定物品i 的一部分xi(0≤xi ≤1)放人背包,获得价值为xipi ,由于背包最大承重为M ,要求装入物品总质量不过超过M ,问旅行者应该如何选择物品装入背包,使得装入物品的价值总和达到最大值。
背包问题的数学描述如下:要求找到一个n 元向量(x1,x2…xn),在满足约束条件:⎪⎩⎪⎨⎧≤≤≤∑10i i i x Mw x 情况下,使得目标函数p x ii ∑max ,其中,1≤i ≤n ;M>0;wi>0;pi>0。
满足约束条件的任何向量都是一个可行解,而使得目标函数达到最大的那个可行解则为最优解。
给定n 种物品和1个背包。
物品i 的重量是wi ,其价值为pi ,背包的容量为M 。
问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。
不能将物品i 装人背包多次,也不能只装入部分的物品i 。
该问题称为0-1背包问题。
0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得M wx ii≤∑ ,而且p x ii∑达到最大。
2.2.2算法分析1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。
问题的解空间应到少包含问题的一个(最优)解。
2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始结点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的活结点,并成为当前扩展结点。