人教版初一数学下册第六章测试卷
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。
真命题的逆命题都是真命题B。
无限小数都是无理数C。
0.720精确到了百分位D。
16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。
3B。
7C。
3或7D。
1或73.3(-1)²的立方根是()A。
-1B。
1C。
-4D。
44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。
-1B。
-1/2C。
3/2D。
25.若a=2,则a的值为()A。
2B。
±2C。
4D。
±46.下列计算中,错误的是()A。
30.125=0.5B。
3-273=-644C。
33/31=1/82D。
-3/8²=-125/577.下列说法正确的是()A。
实数分为正实数和负实数B。
3/2是有理数C。
0.9是有理数D。
30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有() A。
2个B。
3个C。
4个D。
5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。
4 cm~5 cm之间B。
5 cm~6 cm之间C。
6 cm~7 cm之间D。
7 cm~8 cm之间10.计算-4-|-3|的结果是()A。
-1B。
-5C。
1D。
5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。
15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。
人教版数学七年级下册第六章测试卷(含答案)

初中数学人教版七年级下学期 第六章测试卷一、单选题(共4题;共8分)1. ( 2分 )√16 等于( )A. 4B. -4C. ±4D. ±22. ( 2分 ) 25的算术平方根是( )A. 5B. ±5C. -5D. ± √5 3. ( 2分 ) 若 √x 3+√y 3=0 ,则x 和y 的关系是( ).A. x =y =0B. x 和y 互为相反数C. x 和y 相等D. 不能确定4. ( 2分 ) 在 π , 13 , 0.4•, 0.101001…(每两个1之间多一个0), ﹣2 中,无理数的个数是( )A. 1B. 2C. 3D. 4 二、填空题(共8题;共10分)5. ( 1分 ) 平方得9的数是________.6. ( 1分 ) 一个实数的两个平方根分别是a+3和2a -5,则这个实数是________.7. ( 1分 )(−4)2 的算术平方根为________8. ( 1分 ) -0.008的立方根是________ 。
9. ( 1分 ) 已知x 满足(x+3)3=64,则x 等于________.10. ( 1分 ) 某个正数的平方根是x 与y ,3x ﹣y 的立方根是2,则这个正数是________.11. ( 1分 ) 已知 √5 的小数部分是a , √7 的整数部分是b ,则a+b =________.12. ( 3分 ) 把下列各数的序号填到相应的横线上:① √25 ,② −√7 ,③227 ,④0,⑤π,⑥-3.14,⑦2.9,⑧1.3030030003…(每两个3之间多一个0)。
整数:________;负分数:________;无理数:________。
三、计算题(共2题;共10分)13. ( 5分 ) 计算: (−1)3+|1−√2|+√83−√(−2)214. ( 5分 ) 计算: √12−(12)−1−|2−√3|+(2019−π)0答案解析部分一、单选题1.【答案】 A【考点】算术平方根【解析】【解答】解:√16=4.故答案为:A.【分析】根据算术平方根的定义,即正数正的平方根。
人教版初中七年级下册数学第六章单元测试卷(3)(附答案解析)

单元检测卷一.选择题.1.(3分)一块面积为10m2的正方形草坪,其边长()A.小于3m B.等于3m C.在3m与4m之间D.大于4m2.(3分)﹣是的()A.相反数B.倒数C.绝对值D.算术平方根3.(3分)若a=,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<54.(3分)如图所示,下列存在算术平方根的是()A.a﹣b B.ab C.b﹣a D.a+b5.(3分)若式子+有意义,则x的取值范围是()A.x≥2 B.x≤3 C.x≥3 D.2≤x≤36.(3分)下列说法不正确的是()A.无理数是无限不循环小数B.凡带根号的数都是无理数C.开方开不尽的数是无理数D.数轴上的点不是表示有理数,就是表示无理数7.(3分)已知a≠0,a、b互为相反数,则下列各组数中互为相反数的有()①a+1与b+1;②2a与2b;③与;④与.A.1组 B.2组 C.3组 D.4组8.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.499.(3分)下列式子中,正确的是()A.10<<11 B.11<<12 C.12<<13 D.13<<14 10.(3分)在实数﹣7,0.9,,﹣,,中,无理数有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B 的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+1二.填空题.12.(3分)的值为.13.(3分)写出一个3到4之间的无理数.14.(3分)﹣8的立方根与4的平方根之和为.15.(3分)若|x﹣1|=,则x=.16.(3分)观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).三.解答题.17.计算.(1)++(2)|﹣|+.18.已知5+的小数部分是a,4﹣的小数部分是b,求a+b的值.19.求满足下列各式x的值.(1)2y2﹣8=0(2)(x+3)3=﹣27.20.若c=,其中a=6,b=8,求c的值.21.若c2=a2+b2,其中c=25,b=15,求a的值.22.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?23.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:2==.(1)请仿照上例化简.①3②﹣(2)请化简a.参考答案与试题解析一.选择题.1.(3分)一块面积为10m2的正方形草坪,其边长()A.小于3m B.等于3m C.在3m与4m之间D.大于4m【考点】2B:估算无理数的大小.【分析】易得正方形的边长,看在哪两个正整数之间即可.【解答】解:正方形的边长为,∵<<,∴3<<4,∴其边长在3m与4m之间,故选C.【点评】考查估算无理数的大小;常用夹逼法求得无理数的范围.2.(3分)﹣是的()A.相反数B.倒数C.绝对值D.算术平方根【考点】28:实数的性质.【分析】和为0的两数为相反数,由此即可求解.【解答】解:∵﹣+=0,∴﹣是的相反数.故选:A.【点评】本题主要考查了相反数的概念:两个相反数它们符号相反,绝对值相同.3.(3分)若a=,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【解答】解:∵16<20<25,∴4<<5.故选:D.【点评】此题主要考查了无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.4.(3分)如图所示,下列存在算术平方根的是()A.a﹣b B.ab C.b﹣a D.a+b【考点】22:算术平方根.【分析】根据a、b在数轴上的位置确定出b﹣a<0,a+b<0,a﹣b>0,ab<0,然后再根据算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根可得a﹣b有算术平方根.【解答】解:根据数轴可得:a>0,b<0,|a|<|b|,则:b﹣a<0,a+b<0,a﹣b>0,ab<0,存在算术平方根的是a﹣b,故选:A.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念,非负数a 的算术平方根a 有双重非负性:①被开方数a是非负数;②算术平方根a 本身是非负数.5.(3分)若式子+有意义,则x的取值范围是()A.x≥2 B.x≤3 C.x≥3 D.2≤x≤3【考点】72:二次根式有意义的条件.【专题】11 :计算题.【分析】根据二次根式有意义的条件可得,然后再解不等式组可得解集.【解答】解:由题意得,解①得:x≥2,解②得:x≤3,不等式组的解集为:2≤x≤3,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.6.(3分)下列说法不正确的是()A.无理数是无限不循环小数B.凡带根号的数都是无理数C.开方开不尽的数是无理数D.数轴上的点不是表示有理数,就是表示无理数【考点】26:无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行选择.【解答】解:A、无理数是无限不循环小数,该说法正确,故本选项错误;B、不是所有根号的数都是无理数,例如是有理数,原说法错误,故本选项正确;C、开方开不尽的数是无理数,该说法正确,故本选项错误;D、数轴上的点不是表示有理数,就是表示无理数,该说法正确,故本选项错误.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.(3分)已知a≠0,a、b互为相反数,则下列各组数中互为相反数的有()①a+1与b+1;②2a与2b;③与;④与.A.1组 B.2组 C.3组 D.4组【考点】28:实数的性质.【分析】根据互为相反数的和为0,可得两个数的关系.【解答】解:a≠0,a、b互为相反数,①a+1+b+1=2,故①不是相反数;②2a+2b=2(a+b)=0,故②是相反数;③0,故③不是相反数;④=0,故④是相反数.故选:B.【点评】本题考查了相反数,注意不为0的两个数的和为0,这两个数互为相反数.8.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.49【考点】21:平方根.【专题】11 :计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(﹣0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7.故选B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9.(3分)下列式子中,正确的是()A.10<<11 B.11<<12 C.12<<13 D.13<<14【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】先把127前后的两个完全平方数找到,即可判断的范围.【解答】解:∵102=100,112=121,122=144,且121<127<144,∴11<<12故选B.【点评】此题要考查了利用平方的方法来估算无理数的大小,要求小数熟练掌握平方根的性质.10.(3分)在实数﹣7,0.9,,﹣,,中,无理数有()A.1个 B.2个 C.3个 D.4个【考点】26:无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:=3,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11.(3分)如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B 的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+1【考点】29:实数与数轴.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解.数轴上两点间的距离等于数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【解答】解:设点C所对应的实数是x.则有x﹣=﹣1,x=2﹣1.故选A.【点评】此题主要考查了数轴上两点间的距离的计算方法以及中心对称的性质,解题关键利用对称的性质及数轴上两点间的距离解决问题.二.填空题.12.(3分)的值为1.【考点】73:二次根式的性质与化简;6E:零指数幂;6F:负整数指数幂.【专题】11 :计算题.【分析】根据0指数,负整数指数的性质,二次根式的性质进行计算.【解答】解:原式=(﹣2)+1+2=1.故答案为:1.【点评】本题考查了0指数,负整数指数的性质,二次根式的性质.a﹣p=(a ≠0),a0=1(a≠0),=a(a≥0).13.(3分)写出一个3到4之间的无理数π.【考点】2B:估算无理数的大小.【专题】26 :开放型.【分析】按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.【解答】解:3到4之间的无理数π.答案不唯一.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.14.(3分)﹣8的立方根与4的平方根之和为0或﹣4.【考点】2C:实数的运算;21:平方根;24:立方根.【专题】11 :计算题.【分析】利用平方根及立方根的定义列出算式,计算即可得到结果.【解答】解:根据题意得:﹣8的立方根为﹣2,4的平方根为±2,则﹣8的立方根与4的平方根之和为0或﹣4.故答案为:0或﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(3分)若|x﹣1|=,则x=+1,1﹣.【考点】28:实数的性质.【专题】11 :计算题.【分析】根据到一点距离相等的点有两个,可得答案.【解答】解:|x﹣1|=,x﹣1=或x﹣1=﹣,x=+1,或x=1﹣,故答案为:+1,1﹣.【点评】本题考查了实数的性质,到一点距离相等的点有两个,注意不要漏掉.16.(3分)观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).【考点】37:规律型:数字的变化类.【专题】2A :规律型.【分析】第一数为;第二个数为;第3个数为,那么第n个数为.【解答】解:第n个数为.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.三.解答题.17.计算.(1)++(2)|﹣|+.【考点】2C:实数的运算.【专题】11 :计算题.【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式利用绝对值及二次根式的化简公式计算即可得到结果.【解答】解:(1)原式=9﹣3+4=10;(2)原式=﹣+3﹣=3﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知5+的小数部分是a,4﹣的小数部分是b,求a+b的值.【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】首先得出的取值范围,进而分别得出a,b的值,即可得出答案.【解答】解:∵<<,∴2<<3,∴5+的小数部分是a,则a=5+﹣7=﹣2+,∵4﹣的小数部分是b,∴b=4﹣﹣1=3﹣,∴a+b的值为:﹣2++3﹣=1.【点评】此题主要考查了估计无理数的方法,得出a,b的值是解题关键.19.求满足下列各式x的值.(1)2y2﹣8=0(2)(x+3)3=﹣27.【考点】24:立方根;21:平方根.【专题】11 :计算题.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义化简即可求出解.【解答】解:(1)方程变形得:y2=4,开方得:y=±2;(2)开立方得:x+3=﹣3,解得:x=﹣6.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.20.若c=,其中a=6,b=8,求c的值.【考点】22:算术平方根.【专题】11 :计算题.【分析】将a与b的值代入已知等式计算即可求出c的值.【解答】解:当a=6,b=8时,c=====10.【点评】此题考查了算术平方根,熟练掌握平方根定义是解本题的关键.21.若c2=a2+b2,其中c=25,b=15,求a的值.【考点】22:算术平方根.【专题】11 :计算题.【分析】将b与c代入已知等式计算即可求出a的值.【解答】解:将c=25,b=15,代入c2=a2+b2,得625=a2+225,∴a2=400,解得:a=±20.【点评】此题考查了算术平方根,熟练掌握平方根定义是解本题的关键.22.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【考点】24:立方根.【专题】12 :应用题.【分析】由于个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程1000﹣8x3=488,解方程即可求解.【解答】解:设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.【点评】此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.23.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:2==.(1)请仿照上例化简.①3②﹣(2)请化简a.【考点】73:二次根式的性质与化简.【专题】11 :计算题.【分析】(1)利用已知计算方法将根号外的因数平方后移到根号内部即可;(2)利用已知计算方法将根号外的因式平方后移到根号内部即可,注意符号.【解答】解:(1)①3==,②﹣=﹣=﹣;(2)a=﹣=﹣.【点评】此题主要考查了二次根式的化简,正确确定二次根式的符号是解题关键.。
人教版七年级数学下册 第6章 实数 单元综合测试卷(试卷)

第6章实数单元综合测试卷班级:姓名:一、选择题(每小题3分,共30分)1.144的算术平方根是()A.12B.-12C.±12D.122.下列各数是无理数的是()A.0B.-1C.2D.373.83=()A.±2B.-2C.2D.224.一个实数a的相反数是10,则a等于()A.110B.10C.-110D.-105.下列各式正确的是()A.16=±4B.(-3)2=-3C.±81=±9D.-4=-26.估计23的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间7.下列说法正确的是()A.-1的倒数是1B.-1的相反数是-1C.1的算术平方根是1D.1的立方根是±18.下列说法错误的是()A.16的平方根是±2B.2是无理数C.-273是有理数9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定不是无理数;③负数没有立方根;④-19是19的平方根,其中正确的说法有()A.0个B.1个C.2个D.3个10.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0B.ab>0C.|a|+b<0D.a-b>0二、填空题(每小题3分,共30分)11.49的平方根是,216的立方根是.12.若一个数的算术平方根等于它本身,则这个数的立方根是.13.显示的结果是.14.写出一个大于3小于5的无理数:.15.实数a在数轴上的位置如图,则|a-3|=.16.13是m的一个平方根,则m的另一个平方根是,m=.17.273的平方根是,-64的立方根是.18.关于12的叙述,有下列说法,其中正确的说法有个.(1)12是有理数;(2)面积为12的正方形边长是12;(3)在数轴上可以找到表示12的点.19.一个数值转换器,原理如下:当输入的x=16时,输出的y等于.20.若实数x,y满足(2x+3)2+|9-4y|=0,则xy的立方根为.三、解答题(共60分)21.(6分)计算:(1)求252-242的平方根;(2)求338的立方根.22.(6分)计算:(1)(-2)2-(3-5)-4+2×(-3).(2)-643-9+23.(6分)已知一个正数的平方根是3x-2和5x+6,求这个数.24.(6分)求下列各式中的x 的值:(1)25x 2=36;(2)(x+1)3=8.25.(6分)已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b 的平方根.26.(8分)一个圆形铁板的面积是424cm 2,求圆形铁板的半径.(精确到0.1)27.(12分)根据下表回答问题:xx 2x x 216.0256.0016.6275.5616.1259.2116.7278.8916.2262.4416.8282.2416.3265.6916.9285.6116.4268.9617.0289.0016.5272.25(1)268.96的平方根是多少?(2)285.6≈;(3)270在哪两个数之间?为什么?(4)表中与260最接近的是哪个数?28.(10分)(1)在实数范围内定义运算“ ”,其法则为:ab=a 2-b 2,求方程(4 3) x=24的解;(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.第6章实数单元综合测试卷答案与点拨1.A(点拨:144的算术平方根是144=12.)2.C(点拨:0,-1是整数,是有理数;37是分数,是有理数;2是开方开不尽的数,是无限不循环小数,是无理数.)3.C(点拨:83表示求8的立方根,故83=2.)4.D(点拨:因为-10的相反数是10,所以a 等于-10.)5.C(点拨:16表示16的算术平方根,16=4;(-3)2表示(-3)2(即9)的算术平方根,(-3)2=3;负数没有算术平方根.)6.C(点拨:因为16<23<25,所以16<23<25,即4<23<5,所以23的值在4到5之间.)7.C(点拨:-1的倒数是-1,相反数是1;1的算术平方根是1,立方根是1.)8.D(点拨:16=4,4的平方根是±2;2是无理数;-273=-3是有理数,不是分数.)9.B(点拨:④正确.)10.A(点拨:由数轴知a<0,b>0,|b|>|a|,所以a+b>0,ab<0,|a|+b>0,a-b<0.故选A.)11.±23612.0,1(点拨:算术平方根等于本身的数是0和1,所以它们的立方根分别为0和1.)13.-2(点拨:本题就是求36-8的值,即-2.)14.13或π(答案不唯一)15.3-a(点拨:由数轴上点的位置关系,得a<3,所以|a-3|=3-a.)16.-13169(点拨:由平方根的性质,一个正数的两个平方根互为相反数,得另一个平方根是-13,m=132=169.)17.±3-2(点拨:273=3,所以它的平方根是±3;-64是-8,所以它的立方根是-2.)18.2(点拨:12是无理数,不是有理数,故(1)不正确.)19.2(点拨:根据图中的步骤,把16输入,可得其算术平方根为4,把4再输入得其算术平方根是2,再将2输入得算术平方根是2,是无理数则输出.)20.-32(点拨:根据非负数的性质结合(2x+3)2+|9-4y|=0,得2x+3=0且9-4y=0,解得x=-32,y=94,所以xy=-32×94=-278,所以xy 的立方根为-32.)21.(1)因为252-242=49,而(±7)2=49,所以252-242的平方根是±7.(2)因为338=278,而()323=278,所以338的立方根是32.22.(1)原式=4-(-2)-2-6=-2.(2)原式=-4-3+35=-625.23.由正数平方根的性质得3x-2=-(5x+6),解得x=-12,∴这个数是(3x-2)2=éëêùûú3×()-12-22=494.24.(1)方程两边同时除以25得x2=3625.∴x=±65.(2)开立方,得x+1=83,∴x+1=2.解得x=1.25.由题意有{2a-3=25,2a+b+4=27,解得{a=14,b=-5.∴±a+b=±14-5=±3.故a+b的平方根为±3.26.设圆形铁板的半径为r cm,则πr2=424.解得r≈11.6.答:圆形铁板的半径约为11.6cm.27.(1)±16.4;(2)16.9;(3)由表知268.96<270<272.25,所以16.4<270<16.5,即270在16.4和16.5之间;(4)16.1.28.(1)∵a b=a2-b2,∴(4 3) x=(42-32) x=7 x=72-x2.∴72-x2=24.∴x2=25.∴x=±5.(2)由题意得2a=(±2)2,∴a=2.当a=2时,3a+b=6+b,由于33=6+b,∴b=21,∴a-2b=2-2×21=-40.。
人教版七年级数学下第六章检测题及答案解析

人教版七年级数学下第六章检测题及答案解析(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分) 1. 有下列说法:(1)开方开不尽的数的方根是无理数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 2.下列结论正确的是( ) A.6)6(2-=-- B.9)3(2=-C.16)16(2±=-D.251625162=⎪⎪⎭⎫ ⎝⎛-- 3. 已知=-1,=1,=0,则的值为( )A.0 B .-1 C. D.4. 在0,2,,5这四个数中,最大的数是( )A.0B.2D. 55.下列说法正确的是( ) A. 有理数都是有限小数 B. 无限小数都是无理数 C. 无理数都是无限小数 D. 有限小数是无理数6. 若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A. 2B. 4C.±2D. ±4 7.若901k k <<+ (k 是整数),则k =( ) A. 6 B. 7 C.8 D. 98.下列各式成立的是( )A.B.C.D.9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )A .2B .8C .3D .210. 若均为正整数,且,,则的最小值是( )A.3B.4C.5D.6 二、填空题(每小题3分,共24分)11. 4的平方根是_________;4的算术平方根是__________. 12. 比较大小:________.(填“>”,“<”或“=”)13. 已知5-a +3+b ,那么.14.在中,________是无理数.15.的立方根的平方是________. 16. 若5+的小数部分是,5-的小数部分是b ,则+5b = .17. 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= . 18.若a 、b 互为相反数,c 、d 互为负倒数,则=_______.三、解答题(共46分) 19.(6分)计算:(-1)3+-12×2-2;20. (6分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根.21.(6分)求出符合下列条件的数: (1)绝对值小于的所有整数之和; (2)绝对值小于的所有整数.21. (8分)求下列各数的平方根和算术平方根:.1615289169,22. (6分)求下列各数的立方根:.64,729.02718125,,-23. (6分)已知,求的值.25.(8分)先阅读下面的解题过程,然后再解答: 形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简347+.解:首先把347+化为1227+,这里7=m ,12=n , 由于,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述例题的方法化简:42213-.答案1. C 解析:本题考查对无理数的概念的理解.由于0是有理数,所以(3)应为无理数包括正无理数和负无理数.2.A 解析:选项B 中,错误;选项C 中,错误;选项D 中251625162-=⎪⎪⎭⎫ ⎝⎛--,错误; 只有A 是正确的.3. C 解析:∵∴,∴.故选C .4. B 解析:因为=1,所以在0,2,,-5这四个数中,根据正数大于0,0大于负数得,2最大,所以B 选项正确.5.C 解析:无理数是指无限不循环小数,也就是说无理数都是无限小数.6. C 解析:因为169的算术平方根为13, 所以 =13.又121的平方根为,所以 =-11, 所以4的平方根为,所以选C. 7. D 解析:∵ 81<90<100,∴ ,即910,∴ k =9.8.C 解析:因为所以,故A 不成立;因为 所以,故B 不成立;因为故C 成立; 因为所以D 不成立.9.D 解析:由题图得,64的算术平方根是8,8的算术平方根是2.故选D .10.C 解析:∵均为正整数,且,,∴ 的最小值是3,的最小值是2, ∴ 的最小值是5.故选C .11. 2± 2 解析:()2224,24,=-=∴Q 4的平方根是2±,4的算术平方根是2.12. < 解析:为黄金数,约等于0.618,=0.625,显然前者小于后者.13.8 解析:由5-a +3+b ,得,所以.14. 解析:因为所以在中,是无理数.15.解析:因为的立方根是,所以的立方根的平方是. 16. 2 解析:∵ 2<<3,∴ 7<5+<8,∴ =-2.又可得2<5-<3,∴ b =3-.将、b 的值代入+5b 可得+5b =2.故答案为2.17. 1 解析:[2☆(-4)]×[(-4)☆(-2)]=2-4×(-4)2=×16=1.18.-119. 解:原式=-1+3-12×=-1+3-3=-1. 20. 解:因为是的算术平方根, 所以又是的立方根,所以解得所以M =3,N =0,所以M + N =3. 所以M + N 的平方根为 21.解:(1)因为所以.所以绝对值小于的所有整数为所以绝对值小于的所有整数之和为(2)因为所以绝对值小于的所有整数为.22.解:因为所以平方根为因为所以的算术平方根为.因为所以平方根为因为所以的算术平方根为.因为28916917132=⎪⎭⎫⎝⎛±所以289169平方根为;1713±因为28916917132=⎪⎭⎫⎝⎛,所以289169的算术平方根为.1713 ,16811615= 因为1681492=⎪⎭⎫ ⎝⎛±所以1615平方根为;49±因为1681492=⎪⎭⎫⎝⎛,所以1615的算术平方根为.4923.解:因为8125253=⎪⎭⎫ ⎝⎛,所以8125的立方根是25.因为,271313-=⎪⎭⎫⎝⎛-所以271-的立方根是31-.因为,所以的立方根是.因为,所以的立方根是.24.解:因为,所以,即,所以.故,从而, 所以, 所以. 25.解:可知,由于,所以.。
人教版七年级数学下册第六章测试卷含答案

第六章综合训练(满分120分)一、选择题.(每小题4分,共32分)1.下列各式中,正确的是()2.若|a|=-a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧3.下列各数:3.14159,,0.131131113…(每两个相邻3之间1的个数依次增加1),-π,,中,无理数的个数有()A.1个B.2个C.3个D.4个4.(2017·湖南益阳)下列各式化简后的结果为的是()A. B. C. D.5.(江苏淮安中考)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间6.如图,数轴上的点P表示的数可能是()A. B. C.-3.8 D.7.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<bB.|a|>|b|C.-a<-bD.b-a>08.的平方根是x,64的立方根是y,则x+y的值为()A.3B.7C.3或7D.1或7二、填空题.(每小题4分,共32分)9.(青海中考)-3的相反数是________;的立方根是________.10.请你写出一个大于0而小于1的无理数________.11.若有理数a、b满足,则a=________,b=________.12.将实数,π,0,-6用“<”连接起来是______________________________.13.已知与互为相反数,则的值为________.14.规定运算:(a*b)=|a-b|,其中a、b为实数,则(*3)+=________.15.已知a,b互为相反数,c,d互为倒数,m的绝对值为5,则的值为________.16.观察下列各式(1)猜想:=______________,=______________.(2)试猜想第n个等式为_____________________________________________.三、解答题.(共56分)17.(6分)计算:(1)-;(2)|1-|-()3-.18.(6分)求下列各式中x的值.(1)x3-27=0;(2)(x-1)2=4.19.(8分)比较下列各组数的大小:(1)与0.5;(2)3,4,.20.(8分)已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.21.(9分)已知a,b,c在数轴上对应点的位置如图所示,化简|a|-|a+b|++|b-c|.22.(9分)已知第一个正方体纸盒的棱长是6cm,第二个正方体纸盒的体积要比第一个正方体的体积大127cm3,求第二个正方体纸盒的棱长.23.(10分)如图所示,数轴上表示1和的对应点分别为A、B,点B关于点A的对称点是C,O为原点.(1)线段长度:AB=_________,AC=_________,OC=_________.(2)设C点表示的数为x,试求|x-|+x的值.。
人教版七年级数学下册第六章检测卷

第六章检测卷时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.-27的立方根是( ) A .-3 B .3 C .±3 D .±9 2.下列实数中:36,11,1.414,225,39,π,无理数有( )A .2个B .3个C .4个D .5个3.面积为2的正方形的边长在( ) A .0和1之间 B .1和2之间 C .2和3之间 D .3和4之间4.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q .若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.若m ,n 满足(m -1)2+n -15=0,则m +n 的平方根是( ) A .±4 B .±2 C .4 D .26.下列命题中:①立方根等于它本身的数有-1,0,1;②负数没有立方根;③36=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.真命题的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分)7.化简:-3338=________,|3-10|+(2-10)=________. 8.若a =b 2-3,且a 的算术平方根为1,则b 的值是________. 9.能够说明“x 2=x 不成立”的x 的值是________(写出一个即可). 10.若372n 是一个正整数,则满足条件的最小正整数n =________.11.若2016≈44.90,201.6≈14.20,则20.16≈________.12.已知|x |=6,y 是4的平方根,且|y -x |=x -y ,则x +y 的值为______________. 三、(本大题共5小题,每小题6分,共30分) 13.将下列各数填入相应的集合内.-7,0.32,13,0,8,12,3125,π,0.1010010001…(每两个1之间依次增加1个0)①有理数集合{…}; ②无理数集合{…}; ③负实数集合{…}. 14.计算:(1)(-2)2-(3-4)-|3-2|;(2)(-1)2017+327+|1-2|- 2.15.求下列各式中x 的值. (1)(x -3)2-4=21;(2)27(x +1)3+8=0.16.若32-a=-3b-3 ,求b-a+3的平方根.17.一个长方体冰箱包装盒的体积为1024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?四、(本大题共3小题,每小题8分,共24分)18.已知表示实数a,b的点在数轴上的位置如图所示,化简|a-b|+(a+b)2.19.已知|2a+b|与3b+12互为相反数.(1)求2a-3b的平方根;(2)解关于x的方程ax2+4b-2=0.20.一个正数x的两个不同的平方根分别是2a-1和-a+2.(1)求a和x的值;(2)化简:2|a+2|+|x-22|-|3a+x|.五、(本大题共2小题,每小题9分,共18分)21.如图是一个数值转换器.(1)当输入的x值为16时,求输出的y值;(2)是否存在输入的x值后,始终输不出y值?如果存在,请直接写出所有满足要求的x 值;如果不存在,请说明理由;(3)输入一个两位数x,恰好经过两次取算术平方根才能输出y值,则x=________(写出一个即可).22.(1)小明将一个底面长25cm、宽16cm的长方体玻璃容器中装满水,现将一部分水倒入另一个正方体铁桶中,当铁桶装满时,玻璃容器中的水面下降了20cm,请问这个正方体铁桶的棱长是多少?(2)已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是13的整数部分,求a +2b-c2的平方根.六、(本大题共12分)23.你能找出规律吗?(1)计算:4×9=________,4×9=________;16×25=________,16×25=________;(2)请按找到的规律计算:①5×125;②123×935;(3)已知a=2,b=10,用含a,b的式子表示40. 参考答案与解析1.A 2.B 3.B 4.A 5.B 6.A 7.-32 -1 8.±29.-2(答案不唯一,x 为负数均可)10.3 解析:∵372n =332×23n ,∴满足条件的最小正整数n =3. 11.4.4912.6+2或6-2 解析:由|x |=6,y 是4的平方根,得x =6或x =-6,y =2或y =-2.∵|y -x |=x -y ,∴x =6,y =2或y =-2.当y =2时,x +y =6+2,当y =-2时,x +y =6-2,故答案为6+2或6-2.13.解:①有理数集合{-7,0.32,13,0,3125…}.(2分)②无理数集合{8,12,π,0.1010010001…每两个1之间依次增加1个0…}.(4分) ③负实数集合{-7…}.(6分)14.解:(1)原式=4-3+4-2+3=3+ 3.(3分) (2)原式=-1+3+2-1-2=1.(6分)15.解:(1)移项得(x -3)2=25,∴x -3=5或x -3=-5,∴x =8或-2.(3分) (2)移项整理得(x +1)3=-827,∴x +1=-23,∴x =-53.(6分)16.解:∵32-a =-3b -3,∴32-a =33-b ,(2分)∴2-a =3-b ,∴b -a =3-2=1,(4分)∴b -a +3=1+3=4,∴b -a +3的平方根是±2.(6分)17.解:设长方体包装盒的长、宽、高分别是x 分米、x 分米、2x 分米,(2分)由题意得x ·x ·2x =1024,解得x =8,∴2x =16.(5分)答:长方体包装盒的长、宽、高分别为8分米、8分米、16分米.(6分) 18.解:由图知b <a <0,∴a -b >0,a +b <0.(3分)∴|a -b |=a -b ,(a +b )2=-(a +b )=-a -b ,(6分)∴原式=a -b -a -b =-2b .(8分)19.解:由题意得3b +12=0,2a +b =0,解得b =-4,代入2a +b =0得a =2.(2分) (1)2a -3b =2×2-3×(-4)=16,∴2a -3b 的平方根为±4.(5分)(2)把b =-4,a =2代入方程,得2x 2+4×(-4)-2=0,即x 2=9,解得x =±3.(8分) 20.解:(1)由题意得(2a -1)+(-a +2)=0,解得a =-1.(3分)∴x =(2a -1)2=(-3)2=9.(4分)(2)原式=2|-1+2|+|9-22|-|3×(-1)+9|=22-2+9-22-6=1.(8分) 21.解:(1)16=4,4=2,则y = 2.(3分)(2)存在.(4分)x =0或1时,始终输不出y 值.(6分) (3)25(答案不唯一)(9分)22.解:(1)325×16×20=38000=20(cm).(3分)答:这个正方体铁桶的棱长是20cm.(4分)(2)由题意可得2a -1=9,3a +b -1=16,c =3,(6分)∴a =5,b =2,(8分)∴a +2b -c 2=5+2×2-32=0,即a +2b -c 2的平方根为0.(9分)23.解:(1)6 6 20 20(4分)(2)①原式=5×125=25.(6分)②原式=53×485=4.(8分) (3)40=2×2×10=2×2×10=a 2b .(12分)高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..5.(2016·宁波中考)如图所示的几何体的主视图为( ) 6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( ) 7.(2016·菏泽中考)如图所示,该几何体的俯视图是( ) ◆类型二 简单组合体的三视图 8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( ) 9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( ) 10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下册第六章测试卷
实 数
班级_______姓名________学号_______
一.选择题(每小题 分,共 分)
.下列各式中无意义的是( ).
✌.61- .()21- .12+a .222-+x x -
.下列说法:♊ 的平方根是 10;♋是 的一个平方根;♌
94的平方根是3
2;♍ 的算术平方根是 ;♎24a a ±=,其中正确的有( ). ✌. 个 . 个 . 个 . 个
.下列说法中正确的是( ).
✌.立方根是它本身的数只有 和 .算术平方根是它本身的数只有 和
.平方根是它本身的数只有 和 .绝对值是它本身的数只有 和
.
641的立方根是( ). ✌. .
. . .有四个无理数5,6,7,8,其中在12+与13+之间的有( ). ✌. 个 . 个 . 个 . 个
.实数7-, , 的大小关系是( ).
✌.7- . 7- . 7- . 7-
.已知147.151.13=,472.21.153=,5325.0151.03=,则31510的值是( ).
✌. . . .
.若♋ 3,♌ 2--,♍ ()3--32,则♋ ♌ ♍的大小关系是( ).
✌.♋ ♌ ♍ .♍ ♋ ♌ .♌ ♋ ♍ .♍ ♌ ♋
.已知⌧是 的平方根,且232x y x =+,则⍓的值是( ).
✌. .± .± . 或±3
143 .大于 5且小于 2的整数有☎ ✆.
✌. 个 . 个 . 个 . 个
二.填空题(每小题 分,共 分)
. 3的绝对值是♉♉♉♉♉♉♉♉♉, 3的相反数是♉♉♉♉♉♉♉♉♉.
.81的平方根是♉♉♉♉♉♉♉♉♉,364的平方根是♉♉♉♉♉♉♉♉, 的立方根是♉♉♉♉♉♉♉♉,256的平方根是♉♉♉♉♉♉♉♉.
.比较大小: ⑴10♉♉♉♉♉♉♉⇨; ⑵33♉♉♉♉♉♉♉2; ⑶101♉♉♉♉♉♉♉10
1; ⑷2♉♉♉♉♉♉. .当♉♉♉♉♉♉♉♉♉♉时,33
45223+
+++-x x x -有意义.
.已知0212=+++b a ,则a
b ♉♉♉♉♉♉♉♉♉. .最大的负整数是♉♉♉♉♉♉♉,最小的正整数是♉♉♉♉♉♉♉,绝对值最小的实数是♉♉♉♉♉♉♉,不超过380-的最大整数是♉♉♉♉♉♉♉♉.
.已知3
1=a ,32=b ,且♋♌ ,则♋ ♌的值是♉♉♉♉♉♉♉♉. .已知一个正数⌧的两个平方根是♋ 和♋ ,则♋ ♉♉♉♉♉♉♉♉,♌ ♉♉♉♉♉♉♉♉.
.设♋是大于 的在数轴上实数,若♋,
3
1232++a a ,对应的点分别记作✌, , ,则✌, , 三点在数轴上从.左.到.右.的顺序是♉♉♉♉♉♉♉♉♉♉♉♉♉♉. .若无理数❍满足 ❍ ,请写出两个符合条件的无理数♉♉♉♉♉♉♉♉♉♉♉♉.
三.解答题(共 分)
.( 分)计算:
⑴()25.08-⨯- ⑵4002254-+
⑶()()32333111---++ ⑷3-----27343125
12581333+—
.( 分)求下列各式中⌧的值:
( )()9242
=-x ; ( )()25122
=-x ;
( )()375433
-=-x ; ( )()08123
=+-x
.( 分)已知实数♋、♌、♍在数轴上的对应点如图所示,化简:c b a c b a a -+-+--.
.( 分)若♋、♌、♍是有理数,且满足等式332232+-=++c b a ,试计
算()
20112016b c a ++的值.
.( 分)观察:52252458522=⨯==-,即5
22522=-; ,即
猜想 等于什么,并通过计算验证你的猜想.。