2020年全国统一高考数学试卷(文科)(新课标Ⅲ)
2020年高考全国三卷文科数学试题

2020年高考全国三卷文科数学试题一、选择题(每题4分,共24分)若函数f(x) = x^2 + ax + 3 在区间(-∞, 2] 上是减函数,则a的取值范围是( ) A. a ≥ -2 B. a ≤ -2 C. a ≥ 4 D.a ≤ 4已知向量a = (1, 2),向量b = (-3, 2),则向量a与向量b的夹角为( )A. π/4B. π/3C. 2π/3D. 3π/4下列命题中,真命题是( )A. 若a > b,则a^2 > b^2B. 若a > b,c > d,则ac > bdC. 若a, b, m 都是实数,且a < b,则am^2 < bm^2D. 若a, b ∈ℝ,且a < b,则a^3 < b^3已知圆C: x^2 + y^2 - 2x - 4y + 4 = 0,则圆 C 的圆心坐标是( )A. (1, -2)B. (-1, 2)C. (1, 2)D. (-1, -2)已知双曲线x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0) 的一个焦点到一条渐近线的距离为b,则双曲线的离心率为( )A. √2B. √3C. √5D. √6已知数列{an} 满足a1 = 1,an+1 = 2an + 3,则数列{an} 的通项公式为( ) A. an = 2^n - 1 B. an = 3^n - 1C. an = 3^n - 2D. an = 2^(n+1) - 3二、填空题(每题4分,共16分)若x, y ∈ℝ,且x^2 + y^2 = 1,则xy 的最大值为_______。
已知函数f(x) = x^3 - 3x^2 + 2,则f'(x) = _______。
已知等比数列{an} 的前n 项和为Sn,若S3 = 7,S6 = 63,则S9 = _______。
已知椭圆C: x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/2,且过点(2, √3),则椭圆C 的方程为_______。
2020年普通高等学校招生全国统一考试数学文试题(全国卷3,参考版解析)

2020年高考新课标Ⅲ卷文数试题参考解析注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48},(B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C 【解析】试题分析:依据补集的定义,从集合}10,8,6,4,2,0{=A 中去掉集合}8,4{=B ,剩下的四个元素为10,6,2,0,故}10,6,2,0{=B C A ,故应选答案C 。
(2)若43i z =+,则||zz = (A )1 (B )1-(C )43+i 55 (D )43i 55- 【答案】D 【解析】试题分析:因i z 34+=,则其共轭复数为i z 34-=,其模为534|34|||22=+=+=i z ,故i z z 5354||-=,应选答案D 。
(3)已知向量BA →=(12,BC →=12),则∠ABC =(A )30° (B )45° (C )60° (D )120°【答案】A(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个【答案】D【解析】试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,0只有7、8两个月份,故应选答案可以确定D是不正确的,因为从图中可以看出:平均最高气温高于20CD。
2020年全国高考(新课标I、II、III卷)真题 文科数学试卷(+答案+全解全析,共3套)

(2)设 DO= 2 ,圆锥的侧面积为 3π ,求三棱锥 P−ABC 的体积.
20.已知函数 f (x) = ex − a(x + 2) .
(1)当 a = 1 时,讨论 f (x) 的单调性;
(2)若 f (x) 有两个零点,求 a 的取值范围.
21.已知
1
A.
5
1
C. 2
2
B.
5
4
D.
5
【答案】A
【分析】列出从 5 个点选 3 个点的所有情况,再列出 3 点共线的情况,用古典概型的概率计算公式运算即可.
【详解】如图,从 O,A,B,C,D 5 个点中任取 3 个有
{O, A, B},{O, A,C},{O, A, D},{O, B,C}
{O, B, D},{O,C, D},{A, B,C},{A, B, D}
由此散点图,在 10°C 至 40°C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型
的是( ) A. y = a + bx
B. y = a + bx2
C. y = a + bex
D. y = a + b ln x
【答案】D
【分析】 根据散点图的分布可选择合适的函数模型.
2020 年普通高等学校招生全国统一考试
文科数学
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干 净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.
2020年全国卷Ⅲ高考文科数学 答案

2020年全国卷Ⅲ高考文科数学试题参考答案选择题答案 一、选择题 1.B 2.D 3.C 4.C 5.B 6.A 7.B 8.B 9.C 10.A11.C12.D非选择题答案 二、填空题 13.7 1415.1 16三、解答题17.解:(1)设{}n a 的公比为q ,则11n n a a q -=.由已知得1121148a a q a q a +=⎧⎪⎨-=⎪⎩, 解得11,3a q ==.所以{}n a 的通项公式为1=3n n a -.(2)由(1)知3log 1.n a n =-故(1).2n n n S -=由13m m m S S S +++=得(1)(1)(3)(2)m m m m m m -++=++,即2560m m --=. 解得1m =-(舍去),6m =.18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:概率的估计值 0.43 0.27 0.21 0.09(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:人次≤400人次>400空气质量好 33 37 空气质量不好228根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.解:(1)如图,连结BD ,11B D .因为AB BC =,所以四边形ABCD 为正方形,故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥.所以AC ⊥平面11BB D D . 由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG , 因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内. 20.解:(1)2()3f x x k '=-.当k=0时,3()f x x =,故()f x 在()-∞+∞,单调递增; 当k<0时,2()30f x x k '=->,故()f x 在()-∞+∞,单调递增. 当k>0时,令()0f x '=,得x =.当(,x ∈-∞时,()0f x '>;当(x ∈时,()0f x '<;当)x ∈+∞时,()0f x '>.故()f x在(,-∞,)+∞单调递增,在(单调递减. (2)由(1)知,当0k ≤时,()f x 在()-∞+∞,单调递增,()f x 不可能有三个零点. 当k>0时,=x ()f x的极大值点,x 为()f x 的极小值点.此时,11k k --<<<+且(1)0f k --<,(1)0f k +>,(0f >. 根据()f x的单调性,当且仅当0f <,即20k -<时,()f x 有三个零点,解得427k <.因此k 的取值范围为(0)427,.21.解:(1=22516m =,所以C 的方程为221252516x y +=.(2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =,因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ =11PQ 的方程为13y x =,点(5,0)A -到直线11PQ11APQ △的面积为1522=.22||PQ 22P Q 的方程为71093y x =+,点A 到直线22P Q 的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52. 22.[选修4—4:坐标系与参数方程]解:(1)因为t≠1,由220t t --=得2t =-,所以C 与y 轴的交点为(0,12); 由2230t t -+=得t=2,所以C 与x 轴的交点为(4,0)-. 故||AB =(2)由(1)可知,直线AB 的直角坐标方程为1412x y +=-,将cos sin x y ρθθ==,代入,得直线AB 的极坐标方程3cos sin 120ρθρθ-+=. 23.[选修4—5:不等式选讲]解:(1)由题设可知,a ,b ,c 均不为零,所以22221[()()]2ab bc ca a b c a b c ++=++-++2221()2a b c =-++ 0<.(2)不妨设max{a ,b ,c}=a ,因为1,()abc a b c ==-+,所以a>0,b<0,c<0.由2()4b c bc +≤,可得34a abc ≤,故a ,所以max{,,}a b c ≥.。
2020年全国统一高考数学试卷(文科)(新课标Ⅲ)

2020年全国统一高考数学试卷(文科)(新课标Ⅲ)一、单选题(本大题共12小题,共60.0分)1.已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】本题主要考查了交集的运算和交集及其运算,属于基础题.利用交集的定义即可求解;【解答】解:∵A={1,2,3,5,7,11},B={x|3<x<15},∴A∩B={5,7,11},∴A∩B中元素个数为3.故选B.2.若z(1+i)=1−i,则z=()A. 1−iB. 1+iC. −iD. i【答案】D【解析】【分析】本题考查复数的四则运算,共轭复数的概念,属于基础题.先由复数的四则运算法则求出z,再利用共轭复数的概念得到答案.【解答】解:由z(1+i)=1−i,得z=1−i1+i =(1−i)22=−i,所以z=i,故选D.3.设一组样本数据x1,x2,...,x n的方差为0.01,则数据10x1,10x2,...,10x n的方差为()A. 0.01B. 0.1C. 1D. 10【答案】C【解析】【分析】本题主要考查方差的运算,是基础题.直接进行求解即可.【解答】解:设x1,x2,⋯,x n的平均数为x,方差S12=0.01,所以10x1,10x2,⋯,10x n的平均数为10x,方差S2=100S12=1,故选C.4.Logistic模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e−0.23(t−53),其中K为最大确诊病例数.当I(t∗)=0.95K时,标志着已初步遏制疫情,则t∗约为()(ln19≈3)A. 60B. 63C. 66D. 69【答案】C【解析】【分析】本题主要考查指数式与对数式的互化,属于基础题.根据题意可得K1+e −0.23(t−53)=0.95K ,解出t 的值.【解答】解:由题可知K 1+e −0.23(t−53)=0.95K ,所以1+e −0.23(t−53)=2019,e −0.23(t−53)=1190.23(t −53)=ln 19≈3,解得t ≈66故选C .5. 已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=( )A. 12B. √33C. 23D. √22【答案】B【解析】【分析】本题考查两角和的正弦公式和辅助角公式,属于中档题.根据两角和的正弦公式展开sin (θ+π3) ,再整理利用辅助角公式即可得答案.【解答】解:∵sin (θ+π3)=12sin θ+√32cos θ , ∴sin θ+sin (θ+π3)=32sin θ+√32cos θ =√3sin (θ+π6)=1得sin (θ+π6)=√33故选:B .6. 在平面内,A,B 是两个定点,C 是动点,若AC⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1,则点C 的轨迹为( ) A. 圆B. 椭圆C. 抛物线D. 直线【答案】A【解析】【分析】 本题考查了动点的轨迹问题及向量数量积的坐标运算,属一般题.根据题意建立平面直角坐标系,设出点A 、B 、C 的坐标,得到AC ⃗⃗⃗⃗⃗ 和BC ⃗⃗⃗⃗⃗ 的坐标,由向量数量积的坐标运算公式即得动点坐标所满足的方程,从而得到动点C 的轨迹.【解答】解:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立平面直角坐标系,设A(−a,0),B(a,0),C(x,y),则AC ⃗⃗⃗⃗⃗ =(x +a,y),BC ⃗⃗⃗⃗⃗ =(x −a,y),由题意AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1,得x 2−a 2+y 2=1即x 2+y 2=1+a 2,因此,动点C 的轨迹是圆,故选A .7. 设O 为坐标原点,直线x =2与抛物线C:y 2=2px(p >0)交于D,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. (14,0)B. (12,0)C. (1,0)D. (2,0)【答案】B【解析】【分析】 本题考查直线与抛物线的位置关系及抛物线的性质,属于基础题.根据直线x =2与抛物线交于D 、E 两点,确定D 、E 两点坐标,由OD ⊥OE 可得OD ⃗⃗⃗⃗⃗⃗ ·OE ⃗⃗⃗⃗⃗ =0,可确定p 的值,从而得到抛物线的焦点坐标.【解答】解:根据题意得D(2,2p),E(2,−2p),因为OD ⊥OE ,可得OD ⃗⃗⃗⃗⃗⃗ ·OE ⃗⃗⃗⃗⃗ =0,所以4−4p =0,故p =1,所以抛物线C:y 2=2x ,所以抛物线的焦点坐标为(12,0).故选B .8. 点(0,−1)到直线y =k(x +1)距离的最大值为( ) A. 1B. √2C. √3D. 2【答案】B【解析】【分析】 本题考查定点到过定点的直线的最大距离问题,属于基础题.根据点到直线的距离和两点间的距离公式,即可求解.【解答】解:因为直线y =k(x +1)恒过点(−1,0),要使得点(0,1)到直线的距离最大,此时点到直线的距离即为(0,1)与(−1,0)两点的距离,此时最大距离为√(0+1)2+(1−0)2=√2.故选B .9. 右图为某几何体的三视图,则该几何体的表面积是( )A. 6+4√2B. 4+4√2C. 6+2√3D. 4+2√3【答案】C【解析】【分析】本题考查由三视图求几何体的表面积,考查空间想象能力,难度一般.先由三视图还原几何体,即可求出表面积.【解答】解:由三视图可知该几何体是底面为腰长2的等腰直角三角形,一侧棱长为2且垂直底面的三棱锥,如下图故其表面积为3×12×2×2+12×2√2×2√2×sin60∘=6+2√3.故选C.10.设a=log32,b=log53,c=23,则()A. a<c<bB. a<b<cC. b<c<aD. c<a<b 【答案】A【解析】【分析】本题考查了对数比较大小,属于基础题.分别将c转化为以3,5为底数的对数,与a,c比较大小,即可得到结果.解:∵c=23log33=log3√93,a=log32=log3√83,∴a<c,∵c=23log55=log5√253,b=log53=log5√273,∴c<b,故选A.11.在中,cos C=23,AC=4,BC=3,则tan B=()A. √5B. 2√5C. 4√5D. 8√5【答案】C【解析】【分析】本题考查余弦定理,利用余弦定理求出AB的值,再由余弦定理求出cos B,进而求出sin B,由同角三角函数的关系即可求出tan B.【解答】解:根据题意:cos C=AC2+BC2−AB22AC⋅BC =16+9−AB22×4×3=23,解得:AB=3,则cos B=9+9−162×3×3=19;sin B=4√59(负值舍去)故.故选C12.已知函数f(x)=sin x+1sin x,则()A. f(x)的最小值为2B. f(x)的图象关于y轴对称C. f(x)的图象关于直线x=π对称D. f(x)的图象关于直线x=π2对称【答案】D【分析】本题主要考查三角函数的性质,属于中档题.取特值使得sinx =−1时,可以否定A ;利用三角函数的性质,结合函数的奇偶性,对称性的条件,逐项作出判定.【解答】解:A. 由于f(−π2)=−2,故A 错误;B . f(−x)=−sin x −1sin x ≠f(x),故B 错误;C . f(π−x)=sin x +1sin x ,f(π+x)=−sin x −1sin x , f(π+x)≠f(π−x),故C 错误;D .f(π2−x)=cosx +1cosx,f(π2+x)=cosx +1cosx ,f(π2+x)=f(π2−x), 则f(x)的图象关于直线x =π2对称,故D 正确,故选D .二、单空题(本大题共4小题,共20.0分)13. 若x ,y 满足约束条件{x +y ≥02x −y ≥0x ≤1,则z =3x +2y 的最大值为_____. 【答案】7【解析】【分析】 本题考查了根据线性规划求最值,属较易题.本题先根据线性约束条件画出平面区域,再利用图解法即可求出目标函数的最大值.【解答】解:画出不等式组{x +y ≥02x −y ≥0x ≤1所表示的平面区域,如图所示由{x =12x −y =0得点A 坐标为(1,2),由{x =1x +y =0得点B 坐标为(1,2), 即不等式所表示的平面区域为ΔOAB(包括边界),再将z =3x +2y 化为y =−32x +z ,可看作斜率为−32,截距为z 的一族平行直线, 由图可知,当直线y =−32x +z 经过点A 时,截距z 最大,因此,当{x =1y =2时,z max =3×1+2×2=7, 故答案为7.14. 设双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线为y =√2x ,则C 的离心率为______.【答案】√3【解析】【分析】本题主要考查双曲线的简单几何性质,属于基础题。
2020年普通高等学校招生全国统一考试数学试题 文(全国卷3,含答案)

2020年普通高等学校招生全国统一考试数学试题 文(全国卷3)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,在涂选其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合题目要求的.)1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.76.函数 ()2tan 1tan xf x x=+的最小正周期为( )A .4π B .2πC .πD .2π7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( )A .()ln 1y x =-B .()ln 2y x =-C .()ln 1y x =+D .()ln 2y x =+8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,9.函数422y x x =-++的图像大致为( )10.已知双曲线22221x y C a b-=:(00a b >>,)的离心率为2,则点()40,到C 的渐近线的距离为( )A .2B .2C .322D .2211.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .543二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.15.若变量x y ,满足约束条件23024020.x y x y x ++⎧⎪-+⎨⎪-⎩≥,≥,≤则13z x y =+的最大值是________.16.已知函数()()2ln11f x x x =--+,()4f a =,则()f a -=________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分。
2020年全国III卷文科数学高考试题及解析

2020年普通高等学校招生全国Ⅲ卷统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B 中元素的个数为()A.2 B.3 C.4 D.5解析:这是求A 和B 两个集合的交集,A 集合中的元素在(3,15)中的有5、7和11三个,所以正确答案为B,特别注意B 的不等式不包含等号,也即A 中的3不能包含进去。
点评:集合一般比较简单2.若)1z i i +=-,则z =()A.1i- B.1i + C.i - D.i 解析:1(1)(1)21(1)(1)2i i i i z i i i i ----====-++-所以z=i点评:这个是一个复数的化简,共轭复数的概念,还是基题,送分题。
3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为A.0.01B.0.1C.1D.10解析:设第一组数的平均值为x 则222121()()...()0.01n S x x x x x x =-+-++-=则10x1,10x2,....10xn 的平均值为10x22212222222(1010)(1010)...(1010)10(110()....10011n S x x x x x x x x x x S =-+-++-==-+-+=点评:考查统计方差的概念,特别要清楚,方差是不用开方的,而标准差是要开方的,4.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t KI t e --=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为()(其中In19≈3)A.60B.63C.66D.69解析:代入解方程即可以0.23(53)()0.951t KI t Ke --==+0.23(53)1110.9519t e ---==两边同取以19为底的对数ln190.23(53)t -=--解得t=66点评:本题结合时事,实际是取对数的形式,解指数方程,要求对对数和指数之间的转换非常熟练。
2020年全国统一高考数学试卷(文科)

【详解】因为直线 与抛物线 交于 两点,且 ,
根据抛物线的对称性可以确定 ,所以 ,
代入抛物线方程 ,求得 ,所以其焦点坐标为 ,
故选:B.
8.点(0,﹣1)到直线 距离的最大值为()
A. 1B. C. D. 2
【答案】B
【详解】由 可知直线过定点 ,设 ,
当直线 与 垂直时,点 到直线 距离最大,
【答案】D
【解析】
【详解】因为 ,所以 .
故选:D
3.设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()
A. 0.01B. 0.1C. 1D. 10
【答案】C
【详解】因为数据 的方差是数据 的方差的 倍,
所以所求数据方差为
故选:C
4.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型: ,其中K为最大确诊病例数.当I( )=0.95K时,标志着已初步遏制疫情,则 约为().
【答案】A
【详解】因为 , ,
所以 .
故选:A.
11.在△ABC中,cosC= ,AC=4,BC=3,则tanB=()
A. B. 2 C. 4 D. 8
【答案】C
【详解】设
故选:C
12.已知函数f(x)=sinx+ ,则()
A.f(x)的最小值为2B.f(x)的图像关于y轴对称
因为 ,所以 ,易知截距 越大,则 越大,
平移直线 ,当 经过A点时截距最大,此时z最大,
由 ,得 , ,
所以 .
故答案为:7.
14.设双曲线C: (a>0,b>0)的一条渐近线为y= x,则C的离心率为_________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国统一高考数学试卷(文科)(新课标Ⅲ)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知集合,,则中元素的个数为( )A. 2B. 3C. 4D. 52.若,则( )A. B. C. D.3.设一组样本数据的方差为0.01,则数据的方差为( )A. 0.01B. 0.1C. 1D. 104.Logistic模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为( )(In193)A. 60B. 63C. 66D. 695.已知,则( )A. B.C. D.6.在平面内,是两个定点,是动点,若,则点的轨迹为( )A. 圆B. 椭圆C. 抛物线D. 直线7.设为坐标原点,直线与抛物线交于两点,若,则的焦点坐标为( )A. B. C. D.8.点到直线距离的最大值为( )A. 1B.C.D. 29.右图为某几何体的三视图,则该几何体的表面积是( )A. B. C. D.10.设,,,则()A. B. C. D.11.在中,,,则()A. B. 2 C. 4 D. 812.已知函数,则( )A. 的最小值为2B. 的图像关于轴对称C. 的图像关于直线对称D. 的图像关于直线对称二、填空题(本大题共4小题,共20.0分)13.若x,y 满足约束条件,则z=3x+2y的最大值为_____.14.设双曲线的一条渐近线为,则的离心率为______.15.设函数,若,则a=____.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表面积为_________三、解答题(本大题共7小题,共82.0分)17.(12分)设等比数列满足,(1)求的通项公式;(2)记为数列的前n项和. 若,求m.18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):[0,200](200,400](400,600]锻炼人次空气质量等级1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”。
根据所给数据,完成下面的列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次400人次>400空气质量好空气质量不好附:,,19.(12分)如图,在长方体中,在,分别在棱,上,且,,证明:(1)当时,;(2)点在平面内.20.(12分)已知函数.(1)讨论的单调性;(2)若有三个零点,求的取值范围.21.(12分)已知椭圆的离心率为分别为的左、右顶点.(1)求的方程:(2)若点在上,点在直线上,且,,求的面积.22.[选修4-4: 坐标系与参数方程] (10分)在直角坐标系中,曲线的参数方程为与坐标轴交于两点.(1)求:(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求直线的极坐标方程.23.[选修4-5: 不等式选讲] (10分)设(1)证明:;(2)用中的最大值,证明:答案和解析1.【答案】B【解析】【分析】本题主要考查了交集的运算,属于基础题.【解答】解:∵,,∴,∴中元素个数为3.故选B.2.【答案】D【解析】【分析】本题考查复数的四则运算,共轭复数的概念,属于基础题.先由复数的四则运算法则求出,再利用共轭复数的概念得到答案.【解答】解:由,得,所以z=i,故选D.3.【答案】C【解析】【分析】本题主要考查方差的运算,是基础题.【解答】解:设的平均数为,方差所以的平均数为,方差 ,故选.4.【答案】C【解析】【分析】本题主要考查指数式与对数式的互化,属于基础题.根据题意可得,解出的值.【解答】解:由题可知,所以,,解得故选C.5.【答案】B【解析】【分析】本题考查两角和的正弦公式和辅助角公式,属于基础题.根据两角和的正弦公式展开,再整理利用辅助角公式即可得答案.【解答】解:∵,∴=得故选:.6.【答案】A【解析】【分析】本题考查了动点的轨迹问题及向量数量积的坐标运算,属一般题.根据题意建立平面直角坐标系,设出点A、B、C的坐标,得到和的坐标,由向量数量积的坐标运算公式即得动点坐标所满足的方程,从而得到动点C的轨迹.【解答】解:以AB所在直线为x轴,线段AB的中垂线为y轴,建立平面直角坐标系,设,,,则,,由题意,得即,因此,动点C的轨迹是圆,故选A.7.【答案】B【解析】【分析】本题考查直线与抛物线的位置关系及抛物线的性质,基础题.根据直线x=2与抛物线交于D、E两点,确定D、E两点坐标,由OD⊥OE可得,可确定p的值,从而得到抛物线的焦点坐标.【解答】解:根据题意得D(2,2p),E(2,-2p),因为OD⊥OE,可得,所以4-4p=0,故p=1,所以抛物线C:y2=2x,所以抛物线的焦点坐标为(,0).故选B.8.【答案】B【解析】【分析】本题考查定点到过定点的直线的最大距离问题,属于基础题.根据点到直线的距离和两点间的距离公式,即可求解.【解答】解:因为直线y=k(x+1)恒过点(-1,0),要使得点(0,1)到直线的距离最大,此时点到直线的距离即为(0,1)与(-1,0)两点的距离,此时最大距离为.故答案选B9.【答案】C【解析】【分析】本题考查由三视图求几何体的表面积,考查空间想象能力,难度一般.先由三视图还原几何体,即可求出表面积.【解答】解:由三视图可知该几何体是底面为腰长2的等腰直角三角形,一侧棱长为2且垂直底面的三棱锥,如下图故其表面积为故选C.10.【答案】A【解析】【分析】本题考查了对数比较大小,属于中档题.分别将c转化为以3,5为底数,与a,c比较大小,即可得到结果.【解答】解:,,,,,,故选A.11.【答案】C【解析】【分析】本题考查解三角形,余弦定理的应用,注意三角形的形状即可.【解答】解:根据题意:,解得:AB=3 则;(负值舍去)故.故选C12.【答案】D【解析】【分析】本题主要考查三角函数的性质,属于中档题.【解答】解:A. 由于,故A错误;B. ,故B错误;C. ,,,故C错误;D.,,,则的图象关于直线对称,故D正确,故选D.13.【答案】7【解析】【分析】本题考查了根据线性规划求最值,属较易题.本题先根据线性约束条件画出平面区域,再利用图解法即可求出目标函数的最大值.【解答】解:画出不等式组所表示的平面区域,如图所示由得点A坐标为,由得点B坐标为,即不等式所表示的平面区域为(包括边界),再将化为,可看作斜率为,截距为z的一族平行直线,由图可知,当直线经过点A时,截距z最大,因此,当时,,故选答案为7.14.【答案】【解析】【分析】本题主要考查双曲线的简单几何性质,属于基础题。
根据渐近线方程,可得,再利用离心率公式即可求得结果。
【解答】解:∵双曲线的渐近线为,∴∴离心率故答案为:15.【答案】1【解析】【分析】本题考查导数的运算,考查运算求解能力,属于较易题.【解答】解:,解得故答案为1.16.【答案】【解析】【分析】本题考查圆锥的内切球问题以及球的体积公式,通过列方程进行求解即可.【解答】解:如图,由题意可知,,圆锥内半径最大的球满足与底面相切于,与侧面相切于点,设球的半径为,则,且,解得,故.故答案为.17.【答案】解:(1)设等比数列的公比为,因为,,;(2)由(1)可知,可判断出数列是以0为首项,1为公差的等差数列,,,解得:或(舍去)所以.【解析】本题主要考查等比数列的通项公式,等差数列的判断及其前项和公式,属基础题.(1)根据等比数列的通项公式列出关于首项与公比的方程组,解得首项与公比,得到通项公式;(2)由(1)可得数列的通项公式,从而判断出该数列为等差数列,利用等差数列的求和公式列出关于的方程,求得的值即可.18.【答案】解:(1)空气质量等级为1的概率为;空气质量等级为2的概率为;空气质量等级为3的概率为;空气质量等级为4的概率为;(2) 一天中该公园锻炼的平均人次的估计值为;(3)人次人次空气质量好3337空气质量不好228有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【解析】本题考查了独立性检验和古典概率,属于中档题.19.【答案】证明:(1)因为是长方体,所以,而,所以.又,所以四边形为正方形,有,又,平面,所以平面,又平面,所以.(2) 取靠近的三等分点,连结,因为在上,且,所以,且,所以四边形为平行四边形,所以.又在上,且,所以,且,从而,,所以四边形为平行四边形,所以,所以,故四点共面,点在平面内.【解析】本题考查了线面垂直的判定及性质,四点共面判定等知识,属中档题.(1)通过可得,四边形为正方形,有,所以平面,进而可得.(2)通过画辅助线,可证明四边形和四边形均为平行四边形,由平行传递性可得,故四点共面,点在平面内.20.【答案】解:(1)求导得,定义域为,当时,,在上单调递增;当时,令得或,令得,故函数在上单调递增,在上单调递减.(2)由(1)当时,在上单调递增,不符题意,故,的极大值为,极小值为,要使有三个零点,则,∵,即,解得.【解析】本题考查利用导数研究函数的单调性,根据零点个数求参数问题,属较难题.21.【答案】解:(1)∵,,∴,∴C的方程为 .(2)由题:A(-5,0),B(5,0),设Q(6,t),显然,则,∵,则,则直线BP方程为:,联立,化简得,解得,,∵,∴,即,代入,解得,当时,Q(6,2),P(3,1),,PQ方程为:,点A到直线PQ的距离为,则;当时,Q(6,8),P(-3,1),,PQ方程为:,点A到直线PQ的距离为,则,根据对称性,时面积均为,综上:的面积为.【解析】本题考查椭圆方程的求解,两点间距离公式,直线方程,点到直线距离公式的综合运用,属于较难题.22.【答案】解:(1)令,即,解得(),将代入参数方程得令,即,解得(),将代入参数方程得,不妨设,则.(2)直线AB的直角坐标方程为,化简得,由,化为极坐标方程为.【解析】本题考查参数方程的概念,直角坐标方程与极坐标方程的互化,属于基础题分别令,即可求出A、B两点的坐标,即可求解.23.【答案】证明(1)∵,∴,∵,∴,即,∴,即.(2)∵,∴a,b,c同正或两负一正,∵,∴a,b,c不可能同正,即a,b,c两负一正,不妨设,则,由题意得,a,b可看成是一元二次方程的两根,因两根存在,则,解得,即【解析】本题考查不等式的证明,属于中档题.运用恒等变换和一元二次方程根与系数的关系即可证明.。