2 积与商的变化规律

合集下载

四年级 积和商的变化规律

四年级   积和商的变化规律

第1讲计算与规律1. 掌握乘法中积的位数快速确定方法和积的变化规律;2. 掌握除法中商的位数快速确定方法和商的变化规律。

一. 积的变化规律1. 积的变化规律:两个数相乘,一个因数不变,另一个因数扩大或缩小若干倍(0除外),积也扩大或缩小相同的倍数。

2. 积不变的规律:两个数相乘,一个因数乘(或除以)一个数(0除外),另一个因数同时乘(或除以)相同的数,它们的积不变。

判断对错两个因数(均不为0)相乘,一个因数乘2,另一个因数除以2,积不变。

()1.如果让“48052⨯”的第一因数除以5,第二个因数不变,则积()A.不变B.乘以5 C.除以52.两个数相乘(非零数),把这两个数同时扩大到它们原来的10倍,积()A.不变B.扩大到原来的100倍C.不确定D.扩大到原来的10倍3.在一个乘法算式中,要使积不变,一个乘数扩大10倍,另一个乘数()A.扩大10倍B.缩小10倍C.扩大100倍D.不变4.在1508012000⨯=中,其中一个因数扩大到原来的10倍,另一个因数缩小10倍,积不变。

(判断对错)5.几个数相乘,改变它们原来的运算顺序,它们的积不变。

(判断对错)6. 两个数相乘(非零数),一个乘数扩大10倍,另一个乘数缩小5倍,积()7. 两个数相乘(非零数),一个乘数扩大3倍,另一个乘数缩小12倍,积()二.商的变化规律1. 没有余数(1)在除法算式中,被除数不变,除数乘以(或除以)几(0除外),商反而要除以(或乘以)相同的数。

(2)在除法算式中,除数不变,被除数乘以(或除以)几(0除外),商也要乘以(或除以)相同的数。

简便记法:商与除数的变化方向相反,商与被除数的变化相同。

2. 有余数有余数的除法里,被除数和除数都缩小(或都扩大)相同的倍数(0除外),商不变,但余数也随着缩小(或扩大)相同的倍数。

已知30÷=,如果A除以6,B不变,则商是;如果A不变,B乘6,则A B商是。

1. 32040÷的结果与算式()的结果相等。

四年级上册积和商的变化规律

四年级上册积和商的变化规律

四年级上册积和商的变化规律
在四年级上册,学生开始学习关于积和商的变化规律。

积是指两个或多个数相乘得到的结果,而商则是指一个数被另一个数除后得到的结果。

当学生开始学习乘法时,他们会逐渐掌握乘法表,并了解基本的乘法规律。

例如,当乘数为0时,无论被乘数是多少,积都为0。

当乘数为1时,积等于被乘数本身。

当乘数为10的倍数时,积具有特殊的规律,只需在被乘数末尾添加相应数量的0即可。

随着学生学习进程的推进,他们开始接触更复杂的乘法运算,并学习如何使用分配律、结合律和交换律来简化计算过程。

他们还会学习如何将大数进行估算以及如何使用近似值来计算积。

在商的部分,学生会学习如何用除法来计算两个数之间的商。

他们会学习长除法的方法,并逐步理解如何进行整数除法和小数除法。

学生也会学习如何将分数转化为小数,并通过除法运算来完成这一过程。

总之,在四年级上册,学生会逐步掌握积和商的变化规律,并学会运用这些规律来解决实际问题。

四年级上册数学积和商的变化规律

四年级上册数学积和商的变化规律

四年级上册数学积和商的变化规律一、积的变化规律。

1. 规律内容。

- 一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。

- 例如:- 在3×5 = 15这个算式中,如果3不变,5乘2变为10,那么积3×10 = 30,15也乘2得到30;如果3不变,5除以5变为1,那么积3×1 = 3,15也除以5得到3。

2. 应用示例。

- 已知12×15 = 180,如果12不变,15扩大3倍变为45,那么积也扩大3倍,12×45 = 12×15×3=180×3 = 540。

- 已知20×30 = 600,如果20缩小为原来的(1)/(10)变为2,30不变,那么积也缩小为原来的(1)/(10),2×30 = 60。

3. 拓展。

- 两个因数同时变化时:- 两个因数都乘一个数(0除外),积就乘这两个数的乘积。

例如2×3 = 6,如果2乘2变为4,3乘3变为9,那么4×9 = 36,6乘2×3 = 6得到36。

- 两个因数都除以一个数(0除外),积就除以这两个数的乘积。

例如16×20 = 320,如果16除以2变为8,20除以4变为5,那么8×5 = 40,320除以(2×4)=8得到40。

- 一个因数乘一个数,另一个因数除以相同的数(0除外),积不变。

例如4×9 = 36,如果4乘3变为12,9除以3变为3,那么12×3 = 36,积不变。

二、商的变化规律。

1. 规律内容。

- 被除数不变,除数乘几或除以几(0除外),商就除以几或乘几。

- 例如:- 在12÷3 = 4这个算式中,如果12不变,3乘2变为6,那么商12÷6 = 2,4除以2得到2;如果12不变,3除以3变为1,那么商12÷1 = 12,4乘3得到12。

小学数学《积和商的变化规律(二)》ppt

小学数学《积和商的变化规律(二)》ppt

大胆的猜测一下:除法中有 没有类似的规律?如果有会是什 么规律呢?
验证第一个猜测:除数不变,被除 数和商的变化规律。
除数不变,被除数扩大(或缩 小)若干倍,商也相应的扩大 (或缩小)相同的倍数。
验证第二个猜测:被除数不变, 除数扩大或缩小,商会随之缩小 或扩大吗?
被除数不变,除数扩大(或 缩小)若干倍,商会相应的缩 小(或扩大)相同的倍数。
我们一起学习过积的变化规律,谁 还记得?
两数相乘(积不为0),一个因数不变, 另一个因数扩大(或缩小)若干倍,积也 相应的扩大(或缩小)相同的倍数;
两数相乘(积不为0),一个因数扩大若 干倍,另一个因数缩小相同的倍数,积不变。
我们都知道乘法和除法有着密切的 关系,现在我们发现了乘法中有这样 的规律,大家有什么想法?
三条变化规律:
除数不变,被除数扩大(或缩小) 若干倍,商也相应的扩大(或缩小) 相同的倍数;
被除数不变,除数扩大(或缩小) 若干倍,商会相应的缩小(或扩大) 相同的倍数;
被除数和除数同时扩大或缩小相 同的倍数时商不变。
有余数除法的变化规律
在有余数的除法里,如果 被除数和除数同时乘以(或除 以)相同的数(0除外),商不 变,余数也要乘以(或除以) 相同的数。
76800÷24= 34Βιβλιοθήκη ÷57=76800÷2400=
例2 小明在计算除法时,把除 数末尾的“0”漏写了,结果得到 的商是500,正确的商应该是多 少?
解: 50010=50 答:正确的商是50。
例3 除法算式1550200=7…150, 如果被除数和除数同时除以5,商是 多少,余数多少?
解:1505=30 答:商是7,余数是30。
3、验证第三个猜测:被除数扩大 (或缩小)若干倍,除数缩小( 或 扩大)相同的倍数,商不变吗?

四年级积商的变化规律5条

四年级积商的变化规律5条

四年级积商的变化规律5条一、积的变化规律。

1. 一个因数不变,另一个因数乘几,积也乘几。

- 例如:在算式3×5 = 15中,如果3不变,5变为5×2 = 10,那么积就变为3×10=30,15×2 = 30,积也乘了2。

- 在实际解决问题时,比如一个长方形的长不变,宽扩大到原来的3倍,根据长方形面积公式S =长×宽,面积也会扩大到原来的3倍。

2. 一个因数不变,另一个因数除以几(0除外),积也除以几。

- 例如:4×6 = 24,如果4不变,6变为6÷2 = 3,那么积就变为4×3 = 12,24÷2=12,积也除以了2。

- 假设每箱苹果的个数不变,箱数减少为原来的一半,那么苹果的总个数也会减少为原来的一半。

3. 两个因数同时乘一个数(0除外),积乘这个数的平方。

- 例如:2×3 = 6,如果2变为2×2 = 4,3变为3×2 = 6,那么新的积为4×6 = 24,而6×2^2=6×4 = 24。

- 在计算长方形面积时,如果长和宽都扩大到原来的2倍,那么面积就会扩大到原来的2×2 = 4倍。

4. 两个因数同时除以一个数(0除外),积除以这个数的平方。

- 例如:12×8 = 96,如果12变为12÷2 = 6,8变为8÷2 = 4,新的积为6×4 = 24,而96÷2^2 = 96÷4 = 24。

- 像把一个长方形的长和宽都缩小为原来的一半,面积就会缩小为原来的(1)/(4)。

二、商的变化规律。

1. 被除数不变,除数乘几(0除外),商就除以几。

- 例如:12÷3 = 4,如果被除数12不变,除数3变为3×2 = 6,那么商变为12÷6 = 2,4÷2 = 2,商除以了2。

积商的变化规律巧记

积商的变化规律巧记

积商的变化规律巧记
积商的变化规律可以巧记为三个关键词——递增、递减、波动。

1. 递增:当两个数相乘,且因子中有一个逐渐增大,那么积商就呈递增的趋势,即积商越来越大。

可以用“增”字来记忆。

2. 递减:当两个数相乘,且因子中有一个逐渐减小,那么积商就呈递减的趋势,即积商越来越小。

可以用“减”字来记忆。

3. 波动:当两个数相乘,且因子中有一个在增加和减小之间交替变化,那么积商就会波动,既可能增大也可能减小,没有明显的趋势。

可以用“波”字来记忆。

通过记忆这三个关键词,即递增、递减和波动,我们可以快速回忆积商的变化规律,使记忆更加巧妙。

积的变化规律和商的变化规律

积的变化规律和商的变化规律

积的变化规律和商的变化规律
积的变化规律是指在进行乘法运算时,两个数相乘得到的结果的变化规律。

一般来说,在进行乘法运算时,随着被乘数或乘数的增加,积也会相应地增加。

例如,5乘以2得到10,而
10乘以2得到20,可以看出乘数增加一倍,积也增加一倍。

商的变化规律是指在进行除法运算时,被除数除以除数得到的商的变化规律。

一般来说,在进行除法运算时,如果被除数保持不变,而除数增加,商会相应地减少。

例如,10除以2得
到5,而10除以5得到2,可以看出除数增加一倍,商减少一倍。

需要注意的是,这里所讨论的变化规律是在其他因素保持不变的情况下观察的。

在实际运算中,还可能存在其他因素的影响,导致变化规律不完全符合上述描述。

四秋 第四讲 积与商的变化规律(二)

四秋  第四讲  积与商的变化规律(二)

积与商的变化规律(二)一、知识站点关键看乘法或者除法算式中,三者之间的联系,如:1、乘数对积的影响;2、被除数对商的影响;3、除数对商的影响;4、被除数对余数的影响;5、除数对商的影响;例1、两个数相乘,积是28,如果一个乘数扩大到它的4倍,另一个乘数扩大到它的2倍,那么得到的新积是多少?扩展1 两个数相乘,积是20,如果一个乘数扩大到它的4倍,另一个乘数缩小到它的21,那么得到的新积是多少?扩展2 两个数相乘,积是260,如果一个数扩大到它的4倍,另一个乘数缩小到它的81,那么得到的新积是多少?扩展3 两个数相乘,积是720,如果一个乘数缩小到它的81,另一个乘数缩小到它的31,那么得到的新积是多少?练一练:1、两个数相乘,积是35,如果一个乘数扩大到它的2倍,另一个乘数扩大到它的3倍,那么得到的新积是多少?2、两个数相乘,积是220,如果一个乘数扩大到它的4倍,另一个乘数缩小到它的21,那么得到的新积是多少?3、两个数相乘,积是81,如果一个乘数扩大到它的4倍,另一个乘数缩小到它的121,那么得到的新积是多少?4、两个数相乘,积是630,如果一个乘数缩小到它的31,另一个乘数缩小到它的51,那么得到的新积是多少?例2、红红在计算一道乘法算式题时,把其中的一个乘数扩大到它的5倍,计算结果是45.原算式的结果应该是多少?练一练1、林林在做一道整数乘法算式题时,把一个乘数末尾上的“0”丢了,得到的积是26.正确的积应该是多少?2、一道乘法算式,如果一个乘数扩大到它的5倍,另一个乘数缩小到它的101,计算的结果是32.正确的积应该是多少?例3、两个数相除,商是210,如果被除数扩大到它的3倍,除数不变。

新的商是多少?扩展1 两个数相除,商是210,如果被除数不变,除数扩大到它的3倍。

新的商是多少?扩展2 两个数相除,商是210,如果被除数扩大到它的3倍,除数扩大到它的6倍。

新的商是多少?练一练1、两个数相除,商是450,如果被除数扩大到它的5倍,除数不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

嗨!同学们经过上一讲的学习对火星教育沙龙数学讲义的形式有所了解,认识了新朋友或新同学,体验不同风格的老师的教学理念,在新环境上课。

似乎一切都在悄悄的改变,而我们也在慢慢的适应,为新五年级做准备,更为小升初打基础,我们要赢在起跑线上!
大家都有这样的认知,在乘法计算中只要一个因数变化积就发生变化,在除法中被除数除数变化一个商就发生变化。

想知道具体怎么变化的请看下面的例题。

【典型例题】
例1、两个因数相乘,积是126.如果一个因数扩大2倍,另一个因数缩小3倍,那么这时的两数之积是多少?
例2、两个数相除,商是84.如果被除数扩大2倍,除数缩小3倍,那么这时的商是多少?
例3、小明在计算除法时,把除数540末尾的“0
例4、一个学生做两个整数相乘的乘法时,把其中一个因数个位上的4误写为1,得出的乘积是525;另一个学生也做这道乘法,他把这个因数个位上的4误写为8,得出的乘积是700.这道乘法计算的正确结果应该是多少?
例5、计算两个两位数相乘的积,小马把其中一个因数个位上的2看成了7,而小虎把这个数十位上的5看成了3,结果小马算出的得数比小虎多475.正确的得数应该是多少?
例6、某同学在计算有余数的除法时,把被除数137错写成173,这样商比原来多了3,但余数正好相同.求原来的商和余数各是多少?
【考点讲解】
在近几年的小升初考试中像上面例题这样的没有出过,但有涉及有余数的除法的有关被除数、除数、商和余数的和差倍问题。

在这里主要让同学们熟悉a ÷b =c ……d ,a =bc +d ,a -d=bc 有余数除法的关系式。

【方法小结】
在乘法运算中,因数的变化引起积的变化有如下规律:
1、如果一个因数扩大(或缩小)若干倍,另一个因数不变,那么它们的积也扩大(或缩小)同样的倍数.
2、如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变. 在除法运算中,被除数、除数的变化引起商的变化有如下规律:
1、如果被除数扩大(或缩小)若干倍,除数不变,那么它们的商也扩大(或缩小)同样的倍数.
2、如果除数扩大(或缩小)若干倍,被除数不变,那么商反而缩小(或扩大)同样的倍数.
3、如果被除数和除数都扩大(或缩小)同样的倍数,那么它们的商不变.
4、在有余数的除法里,如果被除数和除数都扩大(或缩小)同样的倍数,那么它们的商不变,但余数扩大(或缩小)了同样的倍数.
【练习题】
1
⑴ 两个数相乘,如果一个因数扩大3倍,另一个因数缩小3倍,那么积有什么变化?
⑵ 两个数相乘,一个因数缩小3倍,要使积不变,另一个因数应有什么变化?
⑶ 两个数相乘,如果一个因数缩小4倍,现在要使积扩大4倍,那么另一个因数应有什么变化?
⑷ 两个数相乘,如果一个因数扩大4倍,现在要使积缩小2倍,那么另一个因数应有什么变化?
2、两个数相除,商是54,如果被除数扩大18倍,除数扩大6倍,那么这时的商应是多少?
3、某同学在计算67乘一个数时,错将一个数个位上的2看成了5,结果得出的乘积是2345.正确的乘积是多少?
4、小华在计算一道除法算式题时,错把被除数281写成了218,结果商比原来减少了9,而余数却恰好相同.原来除式中被除数、除数、商和余数的和是多少?
检 测 题(测试时间:30分钟,满分:50分)
姓名____________ 学校_______________________ 座号_________ 成绩 ________
A 卷(20分)
1、观察下面图形中的数的规律,按照此规律,“?”处是几?( )(4分)
2、找出下面数列的规律,并根据规律在括号里填出适当的数。

(8分) ⑴ 4,8,13,19,( ),34 ⑵ 1,4,9,16,( ),36 ⑶ 16,33,67,135( ),543 ⑷ 1,1,2,3,5,8,( ),21,34
3、请根据数字间的关系,找规律填空:?=( );△=( )(8分)
B 卷(30分)
1、回答下面问题,并说明理由。

(10分)
⑴ 两个数相乘,如果一个因数缩小12倍,现在要使积扩大5倍,那么另一个因数应有什么变化?
⑵ 两个数相除,如果被除数扩大20倍,现在要使商扩大60倍,那么除数应有什么变化?
2、张明在计算乘法时,真粗心!把乘数个位上的8看成3,又把乘数十位上的3看成8,使计算结果多了1170。

这道题的被乘数是多少?(10分)
3、王红在计算有余数的除法时,把被除数113错写成131,结果商比原来的多了3,但余数恰巧相同,求这道题的除数与余数。

(10分)
第二讲 积与商的变化规律参考答案: 【典型例题】
例1、126×2÷3=84 例2、84×2×3=504
例3、由条件可知,变化后的商是正确商的10倍,所以正确的商应是60÷10=6 例4、由条件可知,另一个因数为:(700-525)÷(8-1)=25,
因为:525÷25=21,正确积为:25×24=600或因为700÷25=28,正确积为:25×24=600
例5、另一个因数是475÷[(7-2)+(50-30)]=19
正确的得数应是52×19=988
或求另一个因数时:475÷(57-32)=19,正确的得数应是52×19=988
例6、由条件知,被除数增加的部分是除数的3倍,所以,除数是:(173-137)÷3=12又因为137÷12=11…5,所以商是11,余数是5。

【练习题】
1、⑴积不变
⑵另一个因数应扩大3倍。

⑶另一个因数应扩大16倍。

⑷另一个因数应缩小8倍。

2、这时的商应是54×18÷6=162或54×(18÷6)=162
3、错误的因数是:2345÷67=35,正确的积是67×32=2144
4、除数为(281-218)÷9=7,原来的商和余数为:281÷7=40 (1)
所求的和为281+7+40+1=329
检测题
A卷
1、2×4+1×4=12,4×2+1×2=10,2×3+4×3=18
2、26,25,271,13
3、34-2=32,6÷2=3; 40-5=35,15÷5=3; 84-3=81,18÷3=6; 48-4=44,12÷4=3 所以,?=4,△=12
B卷
1、(1)扩大60倍(2)除数缩小3倍
2、1170÷(50-5)=26
3、(131-113)÷3=6,113÷6618 (5)。

相关文档
最新文档