基于simulink的车辆行驶控制系统建模与仿真

合集下载

基于simulink汽车速度控制系统的设计与仿真

基于simulink汽车速度控制系统的设计与仿真

基于simulink汽车速度控制系统的设计与仿真摘要:目前许多汽车把汽车速度控制系统作为配属设备或选配设备。

汽车装有汽车速度控制系统后,当驾驶员启动这一装置并进行一些简单的设置后,该装置可自动保持某一恒定速度行驶,而不踩油门。

由于电子系统能准确地控制车辆的速度,从而使高速行驶的车辆更加安全、平稳。

在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,根据研究对象的物理特性建立起汽车速度控制控制系统的微分方程,再将该微分方程进行线性化处理,运用PID控制理论的方法对汽车速度控制控制系统进行分析和控制。

然后对汽车速度控制系统进行设计分析,在已有的模型下,对设计的汽车速度控制系统进行Matlab语言仿真。

关键词:速度控制系统PID控制仿真指导老师签名:Design and Simulation of the vehicle speedcontrol systemStudent name Class:Supervisor:Abstract:At present, many cars make car speed control system as an attachment device or optional equipment. The car is fitted with the motor speed control system, when the driver start the device and make some simple settings, the device can automatically maintain a constant speed, and do not step on the accelerator. Because the electronic system can accurately control the speed of the vehicle, so that the high-speed vehicles more secure, stable.In this paper, the first principle of the movement of automobile is analyzed, establishing control system is simplified model, based on physical characteristics of the research object to establish the vehicle speed control differential equation of the control system, then the differential equation is linearized by using the method of control theory, analyze and control the motor speed control system. Then the design of the vehicle speed control system, the existing model, to design vehicle speed control system simulation language Matlab.Keyword:Speed control system PID control simulationSignature of Supervisor:目录1绪论 (1)1.1选题的依据及课题意义 (1)1.2汽车速度控制研究概况及发展趋势 (1)2速度控制系统的简述 (3)2.1汽车速度控制系统原理 (3)2.2速度控制系统的分类 (3)2.3速度控制系统的基本用途 (4)2.4电子式多功能速度控制系统功能 (4)3系统模型建立及性能分析 (6)3.1汽车受力分析 (6)3.2行驶汽车仿真模型 (7)3.3 动态性能和稳态性能指标 (8)4 PID控制器 (10)4.1 PID控制简述 (10)4.2 PID控制规律 (10)4.3 PID作用分析 (14)5 系统仿真及结果分析 (15)5.1 SIMULINK简介 (15)5.2实验方案选择 (15)5.2.1采用P控制 (15)5.2.2采用PI控制 (20)5.2.3采用PID控制 (22)5.3实验结果分析 (25)总结 (26)参考文献 (27)致谢 (28)1绪论1.1选题的依据及课题意义随着汽车工业和公路运输业的发展,汽车将走进千家万户,驾驶人员非职业化的特点将突出,车辆驾驶的自动化己成为汽车发展的主要趋势。

基于Simulink的汽车ABS建模与仿真

基于Simulink的汽车ABS建模与仿真

基于Matlab/Simulink 的汽车ABS 建模与仿真摘要:本文阐述了ABS(防抱死制动系统)的基本结构、原理和控制特点。

在Simulink 的环境下以ABS(防抱死制动系统)滑移率为对象进行控制,根据ABS 系统原理建立了ABS 单车轮的仿真模型,并得出仿真曲线,验证汽车ABS 具有良好的制动性能和方向操纵性。

Modeling and Simulation of the Anti-Lock BrakingSystem based on MATLAB/SimulinkAbstract :The article illustrates basic operations and control features of ABS system. Control the ABS Slip Ratio with Simulink, creates a single wheel ABS model according to the ABS principle. It produces Simulation curves ,which verifies that the Auto ABS has good braking performance and direction of the manipulation. 引言在遭遇紧急情况下,大多数驾驶员都会将制动踏板立即踩死。

在汽车制动时,如果车轮抱死滑移,车轮与路面间的侧向附着力将完全消失:如果只是前轮(转向轮)抱死滑移而后轮还在滚动,汽车将失去转向能力;如果只是后轮抱死滑移而前轮还在滚动,即使受到不大的侧向干扰力,汽车也将产生侧滑(甩尾)现象。

这些都极易造成严重的交通事故。

为了避免因车辆滑移而带来的交通事故,有必要研究一种以滑移率为对象进行控制的防抱死制动系统(ABS )。

ABS 是提高汽车安全性能的主要因素之一,对于具有较高非线性的汽车制动过程,很难建立精确的数学模型;随着计算机技术和软件技术的迅猛发展,仿真技术已成为国内外研究的热点,并且在汽车研发中获得了广泛应用。

基于Simulink的控制系统建模与仿真

基于Simulink的控制系统建模与仿真
k=20,a2=a1=1,m=70kg,g=10m/s2。 通过仿真,分析蹦极跳系统对体重为70kg的蹦 极者而言是否安全;若不安全,如何改进,以保证 安全。 例exm2。
例3 汽车速度控制系统 汽车行驶在下图所示的斜坡上(可看作汽车沿
直线山坡路向前行驶)。要求设计一个简单的比例 控制器,使汽车能以设定的速度运动。
初始取值0.555。 (2)Gain模块:增益取值为50。 (3)Constant1模块:常数取值为45。 行驶控制器参数: (1)所有Unit Delay模块:初始状态为0、采样时间为
0.02s。 (2)P、I、D增益模块:取值分别为1、0.01、0。
汽车动力机构参数: (1)Gain模块:取值为1/m,即1/1000。 (2)Gain1模块:取值为b/m,即20/1000。 (3)Integrator模块:初始状态为0,即速度初值为0。 系统仿真参数: (1)仿真时间范围:从0至1000s。 (2)求解器:使用变步长连续求解器。 4.系统仿真与分析 在对系统模块参数与系统仿真参数设置之后,接下来对 系统进行仿真分析。为了使用户对离散行驶控制器的作用有 一个直观的认识,这里使用两组不同的PID控制参数对系统 进行仿真,其结果如下图所示。
建模:
根据牛顿运动定律,自由下落物体的位置:
mx mg a1x a2 x x
式中,a1、a2为空气阻力系数。 选择桥梁作为蹦极者开始起跳的起点,表明位置x的基
准为蹦极者开始跳下的位置,并设低于桥梁的位置为正值,
高于桥梁的位置为负值。
设弹力绳索的弹性系数为k,定义绳索长度为l,则其对
下图为系统仿真的结果。
滑艇在牵引力为
滑艇在牵引力(值
1(00值0)1的00作0)用的下作,用 速下度,在速经度过在808s0左s 右 左 的 并右时 稳由到间 定03后 在上3, 3k升3m由k/并hm0。上 /稳h 升定

simulink建模与仿真流程

simulink建模与仿真流程

simulink建模与仿真流程我们需要在Simulink中创建一个新的模型。

打开Simulink软件后,选择“File”菜单中的“New”选项,然后选择“Model”来创建一个新的模型。

接着,我们可以在模型中添加各种组件,如信号源、传感器、执行器等,以及各种数学运算、逻辑运算和控制算法等。

在建模过程中,我们需要定义模型的输入和输出。

在Simulink中,可以使用信号源模块来定义模型的输入信号,如阶跃信号、正弦信号等。

而模型的输出信号可以通过添加显示模块来实现,如示波器模块、作用域模块等。

接下来,我们需要配置模型的参数。

在Simulink中,可以通过双击组件来打开其参数设置对话框,然后根据需求进行参数配置。

例如,对于控制系统模型,我们可以设置控制器的增益、采样时间等参数。

完成模型的配置后,我们可以进行仿真运行。

在Simulink中,可以选择“Simulation”菜单中的“Run”选项来运行仿真。

在仿真过程中,Simulink会根据模型的输入和参数进行计算,并生成相应的输出结果。

我们可以通过示波器模块来实时显示模型的输出信号,以便进行结果分析和调试。

在仿真过程中,我们可以通过修改模型的参数来进行参数调优。

例如,可以改变控制器的增益值,然后重新运行仿真,观察输出结果的变化。

通过不断调整参数,我们可以优化模型的性能,使其达到设计要求。

除了单一模型的仿真,Simulink还支持多模型的联合仿真。

通过将多个模型进行连接,可以实现系统级的仿真。

例如,我们可以将控制系统模型和物理系统模型进行连接,以实现对整个控制系统的仿真。

在仿真完成后,我们可以对仿真结果进行分析和评估。

Simulink提供了丰富的分析工具,如频谱分析、时域分析和稳定性分析等。

通过对仿真结果的分析,我们可以评估模型的性能,并进行进一步的改进和优化。

Simulink建模与仿真流程包括创建模型、添加组件、定义输入输出、配置参数、运行仿真、参数调优、联合仿真和结果分析等步骤。

基于Simulink的整车行驶模型的建立与仿真

基于Simulink的整车行驶模型的建立与仿真

图 1 汽车行驶动力学模型
模型采用分层设计, 由各个功能模块组合形成较 [5] 大的功能模块, 最后组成整车的模型 。 模型包括加速行驶子系统、匀速行驶子系统、加 速判断子系统、输入子系统和匀速加速选择系统。整 个模型的输入为扭矩、档位和节气门开度的变化。输 出为车速,车速在总传动比一定时,可变换成发动机 转速, 成为发动机模型的重要输入。 加速行驶子系统依据行驶方程建立, 阻力包括: 滚动阻力、空气阻力、坡度阻力和加速阻力。 匀速行驶子系统是依据汽车匀速行驶时没有加 速阻力建立的, 在行驶方程中应去掉加速阻力项。加 速和匀速的判断主要依据节气门开度的变化率。 它的 输入量根据节气门开度及其变化情况而决定。 输入子系统主要向模型输入变速器档位和发动 机的输出扭矩。档位不同, 方程中的旋转质量换算系 数不同, 使模型的模拟结果更接近于实际。 离合器模块中驱动力是由发动机通过飞轮输出 的扭矩经过变速器、 传动轴、 主减速器传到车轮上, 且 考虑机械效率和车轮的半径而得到的力。因此,在匀 速行驶时它相当于滚动阻力、空气阻力和坡道阻力 之和。 坡道阻力可假设路面的坡度较小而且不变; 滚动 阻力中滚动阻力系数随车速的变化而变化, 所以在滚
1 汽车行驶的数学模型
汽车的行驶不仅与驱动力有关, 而且还与地面 的附着力有关。只有在附着力得到保证的情况下, 汽
收稿日期:2007-01-25 基作者简介:魏 健(1971—) ,男,实验师,研究方向为汽车电控系统.
第 17 卷
第2期
魏 健等: 基于 Simulink 的整车行驶模型的建立与仿真
车的驱动力越大、 加速性越好, 爬坡能力也就越强。 汽车行驶的数学模型为: Ft = Ff + Fw + Fi + Fj (1) 式中, Ft 为行驶驱动力; Ff 为滚动阻力; Fw 为空气 阻力; Fi 为坡度阻力; Fj 为加速阻力。将各阻力和 驱动力的计算公式代入式(1)得到下式 :

如何使用MATLABSimulink进行动态系统建模与仿真

如何使用MATLABSimulink进行动态系统建模与仿真

如何使用MATLABSimulink进行动态系统建模与仿真如何使用MATLAB Simulink进行动态系统建模与仿真一、引言MATLAB Simulink是一款强大的动态系统建模和仿真工具,广泛应用于各个领域的工程设计和研究中。

本文将介绍如何使用MATLAB Simulink进行动态系统建模与仿真的方法和步骤。

二、系统建模1. 模型构建在MATLAB Simulink中,可以通过拖拽模块的方式来构建系统模型。

首先,将系统的元件和子系统模块从库中拖拽到模型窗口中,然后连接这些模块,形成一个完整的系统模型。

2. 参数设置对于系统模型的各个组件,可以设置对应的参数和初始条件。

通过双击模块可以打开参数设置对话框,可以设置参数的数值、初始条件以及其他相关属性。

3. 信号连接在模型中,各个模块之间可以通过信号连接来传递信息。

在拖拽模块连接的同时,可以进行信号的名称设置,以便于后续仿真结果的分析和显示。

三、系统仿真1. 仿真参数设置在进行系统仿真之前,需要设置仿真的起止时间、步长等参数。

通过点击仿真器界面上的参数设置按钮,可以进行相关参数的设置。

2. 仿真运行在设置好仿真参数后,可以点击仿真器界面上的运行按钮来开始仿真过程。

仿真器将根据设置的参数对系统模型进行仿真计算,并输出仿真结果。

3. 仿真结果分析仿真结束后,可以通过查看仿真器界面上的仿真结果来分析系统的动态特性。

Simulink提供了丰富的结果显示和分析工具,可以对仿真结果进行绘图、数据处理等操作,以便于对系统模型的性能进行评估。

四、参数优化与系统设计1. 参数优化方法MATLAB Simulink还提供了多种参数优化算法,可以通过这些算法对系统模型进行优化。

可以通过设置优化目标和参数范围,以及定义参数约束条件等,来进行参数优化计算。

2. 系统设计方法Simulink还支持用于控制系统、信号处理系统和通信系统等领域的特定设计工具。

通过这些工具,可以对系统模型进行控制器设计、滤波器设计等操作,以满足系统性能要求。

控制系统建模与仿真基于MATLABSimulink的分析与实现

控制系统建模与仿真基于MATLABSimulink的分析与实现
控制系统建模与仿真基于 MATLABSimulink的分析与实现
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
实现
通过
仿真
技术
进行
分析
方法
分析
matlabsi mulink
仿真
系统
simulink
实现
介绍
工程
精彩摘录
精彩摘录
《控制系统建模与仿真基于MATLABSimulink的分析与实现》精彩摘录 随着科技的发展和社会的进步,控制系统在各个领域中的应用越来越广泛, 掌握控制系统的建模与仿真技术对于科学研究、工程实践等方面都具有重要意义。 而《控制系统建模与仿真基于MATLABSimulink的分析与实现》这本书,正是为满 足这一需求而编写的。
阅读感受
而真正让我感到震撼的是第4章到第8章的内容。作者利用MATLAB强大数据处 理、绘图函数和Simulink仿真工具,对被控对象模型进行了系统建模、分析、计 算、性能指标的优化及控制器设计。从时域、频域、根轨迹、非线性及状态空间 几个方面,完成了对系统性能指标的验证及控制系统设计。这其中的细节和深度, 都足以显示作者对这一领域的深入理解和实践经验。
目录分析
在“仿真技术”部分,目录涵盖了控制系统仿真的基本原理、仿真模型的建 立、参数设置以及仿真结果的分析等内容。还介绍了如何利用MATLABSimulink进 行仿真,使得读者能够快速上手这一强大的仿真工具。
目录分析
“应用实例”部分通过多个具体的案例,展示了如何将建模与仿真技术应用 于实际控制系统。这些案例既有简单的单输入单输出系统,也有复杂的非线性多 输入多输出系统,具有很高的实用价值。

基于MATLABSimulink的控制系统设计与仿真

基于MATLABSimulink的控制系统设计与仿真

基于MATLABSimulink的控制系统设计与仿真控制系统设计是现代工程领域中至关重要的一部分,它涉及到对系统动态特性的分析、建模、控制器设计以及系统性能评估等方面。

MATLAB Simulink作为一款强大的工程仿真软件,在控制系统设计与仿真领域有着广泛的应用。

本文将介绍基于MATLAB Simulink的控制系统设计与仿真过程,包括系统建模、控制器设计、性能评估等内容。

1. 控制系统设计概述控制系统是通过对被控对象施加某种影响,使其按照既定要求或规律运行的系统。

在控制系统设计中,首先需要对被控对象进行建模,以便进行后续的分析和设计工作。

MATLAB Simulink提供了丰富的建模工具和仿真环境,可以帮助工程师快速准确地建立系统模型。

2. 系统建模在MATLAB Simulink中,可以利用各种不同的模块来构建系统模型,如传感器、执行器、控制器等。

通过简单拖拽这些模块并连接起来,就可以构建出完整的系统结构。

同时,Simulink还支持连续系统和离散系统的建模,可以方便地进行时域和频域分析。

3. 控制器设计控制器是控制系统中至关重要的一部分,它根据系统反馈信息对输出信号进行调节,以实现对被控对象的精确控制。

在MATLAB Simulink中,可以使用各种不同类型的控制器设计工具,如PID控制器、状态空间反馈控制器等。

通过这些工具,工程师可以快速设计出符合系统要求的控制器。

4. 性能评估在完成控制器设计后,需要对系统性能进行评估。

MATLAB Simulink提供了丰富的仿真功能,可以对系统进行动态响应、稳定性、鲁棒性等方面的评估。

通过仿真结果,工程师可以及时发现问题并进行调整优化。

5. 实例分析为了更好地说明基于MATLAB Simulink的控制系统设计与仿真过程,我们以一个温度控制系统为例进行分析。

首先建立被控对象的数学模型,然后设计PID控制器,并利用Simulink进行仿真验证。

最后根据仿真结果对系统性能进行评估,并进行必要的调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于simulink的车辆行驶控制系统建
模与仿真
基于Simulink的车辆行驶控制系统建模与仿真汽车行驶控制系统是应用非常广泛的控制系统之一,其主要的目的是对汽车的速度进行合理的控制。

系统的工作原理如下:经过速度操纵机构的位置发生改变以设置汽车的速度,再测量汽车当前的速度,并求取它与指定速度的差值,最后由速度差值信号驱动汽车产生相应的牵引力,并由此牵引力改变汽车的速度直到其速度稳定在指定的速度为止。

本文采用Simulink建模,对行驶控制系统进行仿真,并采用Simulink自带的signal constraint模块对PID参数进行优化,仿真结果表明,该系统能在短时间内平稳的达到指定的速度,提高了汽车的操纵性。

1.汽车行驶控制系统的物理模型与数学描述
1)速度操纵机构的位置变换器
位置变换器是汽车行驶控制系统的输入部分,其目的是将速度操纵机构的位置转换为相应的速度,二者之间的数学关系如下所示:
其中x速度操纵机构的位置,v为与之相应的速度。

2)离散行驶控制器
行驶控制器是整个汽车行驶控制系统的核心部分。

简单来说,其功能是根据汽车当前的速度与指定速度的差值,产生相应的牵引力。

行驶控制器为一典型的PID控制器,其数学描述为:积分环节:
微分环节:
系统输出:
其中u(n)为系统的输入,相当于汽车当前速度与指定速度的差值。

y(n)为系统输出,相当于汽车牵引力,x(n)为系统的状态。

Kp,Ki,Kd为PID控制器的比例、积分与微分控制参数。

3)汽车动力机构
汽车动力机构是行驶控制系统的执行机构。

其功能是在牵引力的作用下改变汽车的速度,使其达到指定的速度。

牵引力与速度之间的关系为:
其中v为汽车的速度,F为汽车的牵引力,m=1000kg为汽车的质量,b=20为阻力因子。

2.系统Simulink模型与参数设置
行驶控制系统仿真模型如图1所示:
图1 行驶控制系统仿真模型
Set speed子系统模型如图2所示:
图2 Set speed子系统模型Discrete cruise controller子系统模型如图3所示:
图3 Discrete cruise controller子系统模型Car dynamics子系统模型如图4所示:
图4 Car dynamics子系统模型
我们预设Kp=1,Ki=0.01,Kd=0.
3.系统仿真与分析
当Kp=1,Ki=0.01,Kd=0时仿真结果如图5所示:
图5 预设参数的仿真速度曲线
这时我们运行signal constraint模块对PID参数进行优化,优化结果如图6所示:
图6 优化后仿真速度曲线
优化后的Kd=-5.64×10-4,Ki=0.0089,Kp=10.
我们把仿真数据输出到Workspace,程序和对比图如下:>>plot(ScopeData(:,1),ScopeData(:,2),'LineWidth',1.5);
>>hold on;
>>plot(ScopeData1(:,1),ScopeData1(:,2),'r:','LineWidth',1.5); >>hold off;
>>grid;
图6
经过对比能够发现优化后的参数能够更好的使汽车在较短的时间内平稳的达到指定的速度。

4.小结
这种使用Simulink的仿真方法,能够有效模拟汽车行驶控制系统的作用过程,比较真实地反映汽车速度控制系统的实际工作情况。

经过对仿真结果的分析,表明汽车行驶控制系统在车辆速度控制方面的显著功能,也证明了这种仿真方法的合理性及实用性。

而且仿真系统中的参数能够根据具体车型的改变而改变,非常简单、明了,便于对汽车行驶控制系统的设计以及系统参数的优化。

相关文档
最新文档