中考数学拔高题精选
2023年中考九年级数学高频考点拔高训练-- 切线的证明

2023年中考九年级数学高频考点拔高训练-- 切线的证明一、综合题1.如图,AB为半圆的直径,点C是弧AD的中点,过点C作BD延长线的垂线交于点E.(1)求证:CE是半圆的切线;(2)若OB=5,BC=8,求CE的长.2.如图,在⊙ O中,AB是直径,BC是弦,BC=BD,连接CD交⊙ O于点E,⊙BCD=⊙DBE.(1)求证:BD是⊙ O的切线.(2)过点E作EF⊙AB于F,交BC于G,已知DE= 2√10,EG=3,求BG的长.3.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A,B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y= 34x+4,与x轴相交于点D.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.4.如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC 为⊙O 的切线;(2)连接AE 并延长与BC 的延长线交于点G (如图②所示).若AB= 4√5 ,CD=9,求线段BC 和EG 的长.5.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形.以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线; (2)AD=AQ ; (3)BC 2=CF•EG .6.如图,D 是以AB 为直径的⊙O 上一点,过点D 的切线DE 交AB 的延长线于点E ,过点B 作BC⊙DE 交AD 的延长线于点C ,垂足为点F.(1)求证:AB=CB ;(2)若AB=18,sinA=13,求EF 的长.7.如图,已知⊙C 过菱形ABCD 的三个顶点B ,A ,D ,连结BD ,过点A 作AE⊙BD 交射线CB 于点E.(1)求证:AE是⊙C的切线.⌢围成的部分的面积.(2)若半径为2,求图中线段AE、线段BE和AB(3)在(2)的条件下,在⊙C上取点F,连结AF,使⊙DAF=15°,求点F到直线AD的距离. 8.如图,以⊙ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.(1)求证:DE是⊙O的切线;(2)设⊙CDE的面积为S1,四边形ABED的面积为S2.若S2=5S1,求tan⊙BAC的值;(3)在(2)的条件下,若AE=3 √2,求⊙O的半径长.9.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于点F.(1)求证:FE是⊙O的切线;(2)若∠F=30°,求证:4FG2=FC⋅FB;(3)当BC=6,EF=4时,求AG的长.10.如图,⊙ABC为⊙O的内接三角形,AB为⊙O的直径,将⊙ABC沿直线AB折叠得到⊙ABD,交⊙O于点D.连接CD交AB于点E,延长BD和CA相交于点P,过点A作AG⊙CD交BP于点G.(1)求证:直线GA是⊙O的切线.(2)求证:AG•AD=GD•AB.(3)若tan⊙AGB=√2,PG=6,求sinP的值.11.如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;⌢中点,AE与BC交于点F,(2)若点E是的BD①求证:CA=CF;②若⊙O的半径为3,BF=2,求AC的长.12.在RtΔABC中,∠ACB=90°,以直角边BC为直径作⊙O,交AB于点D,E为AC 的中点,连接OD、DE.(1)求证:DE为⊙O切线.(2)若BC=4,填空:①当DE=时,四边形DOCE为正方形;②当DE=时,ΔBOD为等边三角形.⌢的长为π,点P是BC上一动13.如图,A为⊙O外一点,AO⊙BC,直径BC=12,AO=10,BD点,⊙DPM =90°,点M 在⊙O 上,且⊙DPM 在DP 的下方.(1)当sinA =35时,求证:AM 是⊙O 的切线;(2)求AM 的最大长度.14.如图,AB 是⊙O 的直径,弦AC 与BD 交于点E ,且AC =BD ,连接AD ,BC.(1)求证:⊙ADB⊙⊙BCA ;(2)若OD⊙AC ,AB =4,求弦AC 的长;(3)在(2)的条件下,延长AB 至点P ,使BP =2,连接PC.求证:PC 是⊙O 的切线.15.如图,在⊙ABC 中,⊙C =90°,⊙ABC 的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,⊙O 是⊙BEF 的外接圆.(1)求证:AC 是⊙O 的切线;(2)过点E 作EH⊙AB ,垂足为H ,求证:CD =HF ; (3)若CD =1,EH =3,求BF 及AF 长.16.如图,AB 是⊙O 的直径,点P 是⊙O 外一点,PA 切⊙O 于点A ,连接OP ,过点B 作BC // OP 交⊙O 于点C ,点E 是 AB⌢ 的中点.(1)求证:PC是⊙O的切线;(2)若AB=10,BC=6,求CE的长.答案解析部分1.【答案】(1)证明:如图,连接AD、OC,OC交AD于F.∵= ,∴OC⊙AD,∴AF=FD,∵OA=OB,∴OF⊙BD,即OC⊙BE,∵EC⊙EB,∴EC⊙OC,∴EC是⊙O的切线.(2)解:连接AC,作OH⊙AC于H.∵AB是直径,∴⊙ACB=90°,∴AC= = =6,∵OH⊙AC,∴AH=CH=3,OH= =4,∵S⊙AOC= •AC•OH= •CO•AF,∴AF= = ,∴DF=AF= ,∵⊙E=⊙ECF=⊙CFD=90°,∴四边形ECFD是矩形,∴EC=DF= .2.【答案】(1)证明:如图,连接AE,则⊙BAE=⊙BCE,∵AB是直径,∴⊙AEB=90°,∴⊙BAE+⊙ABE=90°,∴⊙ABE+⊙BCE=90°,∵⊙BCE=⊙DBE,∴⊙ABE+⊙DBE=90°,即⊙ABD=90°,∴BD是⊙O的切线.(2)解:如图,延长EF交⊙O于H,∵EF⊙AB,AB是直径,∴BE⌢=BH⌢,∴⊙ECB=⊙BEH,∵⊙EBC=⊙GBE,∴⊙EBC⊙⊙GBE,∴BEBG=BCBE,∵BC=BD,∴⊙D=⊙BCE,∵⊙BCE=⊙DBE,∴⊙D=⊙DBE,∴BE=DE= 2√10,∵⊙AFE=⊙ABD=90°,∴BD⊙EF,∴⊙D=⊙CEF,∴⊙BCE=⊙CEF,∴CG=GE=3,∴BC=BG+CG=BG+3,∴2√10BG=BG+32√10,∴BG=-8(舍)或BG=5,即BG的长为5.3.【答案】(1)解:如图1,连接AE,由已知得:AE=CE=5,OE=3,在Rt⊙AOE中,由勾股定理得:OA= √AE2−OE2= √52−32=4,∵OC⊙AB,∴由垂径定理得:OB=OA=4,OC=OE+CE=3+5=8,∴A(0,4),B(0,﹣4),C(8,0),∵抛物线的顶点为C,∴设抛物线的解析式为:y=a(x﹣8)2,将点B的坐标代入得:64a=﹣4,a=﹣116,∴y=﹣116(x﹣8)2,∴抛物线的解析式为:y=﹣116x2+x﹣4;(2)解:直线l与⊙E相切;理由是:在直线l的解析式y= 34x+4中,当y=0时,即34x+4=0,x=﹣163,∴D(﹣163,0),当x=0时,y=4,∴点A在直线l上,在Rt⊙AOE和Rt⊙DOA中,∵OEOA=34,OAOD=34,∴OEOA=OAOD,∵⊙AOE=⊙DOA=90°,∴⊙AOE⊙⊙DOA,∴⊙AEO=⊙DAO,∵⊙AEO+⊙EAO=90°,∴⊙DAO+⊙EAO=90°,即⊙DAE=90°,∴直线l与⊙E相切;(3)解:如图2,过点P作直线l的垂线PQ,过点P作直线PM⊙x轴,交直线l于点M,设M(m,34m+4),P(m,﹣116m2+m﹣4),则PM= 34m+4﹣(﹣116m2+m﹣4)= 116m2﹣14m+8=116(m−2)2+ 314,当m=2时,PM取最小值是31 4,此时,P(2,﹣9 4),对于⊙PQM,∵PM⊙x轴,∴⊙QMP=⊙DAO=⊙AEO,又⊙PQM=90°,∴⊙PQM的三个内角固定不变,∴在动点P运动过程中,⊙PQM的三边的比例关系不变,∴当PM取得最小值时,PQ也取得最小值,PQ最小=PM最小•sin⊙QMP=PM最小•sin⊙AEO= 314×45= 315,∴当抛物线上的动点P(2,﹣94)时,点P到直线l的距离最小,其最小距离为315.4.【答案】(1)证明:如图1,连接OE,OC;∵CB=CE,OB=OE,OC=OC∴⊙OEC⊙⊙OBC(SSS)∴⊙OBC=⊙OEC又∵DE与⊙O相切于点E∴⊙OEC=90°∴⊙OBC=90°∴BC为⊙O的切线.(2)解:解:如图2,过点D作DF⊙BC于点F,则四边形ABFD是矩形,∵AD,DC,BG分别切⊙O于点A,E,B∴DA=DE,CE=CB,在Rt⊙DFC中,CF= √92−(4√5)2=1,设AD=DE=BF=x,则x+x+1=9,x=4,∵AD⊙BG,∴⊙DAE=⊙EGC,∵DA=DE,∴⊙DAE=⊙AED;∵⊙AED=⊙CEG,∴⊙EGC=⊙CEG,∴CG=CE=CB=5,∴BG=10,在Rt⊙ABG中,AG= √AB2+BG2=6 √5,∵AD⊙CG,∴⊙CEG⊙⊙DEA,∴ADCG=AEEG=45,∴EG= 59×6 √5= 10√53.5.【答案】(1)证明:连接BD,∵四边形BCDE是正方形,∴⊙DBA=45°,⊙DCB=90°,即DC⊙AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴⊙DAB=⊙DBA=45°,∴⊙ADB=90°,即BD⊙AD,∵BD为半径,∴AD是⊙B的切线(2)证明:∵BD=BG,∴⊙BDG=⊙G,∵CD⊙BE,∴⊙CDG=⊙G,∴⊙G=⊙CDG=⊙BDG= 12⊙BCD=22.5°,∴⊙ADQ=90°﹣⊙BDG=67.5°,⊙AQB=⊙BQG=90°﹣⊙G=67.5°,∴⊙ADQ=⊙AQD,∴AD=AQ(3)证明:连接DF,在⊙BDF中,BD=BF,∴⊙BFD=⊙BDF,又∵⊙DBF=45°,∴⊙BFD=⊙BDF=67.5°,∵⊙GDB=22.5°,在Rt⊙DEF与Rt⊙GCD中,∵⊙GDE=⊙GDB+⊙BDE=67.5°=⊙DFE ,⊙DCF=⊙E=90°, ∴Rt⊙DCF⊙Rt⊙GED , ∴CF ED =CD EG , 又∵CD=DE=BC , ∴BC 2=CF•EG .6.【答案】(1)证明:连接OD ,如图1,∵DE 是⊙O 的切线, ∴OD⊙DE. ∵BC⊙DE , ∴OD⊙BC. ∴⊙ODA=⊙C. ∵OA=OD , ∴⊙ODA=⊙A. ∴⊙A=⊙C. ∴AB=BC ;(2)解:连接BD ,则⊙ADB=90°,如图2,在Rt⊙ABD 中, ∵sinA=BD AB =13,AB=18,∴BD=6.∵OB=OD , ∴⊙ODB=⊙OBD.∵⊙OBD+⊙A=⊙FDB+⊙ODB=90°, ∴⊙A=⊙FDB. ∴sin⊙A=sin⊙FDB. 在Rt⊙BDF 中, ∵sin⊙BDF=BF BD =13,∴BF=2.由(1)知:OD⊙BF , ∴⊙EBF⊙⊙EOD. ∴BE OE =BF OD.即:BE BE+9=29. 解得:BE=187. ∴EF=√BE 2−BF 2=8√27.7.【答案】(1)证明:如图1中,连结AC ,∵四边形ABCD 是菱形, ∴AC⊙BD , 又∵BD⊙AE , ∴AC⊙AE , ∴AE 是⊙O 的切线.(2)解:如图1中,∵四边形ABCD 是菱形, ∴AB =BC , 又∵AC =BC ,∴⊙ABC 是等边三角形,∴⊙ACB=60°,∵AC=2,∴AE=AC•tan60°=2 √3,∴S阴=S⊙AEC﹣S扇形ACB=12×2×2 √3﹣60⋅π⋅22360=2 √3﹣23π.(3)解:①如图2中,当点F在AD⌢上时,∵⊙DAF=15°,∴⊙DCF=30°,∵⊙ACD=60°,∴⊙ACF=⊙FCD,∴点F是弧AD的中点,∴CF⊙AD,∴点F到直线AD的距离=CF﹣CA•cos30°=2﹣√3.②如图3中,当点F在优弧BD⌢上时,∵⊙DAF=15°,∴⊙DCF=30°,过点C作CG⊙AD于D,过点F作FH⊙CG于H,可得⊙AFH=15°,⊙HFC=30°,∴CH=1,∴点F到直线AD的距离=CG﹣CH=AC•cos30°﹣CH=√3﹣1.综上所述,满足条件的点F到直线AD的距离为2﹣√3或√3﹣1. 8.【答案】(1)证明:连接OD,∴OD=OB∴⊙ODB=⊙OBD.∵AB是直径,∴⊙ADB=90°,∴⊙CDB=90°.∵E为BC的中点,∴DE=BE,∴⊙EDB=⊙EBD,∴⊙ODB+⊙EDB=⊙OBD+⊙EBD,即⊙EDO=⊙EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊙BC,∴⊙EBO=90°,∴⊙ODE=90°,∴DE是⊙O的切线(2)解:∵S2=5 S1∴S⊙ADB=2S⊙CDB∴AD DC=21∵⊙BDC⊙⊙ADB∴⋅ADDB=DBDC∴DB2=AD•DC∴DB AD =√22∴tan⊙BAC == √22(3)解:∵tan⊙BAC = DB AD =√22∴BC AB =√22 ,得BC = √22AB ∵E 为BC 的中点∴BE = √24AB∵AE =3 √2 ,∴在Rt⊙AEB 中,由勾股定理得 (3√2)2=(√24AB)2+AB 2 ,解得AB =4 故⊙O 的半径R = 12AB =2.9.【答案】(1)证明:连接 EC , OE ,∵BC 为 ⊙O 的直径, ∴∠BEC =90° , ∴CE ⊥AB , 又∵AC =BC , ∴E 为 AB 中点, 又∵O 为 BC 中点, ∴OE⊙AC , 又∵EG ⊥AC , ∴OE ⊥EG ,又 OE 为 ⊙O 的半径, ∴FE 是 ⊙O 的切线. (2)证明:∵OE =OC ,∴∠OEC=∠OCE,∵EF为圆的切线,∴∠FEC+∠OEC=90°,∵∠BEC=90°∴∠B+∠BCE=90°,∴∠FEC=∠B,又∵∠F=∠F,∴△FEC∽△FBE,∴FEFB=FCFE,∴FE2=FC⋅FB,当∠F=30°时,∠FOE=60°,又OE=OC,∴△OEC为等边三角形,∴∠OEC=60°,∴∠FEC=30°=∠F,∴CE=CF,又CG⊥FE,∴FE=2FG,∴(2FG)2=FC⋅FB,即4FG2=FC⋅FB(3)解:由(2)得FE2=FC⋅FB,又BC=6,FE=4,FB=BC+FC=6+FC,∴42=FC⋅(FC+6),因式分解得(FC+8)(FC-2)=0,解得FC=2或FC=-8舍去,∵BC=6,∴OE=OC=12BC=3,AC=BC=6,∴FO=FC+CO=2+3=5,∵CG⊙OE,∴⊙GCF=⊙EOF,⊙FGC=⊙FEO,∴△FCG∽△FOE,∴FCFO=CGOE,即25=CG3,∴CG=6 5,∴AG=AC−CG=6−65=24510.【答案】(1)证明:∵将⊙ABC沿直线AB折叠得到⊙ABD,∴BC=BD.∴点B在CD的垂直平分线上.同理得:点A在CD的垂直平分线上.∴AB⊙CD即OA⊙CD,∵AG∥CD.∴OA⊙GA.∵OA是⊙O的半径,∴直线GA是⊙O的切线;(2)证明:∵AB为⊙O的直径,∴⊙ACB=⊙ADB=90°.∴⊙ABD+⊙BAD=90°.∵⊙GAB=90°,∴⊙GAD+⊙BAD=90°.∴⊙ABD=⊙GAD.∵⊙ADB=⊙ADG=90°,∴⊙BAD⊙⊙AGD.∴ABAG=ADGD.∴AG•AD=GD•AB;(3)解:∵tan⊙AGB=√2,⊙ADG=90°,∴ADGD=√2.∴AD=√2GD.由(2)知,⊙BAD⊙⊙AGD,∴ADGD=BDAD,∴AD 2=GD•BD ,∴BD =2GD .∵AD⌢=AD ⌢, ∴⊙GAD =⊙GBA =⊙PCD .∵AG ∥CD ,∴⊙PAG =⊙PCD .∴⊙PAG =⊙PBA .∵⊙P =⊙P ,∴⊙PAG⊙⊙PBA .∴PA 2=PG•PB∵PG =6,BD =2GD ,∴PA 2=6(6+3GD ).∵⊙ADP =90°,∴PA 2=AD 2+PD 2.∴6(6+3GD )=(√2GD )2+(6+GD )2.解得:GD =2或GD =0(舍去).∴AD =2√2,AP =6√2,∴sinP =AD AP =2√26√2=13. 11.【答案】(1)证明:∵AB 是 ⊙O 的直径,∴⊙ADB=90°,∴⊙DBA+⊙DAB=90°,∵⊙DEA=⊙DBA ,⊙DAC=⊙DEA ,∴⊙DBA=⊙DAC ,∴⊙BAC=⊙DAC+⊙DAB=90°,∵AB 是 ⊙O 的直径,⊙BAC=90°,∴AC 是 ⊙O 的切线;(2)解:①∵点E 是 BD⌢ 的中点, ∴⊙BAE=⊙DAE ,∵⊙CFA=⊙DBA+⊙BAE ,⊙CAF=⊙DAC+⊙DAE ,⊙DBA=⊙DAC ,∴⊙CFA=⊙CAF ,∴CA=CF;②设CA=CF=x,则BC=CF+BF=x+2,∵⊙O的半径为3,∴AB=6,在Rt⊙ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.12.【答案】(1)证明:如图,连接CD,OE.∵BC为⊙O直径∴∠BDC=∠CDA=90°∵DE为Rt△ADC斜边AC的中线∴DE=CE∵OD=OC,OE=OE∴△COE≌△DOE(SSS)∴∠OCE=∠ODE=90°∴DE为⊙O的切线.(2)2;DE=2√313.【答案】(1)证明:如图①,过点O作OE⊙AM于点E,∵在Rt⊙AOE中,当sinA=35,OA=10,∴OE=6∵直径BC=12,∴OM=6=OE,∴点E与点M重合,OM⊙AM,∴AM是⊙O的切线.(2)解:如图②,当点P与点B重合时,AM取得最大值.AM的最大长度可以通过勾股定理求得.延长AO交⊙O于点F,作MG⊙AF于点G,连接OD、OM,DM,∵BD的长为π,∴π=∠BOD⋅π⋅6180,∴⊙BOD=30°,∵⊙DBM=90°,∴DM是⊙O的直径,即DM过点O,∴⊙COM=30°,∵AO⊙BC,∴⊙MOG=60°,在Rt⊙GOM中,⊙MOG=60°,OM=6,∴OG=3,GM=3√3,在Rt⊙GAM中,AM=√AG2+GM2=14,∴AM的最大长度:14.14.【答案】(1)证明:∵AB是⊙O的直径,∴⊙ACB=⊙ADB=90°,∵AB=AB,∴⊙ADB⊙⊙BCA(HL)(2)解:如图,连接DC,∵OD⊙AC,⌢=DC⌢,∴AD∴AD=DC,∵⊙ADB⊙⊙BCA,∴AD=BC,∴AD=DC=BC,∴⊙AOD=⊙ABC=60°,∵AB=4,∴AC=AB⋅sin60°=4×√32=2√3(3)证明:如图,连接OC,由(1)和(2)可知BC= √AB2−AC2=2∵BP=2∴BC=BP=2∴⊙BCP=⊙P,∵⊙ABC=60°,∴⊙BCP=30°,∵OC=OB,⊙ABC=60°,∴⊙OBC是等边三角形,∴⊙OCB=60°,∴⊙OCP=⊙OCB+⊙BCP=60°+30°=90°,∴OC⊙PC,∴PC是⊙O的切线.15.【答案】(1)证明:如图,连接OE.∵BE平分⊙ABC,∴⊙CBE=⊙OBE,∵OB=OE,∴⊙OBE=⊙OEB,∴⊙OEB=⊙CBE,∴OE⊙BC,∴⊙AEO=⊙C=90°,∴AC是⊙O的切线;(2)证明:如图,连结DE.∵⊙CBE=⊙OBE,EC⊙BC于C,EH⊙AB于H,∴EC=EH.∵⊙CDE+⊙BDE=180°,⊙HFE+⊙BDE=180°,∴⊙CDE=⊙HFE.在⊙CDE与⊙HFE中,{∠CDE=∠HFE∠C=∠EHF=900EC=EH,∴⊙CDE⊙⊙HFE(AAS),∴CD=HF.(3)解:由(2)得,CD=HF.又CD=1 ∴HF=1在Rt⊙HFE中,EF= √32+12=√10∵EF⊙BE∴⊙BEF=90°∴⊙EHF=⊙BEF=90°∵⊙EFH=⊙BFE∴⊙EHF⊙⊙BEF∴EFBF=HFEF,即√10BF=1√10∴BF=10∴OE=12BF=5, OH=5−1=4,∴在Rt⊙OHE中,cos∠EOA=4 5 ,∴在Rt⊙EOA中,cos∠EOA=OEOA=45,∴5OA=45∴OA=25 4∴AF=254−5=54.16.【答案】(1)证明:如图,连接OC ,∵PA切⊙O于A∴∠PAO=90∘∵OP⊙BC∴⊙AOP=⊙OBC,⊙COP=⊙OCB∵OC=OB∴⊙OBC=⊙OCB∴⊙AOP=⊙COP又∵OA=OC,OP=OP∴⊙PAO⊙⊙PCO∴⊙PAO=⊙PCO=90 º又∵OC是⊙O的半径∴PC是⊙O的切线(2)解:连接AE,BE,AC过点B作BM⊙CE于点M∴⊙CMB=⊙EMB=⊙AEB=90º∵AB是直径,∴∠ACB=90°,∵AB=10,BC=6∴AC=√AB2−BC2=8,∴cos∠CAB=ACAB=810=45又∵点E是AB⌢的中点∴⊙ECB=⊙CBM=⊙ABE=45º,∴BE=AB ×cos45 °=5√2CM=BC×cos45°=6×√22=3√2∵CB⌢=CB⌢∴∠CAB=∠CEB∴cos∠CEB=cos∠CAB=4 5∴EM= BE×cos∠CEB=5√2×45=4√2∴CE=CM+EM= 3√2+4√2=7√2∴CE的长为7√2.。
2023年中考九年级数学高频考点拔高训练--相似三角形的综合题

2023年中考九年级数学高频考点拔高训练--相似三角形的综合题1.如图,在Rt△ABC中,△ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t = 4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(3)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ△△ACB2.我们给出如下定义:若一个四边形有一组对角互补(即对角之和为180°),则称这个四边形为圆满四边形.(1)概念理解:在平行四边形、菱形、矩形、正方形中,你认为属于圆满四边形的有.(2)问题探究:如图,在四边形ABCD中,对角线AC、BD相交于点O,若△ADB=△ACB,问四边形ABCD是圆满四边形吗?请说明理由.小明经过思考后,判断四边形ABCD是圆满四边形,并提出了如下探究思路:先证明△AOD△△BOC,得到比例式OAOB=ODOC,再证明△AOB△△DOC,得出对应角相等,根据四边形内角和定理,得出一组对角互补.请你帮助小明写出解题过程.(3)问题解决:请结合上述解题中所积累的经验和知识完成下题.如图△,四边形ABCD中,AD△BD,AC△BC,AB与DC的延长线相交于点E,BE=BD,AB=5,AD=3,求CE的长.3.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+2与y轴交于点A,与x轴交于点B,且OB=2OA.(1)如图1,求直线的解析式;(2)如图2,点P在第三象限的直线AB上,点C在点A上方的y轴上,连接PC、BC,PC交x轴于点N,且tan∠APC=13,设点P的横坐标为t,△ABC的面积为S,求S与t的函数关系;(3)如图3,在(2)的条件下,点D在y轴的负半轴上,点E为AB的中点,连接DE,PD,AD=ON,当∠PDE=∠PCD时,求点D的坐标.4.已知如图,抛物线y=−45x2+165x+4交x轴于A、C两点,点D是x轴上方抛物线上的点,以A,D为顶点按逆时针方向作正方形ADEF.(1)求点A的坐标和抛物线的对称轴的表达式;(2)当点F落在对称轴上时,求出点D的坐标;(3)连接OD交EF于点G,记OA和EF交于点H,当△AFH的面积是四边形ADEH面积的1 7时,则S△OGHS△OAD=.(直接写出答案)5.如图,在△ABC中,AB=AC,∠BAC=α(0°<α<180°),过点A作射线AM交射线BC于点D,将AM绕点A逆时针旋转α得到AN,过点C作CF//AM交直线AN于点F,在AM 上取点E,使∠AEB=∠ACB.(1)当AM与线段BC相交时,①如图1,当α=60°时,线段AE,CE和CF之间的数量关系为▲ .②如图2,当α=90°时,写出线段AE,CE和CF之间的数量关系,并说明理由.(2)当tanα=43,AB=5时,若△CDE是直角三角形,直接写出AF的长.6.综合与探究(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且AE⊥BF,请直接写出线段AE 与BF的数量关系.(2)【类比探究】如图2,在矩形ABCD中,AB=3,AD=5,点E,F分别在边BC,CD上,且AE⊥BF,请写出线段AE与BF的数量关系,并证明你的结论.(3)【拓展延伸】如图3,在Rt△ABC中,∠ABC=90°,D为BC中点,连接AD,过点B作BE⊥AD于点F,交AC 于点E,若AB=3,BC=4,求BE的长.7.如图,在矩形ABCD中,AB = 6,AD = 8,点E是CD边上的一个动点(点E不与点C重合),延长DC到点F,使EC = 2CF,且AF与BE交于点G.(1)当EC = 4时,求线段BG的长:(2)设CF = x,△GEF的面积为y,求y与x的关系式,并求出y的最大值:(3)连接DG,求线段DG的最小值.8.如图,△ABC中,BA=BC,CO△AB于点O,AO=4,BO=6。
2023年中考九年级数学高频考点拔高训练-圆的切线的证明

2023年中考九年级数学高频考点拔高训练-圆的切线的证明1.如图,△ABD是△O的内接三角形,E是弦BD的中点,点C是△O外一点,且△DBC=△A=60°,连接OE并延长与△O相交于点F,与BC相交于点C.(1)求证:BC是△O的切线;(2)若△O的半径为6cm,求弦BD的长.2.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果∠BAC=60°,AE=4√3,求AC长.3.如图,AC与△O相切,切点为C,点B在CO的延长线上,BD△AO,垂足为D,△ABD=△BO D.(1)求证:AB为△O的切线;(2)若BC=4,AC=3,求BD的长.4.如图,AB 是△O 的直径,点E 在△O 上,连接AE 和BE ,BC 平分△ABE 交△O 于点C ,过点C 作CD△BE ,交BE 的延长线于点D ,连接CE .(1)请判断直线CD 与△O 的位置关系,并说明理由;(2)若sin△ECD =35,CE =5,求△O 的半径. 5.如图,AB 为△O 的直径,C 、D 为△O 上不同于A 、B 的两点,△ABD =2△BAC ,连接CD ,过点C 作CE△DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点.(1)求证:CF 是△O 的切线;(2)当BD = 185 ,sinF = 35时,求OF 的长. 6.如图,线段AB 经过圆心O ,交△O 于点A 、C ,点D 为△O 上一点,连结AD 、OD 、BD ,△A =△B =30°.(1)求证:BD 是△O 的切线.(2)若OA =5,求OA 、OD 与AD 围成的扇形的面积.7.如图,在Rt△ABC 中,△ACB =90°,CD 是斜边AB 上的中线,以CD 为直径的△O 分别交AC 、BC 于点M 、N ,过点N 作NE△AB ,垂足为E(1)若△O的半径为52,AC=6,求BN的长;(2)求证:NE与△O相切.8.如图,AB是△O的弦,OP△OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是△O的切线;(2)若△O的半径为√5,OP=1,求BC的长.9.如图,AB是△O的直径,点C在AB的延长线上,AD平分△CAE交△O于点D,且AE△CD,垂足为点E.(1)求证:直线CE是△O的切线.(2)若BC=3,CD=3 √2,求弦AD的长.10.如图,AB为圆的直径,C是△O上一点,过点C的直线交AB的延长线于点M.作AD△MC,垂足为D,已知AC平分△MAD .(1)求证:MC是△O的切线:(2)若AB=BM=4,求tan△MAC的值11.如图,AB是△O的直径,点C在△O上,BD平分∠ABC交△O于点D,过点D作DE⊥BC,垂足为E.(1)求证:DE与△O相切;(2)若AB=10,AD=6,求DE的长.12.如图,点O在△APB的平分线上,△O与PA相切于点C.(1)求证:直线PB与△O相切;(2)PO的延长线与△O交于点E.若△O的半径为3,PC=4.求弦CE的长.13.如图,已知A(﹣5,0)、B(﹣3,0),点C在y轴的正半轴上,△CBO=45°,CD△AB,△CDA=90°点,P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间ts.(1)求点C的坐标;(2)当△BCP=15°时,且△OPC中最长边是最短边的2倍,求t的值;(3)以点P为圆心,PC为半径的△P随点P的运动而变化,当△P与四边形ABCD的边(或边所在的直线)相切时,求t的值.14.已知AB为⊙O的直径,C为⊙O上一动点,连接AC,BC,在BA的延长线上取一点D,连接CD,使CD=CB.(1)如图1,若AC=AD,求证:CD是⊙O的切线;(2)如图2,延长DC交⊙O于点E,连接AE.①若⊙O的直径为√10,sinB=√10,求AD的长;10②若CD=2CE,求cosB的值.15.如图,AB、AC分别是△O的直径和弦,OD△AC于点D,过点A作△O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是△O的切线;(2)若△ABC=60°,AB=10,求线段CF的长,16.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,△BCD=60°,点E是AB上一点,AE=3EB,△P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是△P的切线;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)证明:连接OB ,如图所示:∵E 是弦BD 的中点,∴BE =DE ,OE△BD , BF ⌢=12BD ⌢ , ∴△BOE =△A ,△OBE+△BOE =90°,∵△DBC =△A ,∴△BOE =△DBC ,∴△OBE+△DBC =90°,∴△OBC =90°,即BC△OB ,∴BC 是△O 的切线;(2)解:∵OB =6,△DBC =△A =60°,BC△OB , ∴OC =12,∵△OBC 的面积= 12 OC•BE = 12OB•BC , ∴BE = OB×BC OC =6×6√312=3√3 , ∴BD =2BE =6 √3 ,即弦BD 的长为6 √3 .2.【答案】(1)证明:连接 OD ,如图,∵∠BAC 的平分线 AD 交 ⊙O 于点 D ,∴∠BAD=∠DAC,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠DAC,∴OD//AE,∵DE⊥AE,∴DE⊥OD,OD为半径,∴DE是⊙O的切线(2)解:作OF⊥AC于F∵∠BAC=60°,∴∠DAE=30°,在RtΔADE中,DE=AE⋅tan30°=4四边形ODEF为矩形,∴OF=DE=4,在RtΔOAF中,∵∠OAF=60°∴AF=√3=4√33∴AC=2AF=8√3 33.【答案】(1)证明:作OH△AB,垂足为H∵AC与△O相切,切点为C,∴△ACO=90°∴△OAC+△AOC=90°又BD△AO∴△BDO=90°∴△BOD+△DBO=90°,△BAD+△ABD=90°又△BOD=△AOC,△ABD=△BOD∴△OAC=△BAD∴OH=OC又OC为△O半径∴AB为△O的切线(2)解:在Rt△BOH和Rt△BAC中AB=√BC2+AC2=5sin∠ABC=OHOB=ACAB=354−OB OB=35,解得OB=52,OC=32,OA=√OC2+AC2=32√5∵△AOC=△BOD,△C=△D=90°∴△AOC△△BOD∴OAOB=ACBD∴32√552=3BD,解得:BD=√5.4.【答案】(1)解:结论:CD是△O的切线.理由:连接OC.∵OC=OB,∴△OCB=△OBC,∵BC平分△ABD,∴△OBC=△CBE,∴△OCB=△CBE,∴OC//BD ,∵CD△BD ,∴CD△OC ,∵OC 是半径,∴CD 是△O 的切线;(2)解:设OA =OC =r ,设AE 交OC 于点J .∵AB 是直径,∴△AEB =90°,∵OC△DC ,CD△DB ,∴△D =△DCJ =△DEJ =90°,∴四边形CDEJ 是矩形,∴△CJE =90°,CD =EJ ,CJ =DE ,∴OC△AE ,∴AJ =EJ ,∵sin△ECD =DE CE =35,CE =5, ∴DE =3,CD =4,∴AJ =EJ =CD =4,CJ =DE =3,在Rt△AJO 中,r 2=(r ﹣3)2+42,∴r =256, ∴△O 的半径为256. 5.【答案】(1)解:连接OC .如图1所示:∵OA=OC,∴△1=△2.又∵△3=△1+△2,∴△3=2△1.又∵△4=2△1,∴△4=△3,∴OC△DB.∵CE△DB,∴OC△CF.又∵OC为△O的半径,∴CF为△O的切线;(2)解:连接AD.如图2所示:∵AB是直径,∴△D=90°,∴CF△AD,∴△BAD=△F,∴sin△BAD=sinF=BDAB=35,∴AB=53BD=6,∴OB=OC=3,∵OC△CF,∴△OCF=90°,∴sinF=OCOF=35,解得:OF=5.6.【答案】(1)证明:∵△ADO=△BAD=30°,∴△DOB=60°∵△ABD=30°,∴△ODB=90°∴OD△BD.∵点D为△O上一点,∴BD是△O的切线.(2)解:∵△DOB=60°,∴△AOD=120°.∵OA=5,∴OA、OD与AD围成的扇形的面积为120·π·52360=253π.7.【答案】(1)解:∵ △O 的半径为52,则CD=5,AB=10,BC=√AB2−AC2=√100−36=8CD为直径,得DN△BC,D为AB的中点,则BD=CD,则△BDC为等腰三角形,由三线合一知,BN=NC=12BC=4。
2023年中考九年级数学高频考点拔高训练--相似三角形的综合题

2023年中考九年级数学高频考点拔高训练--相似三角形的综合题1.如图1,直线y=﹣43x+8,与x轴、y轴分别交于点A、C,以AC为对角线作矩形OABC,点P、Q分别为射线OC、射线AC上的动点,且有AQ=2CP,连结PQ,设点P的坐标为P(0,t).(1)求点B的坐标.(2)若t=1时,连接BQ,求△ABQ的面积.(3)如图2,以PQ为直径作△I,记△I与射线AC的另一个交点为E.①若PEPQ=35,求此时t的值.②若圆心I在△ABC内部(不包含边上),则此时t的取值范围为是多少?2.如图,在Rt△ABC中,△ACB=90°,AC=8cm,BC=6cm,点P沿AB边从点A开始以2cm/s的速度向点B运动,点Q沿CB边从点C开始以1cm/s的速度向点B运动,P、Q同时出发,用t (s)表示运动的时间(0≤t≤5).(1)当t为何值时,以P、Q、B为顶点的三角形与△ABC相似.(2)分别过点A,B作直线CP的垂线,垂足为D,E,设AD+BE=y,求y与t的函数关系式;并求当t为何值时,y有最大值.(3)直接写出PQ中点移动的路径长度.3.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在BE⌢上取点F,使EF⌢=AE⌢,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.4.如图,已知MN//BC,A是MN上一点,AM=AN,MC交AB于D,NB交AC于E,连接DE.(1)求证:DE//BC;(2)设MC与BN的交点为点G,如果DE=1,BC=4,求C△MGNC△CGB的值.5.已知:如图,在四边形ABCD中,AD△BC,△C=90°,AB=AD=50,BC=64,连结BD,AE△BD 垂足为E,(1)求证:△ABE△△DCB;(2)求线段DC的长.6.在▱ABCD中,E是DC的中点,连接AE并延长,交BC的延长线于点F.(1)求证:BC=CF;(2)点G是CF上一点,连接AG交CD于点H,且∠DAF=∠GAF.若CG=2,GF=5,求AН的长.7.已知直线m△n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P 为线段CD的中点.(1)操作发现:直线l△m,l△n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:;(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得△APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.8.如图,在平面直角坐标系中,直线y=kx+3与x轴、y轴分别交于A,B两点. 抛物线y=−14x2+32x经过点A,且交线段AB于点C,BC=√5.(1)求k的值.(2)求点c的坐标.(3)向左平移抛物线,使得抛物线再次经过点C,求平移后抛物线的函数解析式.9.如图,在△ABCD中,点G是对角线AC上一点,DE垂直平分CG,交GC于点O,交BC于点E,作GF△AD交DE于点F,连接FC.(1)求证:四边形GFCE是菱形;(2)点H为线段AO上一点,连接HD,HF,当△1=△2时,若AD=6,CF=2,求AH•CH的值.10.如图,已知直线y=12x+1与y轴交于点A,与x轴交于点D,抛物线y=ax2+bx+c与直线交于A,E两点,与x轴交于B(1,0),C(2,0)两点.(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,请通过计算写出一个满足条件点P的坐标.11.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=k x(k≠0)在第一象限内的图象与BC边交于点D(4,m),与AB交于点E(2,n)(1)求m与n的数量关系.(2)当tan∠BAC=12时,记△BDE面积为S,用含有k的式子表示S.(3)若△BDE的面积为2.设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B,C,P为顶点的三角形与△EDB相似?若存在,求出此时点P的坐标;若不存在,请说明理由. 12.将抛物线C:y=(x﹣1)2向下平移4个单位长度得到抛物线C1,再将抛物线C1向左平移1个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),抛物线C1 与x轴交于A,B两点,与y轴交于C点,且D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1 S2的最大值;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4k x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.13.如图,点E是矩形ABCD的边BC的中点,连接DE交AC于点F。
2023年中考九年级数学高频考点拔高训练--三角形的外接圆与外心

2023年中考九年级数学高频考点拔高训练--三角形的外接圆与外心1.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.2.如图,⊙O是⊙ABC的外接圆,AC为直径,弦BD=BA,BE⊙DC交DC的延长线于点E.(1)求证:⊙1=⊙BAD;(2)求证:BE是⊙O的切线.3.如图,在⊙ABC中,⊙B=45°,⊙ACB=60°,AB=3 √2,点D为BA延长线上的一点,且⊙D=⊙ACB,⊙O为⊙ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.4.如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)若D(2,3),请在网格图中画一个格点⊙DEF,使⊙DEF ⊙⊙ABC,且相似比为2⊙1;(2)求⊙ABC中AC边上的高;(3)若⊙ABC外接圆的圆心为P,则点P的坐标为5.如图,点E是⊙ABC的内心,AE的延长线和⊙ABC的外接圆相交于点D,连接BE(1)若⊙CBD=35°,求⊙BAC及⊙BEC的度数(2)求证:DE=DB6.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的⊙ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,﹣1).(1)在如图的方格纸中把⊙ABC以点O为位似中心扩大,使放大前后的位似比为1:2,画出⊙A1B1C1(⊙ABC与⊙A1B1C1在位似中心O点的两侧,A,B,C的对应点分别是A1,B1,C1).(2)利用方格纸标出⊙A1B1C1外接圆的圆心P,P点坐标是,⊙P的半径=.(保留根号)7.如图,在边长为1的正方形网格中,⊙ABC的顶点均在格点上,点A、B的坐标分别是A(5,3)、B(5,1).(1)①在图中标出⊙ABC外心D的位置,并直接写出它的坐标;②将⊙ABC绕点C逆时针方向旋转90°后,得到⊙A′B′C,画出旋转后的⊙A′B′C;(2)求⊙ABC旋转过程中点A经过的路径长.8.如图,在等腰直角⊙ABC中,⊙ACB=90°,AC=BC= √2(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法)̂的长(2)在(1)所作的圆中,圆心角⊙BOC=°,圆的半径为,劣弧BC为.9.八上教材给出了命题“如果△ABC≅△A′B′C′,AD,A′D′分别是△ABC和△A′B′C′的高,那么AD=A′D′”的证明,由此进一步思考……(问题提出)(1)在△ABC和△A′B′C′中,AD,A′D′分别是△ABC和△A′B′C′的高,如果BC= B′C′,∠BAC=∠B′A′C′,AD=A′D′,那么△ABC和△A′B′C′全等吗?(i)小红的思考如图,先任意画出一个△ABC,然后按下列作法,作出一个满足条件的△A′B′C′,作法如下:①作△ABC的外接圆O②过点A作AA′//BC,与O交于点A′③连接A′B′(点B′与C重合),A′C′(点C′与B重合),得到△A′B′C′请说明小红所作的△A′B′C′≅△ABC.(ii)小明的思考如图,对于满足条件的△ABC,△A′B′C′和高AD,A′D′;小明将△A′B′C′通过图形的变换,使边C′B′与BC重合,A′B′,AB相交于点M,连接A′A,易证A′A//BC接下来,小明的证明途径可以用下面的框图表示,请填写其中的空格.(2)小明解决了问题(1)后,继续探索,提出了下面的问题,请你证明.如图,在△ABC和△A′B′C′中,AD,A′D′分别是△ABC和△A′B′C′的高,(AD<A′D′),且∠BAC=∠B′A′C′,ADA′D′=BCB′C′,求证:△ABC∼△A′B′C′ .10.如图,⊙ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当⊙CAB的度数为时,四边形DEFG是正方形.11.如图,点P为抛物线L:y=a(x﹣2)(x﹣4)(其中a为常数,且a<0)的顶点,L与y轴交于点C,过点C作x轴的平行线,与L交于点A,过点A作x轴的垂线,与射线OP交于点B,连接OA(1)a=﹣2时,点P的坐标是,点B的坐标是;(2)是否存在a的值,使OA=OB?若存在,求出a的值;若不存在,请说明理由(3)若⊙OAB的外心N的坐标为(p,q),则①当点N在⊙OAB内部时,求a的取值范围;②用a表示外心N的横坐标p和纵坐标q,并求p与q的关系式(不写q的取值范围).12.如图,⊙ABC内接于⊙O,AC是直径,BC=BA,在⊙ACB的内部作⊙ACF=30°,且CF=CA,过点F作FH⊙AC于点H,连接BF.̂的长;(1)若CF交⊙O于点G,⊙O的半径是4,求AG(2)请判断直线BF与⊙O的位置关系,并说明理由.13.如图,⊙O为⊙ABC的外接圆,AB为⊙O直径,AC=BC,点D在劣弧BC上,CE⊙CD交AD 于E,连接BD.(1)求证:⊙ACE⊙⊙BCD.(2)若CD=2,BD=3 √2,求⊙O的半径.(3)若点F为DE的中点,连接CF,FO,设CD=a,BD=b,求CF+FO.(用含有a,b的代数式表示)14.如图,抛物线y=mx2﹣4mx+n(m>0)与x轴交于A,B两点,点B在点A的右侧,抛物线.与y轴正半轴交于点C,连接CA、CB,已知tan⊙CAO=3,sin⊙CBO=√22(1)求抛物线的对称轴与抛物线的解析式;(2)设D为抛物线对称轴上一点.①当⊙BCD的外接圆的圆心在⊙BCD的边上时,求点D的坐标;②若⊙BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.15.如图,抛物线y=ax2−2ax−3a(a>0)与x轴交于A,B两点(点B在点A的左边),与y轴交于点C,且OA=OC.(1)求抛物线的解析式;(2)如图1,若点P是直线AC上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;(3)如图2,若第四象限有一动点E,满足AE=OA,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t<3,△AEF的内心为I,连接CI,直接写出CI的最小值.16.如图,⊙ABC内接于⊙O,AB是⊙O的直径,I是⊙ABC内一点,AI的延长线交BC于点D,交⊙O于E,连接BE,BI.若IB平分⊙ABC,EB=EI.(1)求证:AE平分⊙BAC;(2)若BA= √5,OI⊙AD于I,求CD的长.答案解析部分1.【答案】(1)解:先作弦AB的垂直平分线,再在弧AB上任取一点C,连接AC,然后作弦AC 的垂直平分线,两条垂直平分线的交点即为圆心O,以OA为半径画圆即为所求图形.如图.(2)解:过O作OE⊙AB于D,交弧AB于E,连接OB,∴BD=12AB,又∵AB=16cm,∴BD=8cm,又∵ED=4cm,设半径为xcm,则OD=(x-4)cm,在Rt⊙BOD中,∴(x-4)2+82=x2,∴x=10,故答案为:10cm.2.【答案】(1)证明:∵BD=BA,∴⊙BDA=⊙BAD,∵⊙1=⊙BDA,∴⊙1=⊙BAD;(2)证明:连接BO,∵⊙ABC=90°,又∵⊙BAD+⊙BCD=180°,∴⊙BCO+⊙BCD=180°,∵OB=OC,∴⊙BCO=⊙CBO,∴⊙CBO+⊙BCD=180°,∴OB⊙DE,∵BE⊙DE,∴EB⊙OB,∵OB是⊙O的半径,∴BE是⊙O的切线.3.【答案】(1)解:过点A作AE⊙BC,垂足为E,∴⊙AEB=⊙AEC=90°,在Rt⊙ABE中,∵sinB= AE AB,∴AE=ABsinB=3 √2sin45°=3 √2× √22=3,∵⊙B=45°,∴⊙BAE=45°,∴BE=AE=3,在Rt⊙ACE中,∵tan⊙ACB= AE EC,∴EC=AEtan∠ACB=3tan60∘=√3= √3,∴BC=BE+EC=3+ √3(2)解:连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt⊙ACE中,∵⊙EAC=30°,EC= √3,∴AC=2 √3,∵⊙D=⊙M=60°,∴sin60°= ACAM=2√3AM= √32,解得:AM=4,∴⊙O的半径为24.【答案】(1)解:如图所示:⊙DEF即为所求;(2)解:设AC边上的高为x,由题意可得:12×1×2=12x×√10解得x= √105(3)(2,6)5.【答案】(1)解:在外接圆中,∵⊙CBD=35°,∵⊙CAD=35°,∵点E是⊙ABC的内心,∴⊙BAC=2⊙CAD=70°,∴⊙EBC+⊙ECB=(180°-70°)÷2=55°,∴⊙BEC=180°-55°=125°(2)证明:∵E是⊙ABC的内心,∴⊙BAD=⊙CAD,⊙EBA=⊙EBC,∵⊙DEB=⊙BAD+⊙EBA,⊙DBE=⊙EBC+⊙CBD,⊙CBD=⊙CAD,∴⊙DEB=⊙DBE,∴DE=DB.6.【答案】(1)如图,⊙A1B1C1为所作;(2)(3,1);√107.【答案】(1)解:①如图,点D为所作,D点坐标为(3,2);②如图,⊙A'B'C为所作;(2)解:CA =√22+42=2√5,所以⊙ABC旋转过程中点A经过的路径长=90×π×2√5180=√5π8.【答案】(1)解:如图所示,⊙O即为所求;(2)90;1;12π9.【答案】(1)解:(i )∵AA ′//BC ,∴∠A ′AB =∠ABC , ∵∠A ′AB =∠A ′B ′C ′ , ∴∠A ′B ′C ′=∠ABC ,又∵∠B ′A ′C ′=∠BAC , B ′C ′=BC , ∴△A ′B ′C ′≅△ABC ,(ii )根据相似三角形对应边成比例,对应角相等的性质解题:①AM CM =MA ′MC;②△A ′MC ′∼△AMC ;③∠A ′B ′C ′=∠ABC ;(拓展延伸)(2)解:如图,在 A ′D ′ 上截取 A ′E =AD ,过点 E 作 FG//B ′C ′ ,分别交 A ′B ′ , A ′C ′ 于 F , G ,∵FG//B ′C ′ ,∴∠A ′EG =∠A ′D ′C ′ , △A ′FG ∼△A ′B ′C ′ , ∵A ′D ′ 是 △A ′B ′C ′ 的高, ∴A ′D ′⊥B ′C ′ ,∴∠A ′EG =∠A ′D ′C ′=90° ,∴A ′E ⊥FG ,即 A ′E 是 △A ′FG 的高,又∵△A ′FG ∼△A ′B ′C ′ , A ′E , A ′D ′ 分别是 △A ′FG , △A ′B ′C ′ 的高,∴A ′EA ′D ′=FGB ′C ′,又 AD A ′D ′=BCB ′C ′ , A ′E =AD ,∴FG B ′C ′=BCB ′C′ , ∴FG =BC ,在 △ABC 和 △A ′FG 中, AD , A ′E 分别是 △ABC 和 △A ′FG 的高, BC =FG , ∠BAC =∠FA ′G , AD =A ′E , 由(1)可知 △A ′FG ≅△ABC , ∴△ABC ∼△A ′B ′C ′ .10.【答案】(1)解:四边形DEFG 是平行四边形.∵点D 、E 、F 、G 分别是CA 、OA 、OB 、CB 的中点, ∴DG⊙AB ,DG= 12 AB ,EF⊙AB ,EF= 12 AB ,∴DG⊙EF ,DG=EF ,∴四边形DEFG 是平行四边形; (2)32;75°或15°11.【答案】(1)(3,2);(6,4)(2)解:不存在a 的值使OA =OB ,理由如下:∵抛物线L :y =a (x ﹣2)(x ﹣4)=ax 2﹣6ax+8a =a (x ﹣3)2﹣a ∴顶点P (3,﹣a ),C (0,8a )∴直线OP 解析式为:y =﹣ a3 x∴A (6,8a )∴y B =﹣ a3 ×6=﹣2a∵a≠0∴|y A |≠y B ,即x 轴不平分AB ∴OA≠OB(3)解:①∵⊙OAB 的外心N 在其内部 ∴⊙OAB 是锐角三角形∴⊙AOB <90° ∴OA 2+OB 2>AB 2∵A (6,8a ),B (6,﹣2a ) ∴62+(8a )2+62+(﹣2a )2>(8a+2a )2 解得:﹣ 32<a <0②∵外心N 在AB 的垂直平分线上,AB⊙x 轴 ∴q = −2a+8a 2=3a∴N (p ,3a ),a = q3∵ON =AN ,即ON 2=AN 2∴p 2+(3a )2=(6﹣p )2+(8a ﹣3a )2 整理得:p = 34a 2+3把a = q3 代入得:p = 427q 2+312.【答案】(1)解:连接OG .∵⊙AOG=2⊙ACF=60°,OA=4,∴AĜ 的长= 60⋅π⋅4180 = 43π (2)解:结论:BF 是⊙O 的切线.理由:连接OB .∵AC 是直径,∴⊙CBA=90°,∵BC=BA ,OC=OA,∴OB⊙AC,∵FH⊙AC,∴OB⊙FH,在Rt⊙CFH中,∵⊙FCH=30°,∴FH= 12CF,∵CA=CF,∴FH= 12AC=OC=OA=OB,∴四边形BOHF是平行四边形,∵⊙FHO=90°,∴四边形BOHF是矩形,∴⊙OBF=90°,∴OB⊙BF,∴BF是⊙O的切线.13.【答案】(1)证明:∵AB为⊙O直径,∴⊙ACB=90°,∵CE⊙CD,∴⊙ECD=90°,∴⊙ACE=90°﹣⊙ECB=⊙BCD,在⊙ACE和⊙BCD中,{∠ACE=∠BCDAC=BC∠CAE=∠CBD,∴⊙ACE⊙⊙BCD(ASA)(2)解:∵⊙ACE⊙⊙BCD,∴CE=CD,AE=BD,∵CE⊙CD,∴⊙ECD是等腰直角三角形,∵CD=2,BD=3 √2,∴DE=2 √2,AE=3 √2,∴AD=5 √2,∵AB为⊙O直径,∴⊙ADB=90°,∴AB=√AD2+BD2=2 √17,∴⊙O的半径为√17(3)解:法一:过O作OH⊙AD于H,如图:∵⊙ECD是等腰直角三角形,CD=a,∴ED=√2a,CF=√22a,∵F为DE的中点,∴CF=DF=12DE=√22a,∵⊙ACE⊙⊙BCD,∴AE=BD=b,∴AD=ED+AE=√2a+b,∵OH⊙AD,⊙ADB=90°,∴OH⊙BD,∵AO=OB,∴OH=12OB=12b,DH=12AD=√22a+ 12b,OH=12BD=12b,∴HF=DH﹣DF=(√22a+ 12b)﹣√22a=12b,在Rt⊙OHF中,FO=√OH2+HF2=√22b,∴CF+FO=√22a+ √22b.法二:延长AD至点H,使DH=AE,连接BH,如图:由(1)得⊙ACE⊙⊙BCD,∴BD=AE=DH,∵AB为直径,∴⊙ADB=⊙BDH=90°,∴⊙BDH为等腰直角三角形,∵BD=b,∴BH=√2b,∵⊙ECD是等腰直角三角形,CD=a,∴ED=√2a,CF=√22a=DF=EF,而DH=AE,∴AE+EF=DH+DF,即AF=HF,∴F为AH中点,∵O为AB中点,∴FO=12BD=√22b,∴CF+FO=√22a+ √22b.14.【答案】(1)解:由题意可知,⊙COA=90°,∴tan∠CAO=OCOA=3,sin∠CBO=√22∴OC=3OA,⊙CBO=45°,∴OC=OB,∵抛物线y=mx2﹣4mx+n(m>0)与x轴交于A,B两点,点B在点A的右侧,抛物线与y轴正半轴交于点C,∴C(0,n),抛物线对称轴为x=−−4m2m=2,∴OC=n,∴OA=13n,OB=n,∴A(13n,0),B(n,0),∴n+13n2=2,∴n=3,∴C(0,3),B(3,0),A(1,0),∴把A(1,0)代入抛物线解析式得:m−4m+3=0,∴m=1,∴抛物线解析式为y=x2−4x+3;(2)解:①当⊙BCD的外接圆圆心在⊙BCD边上时,⊙BCD是直角三角形,∵D为抛物线对称轴上的一点,∴设D(2,a)∵C(0,3)B(3,0),∴CD2=(2−0)2+(a−3)2=a2−6a+13,BD2=(2−3)2+(a−0)2=a2+1,BC2= (3−0)2+(0−3)2=18,当C为直角顶点时,DC2+BC2=BD2即a2−6a+13+18=a2+1,解得a=5,∴D(2,5);当D为直角顶点时,DC2+BD2=BC2即a2−6a+13+a2+1=18,解得a=3±√172,∴D(2,3+√172)或(0,3−√172);当B为直角顶点时,BC2+BD2=CD2即a2−6a+13=18+a2+1,解得a=-1,∴D(2,-1);∴综上所述:D(2,5)或D(2,3+√172)或(0,3−√172)或D(2,-1);②由图形可知当D在D1和D3之间或D4与D2之间时,⊙BCD是锐角三角形,其中D1是C为直角顶点时D点的位置,D3是D为直角顶点D的位置,D4和D2分别是以B和D为直角顶角的位置,∴3+√172<n<5或−1<n<3−√172.15.【答案】(1)解:在 y =ax 2−2ax −3a(a >0) 中,令y =0,得: ax 2−2ax −3a =0 , 解得:x 1=3,x 2=−1, ∴B (−1,0),A (3,0), ∴OA =3, ∵OA =OC , ∴OC =3, ∴C (0,−3), ∴−3a =−3, ∴a =1,∴抛物线解析式为: y =x 2−2x −3 (2)解:设直线AC 解析式为y =kx +b , ∵A (3,0),C (0,−3), ∴{3k +b =0b =−3 ,解得: {k =1b =−3 , ∴直线AC 解析式为:y =x−3, 设M 点坐标为(m ,m 2−2m−3), ∵PM⊙x 轴, ∴P (m ,m−3),∴PM =m−3−(m 2−2m−3)=−m 2+3m ,∵OA=OC,⊙AOC=90°,∴CA=√2OA,∴CP=√2m,∵⊙PCM沿CM对折,点P的对应点N恰好落在y轴上,∴⊙PCM=⊙NCM,∵PM⊙y轴,∴⊙NCM=⊙PMC,∴⊙PCM=⊙PMC,∴PC=PM,∴√2m=−m2+3m,解得:m1=0(舍去),m2=3− √2,∴当m=3− √2时,m−3=− √2,∴P(3−√2,−√2);(3)解:作⊙OAI的外接圆⊙M,连接OM,AM,MI,CM,过M作MH⊙y轴于H,∵EF⊙x轴,∴⊙AFE=90°,∴⊙FAE+⊙FEA=90°,∵⊙AEF的内心为I,∴AI,EI分别平分⊙FAE,⊙FEA,∴⊙IAE=12⊙FAE,⊙IEA=12⊙FEA,∴⊙IAE+⊙IEA=12(⊙FAE+⊙FEA)=45°,∴⊙AIE=135°在⊙AIO和⊙AIE中,{OA=EA∠OAI=∠EAIAI=AI,∴⊙AIO⊙⊙AIE(SAS),∴⊙AIO=⊙AIE=135°,∵⊙M是⊙OAI的外接圆,∴⊙OMA=2×(180°−⊙AIO)=90°,∴OM=AM=√22OA=3√22,∴MI=OM=3√22,∴⊙MOA=⊙MOH=45°,∵MH⊙y轴,∴⊙HOM=⊙HMO=45°,∴OH=HM=√22OM=32,∴CH=OH+OC=32+3=92,∴CM=√HM2+CH2=3√102,∵CI≥CM−MI,当且仅当C、M、I三点共线时,CI取得最小值,∴CI的最小值为3√102−3√2 2.16.【答案】(1)证明:∵EB=EI,∴⊙EBI=⊙EIB,∵IB平分⊙ABC,∴⊙ABI=⊙DBI,又⊙EBI=⊙EBD+⊙DBI,⊙EIB=⊙ABI+⊙BAI,∴⊙EBD=⊙BAI,又⊙EBD=⊙CAD,∴⊙BAI=⊙CAD,即AE平分⊙BAC(2)解:∵OI⊙AD,AB为圆O直径,∴⊙OIA=⊙E=90°,∴OI⊙BE,∴⊙OIB=⊙EBI∵EB=EI,∴⊙EBI=⊙EIB,∴⊙OIB=⊙DIB,∵IB平分⊙ABC,∴⊙ABI=⊙DBI,在⊙BDI和⊙BOI中{∠DIB=∠OIB BI=BI∠DBI=∠OBI∴⊙BDI⊙⊙BOI(ASA),∴AO=BO=BD= √5,∴AB=2AO=2 √5又AI=EI=EB,∴在Rt⊙ABE中,由勾股定理可得AB2=BE2+AE2,即(2 √5)2=(2AI)2+AI2,解得AI=2,∴OI=ID= 12BE=12AI=1,∴AD=AI+DI=2+1=3,在Rt⊙ACD中,由勾股定理可得AC2=AD2﹣CD2,在Rt⊙ABC中,由勾股定理可得AC2=AB2﹣BC2,即{AC2=9−CD2AC2=(2√5)2−(CD+√5)2,解得CD= 3√55。
2023年中考九年级数学高频考点拔高训练--圆的动点问题

2023年中考九年级数学高频考点拔高训练--圆的动点问题1.如图AB为⊙O的直径,C为⊙O上半圆的一个动点,CE⊙AB于点E,⊙OCE的角平分线交⊙O 于D点.(1)当C点在⊙O上半圆移动时,D点位置会变吗?请说明理由;(2)若⊙O的半径为5,弦AC的长为6,连接AD,求线段AD、CD的长.2.如图.在Rt△ABC中,BC=4,∠BAC=30°,点E,F为边AB上的动点,点D是EF的中点,以点D为圆心,DE长为半径在△ABC内作半圆D.(1)若EF=2,P为半圆D的中点,在半圆D移动的过程中,求CP的最小值.(2)当半圆D同时与Rt△ABC的两直角边相切时,请求出EF的长.3.如图,在每个小正方形的边长为1的网格中,△ABO的顶点A,B,O均落在格点上,OB为⊙O的半径.(1)∠AOB的大小等于(度);(2)将△ABO绕点O顺时针旋转,得△A′B′O,点A,B旋转后的对应点为A′,B′.连接AB′,设线段AB′的中点为M,连接A′M.当A′M取得最大值时,请在如图所示的网格中,用无刻度的直尺画出点B′,并简要说明点B′的位置是如何找到的(不要求证明).4.一块含有30°角的三角板ABC如图所示,其中∠C=90°,∠A=30°,BC=3cm.将此三角板在平面内绕顶点A旋转一周.(1)画出边BC旋转一周所形成的图形;(2)求出该图形的面积.5.如图,已知AB是⊙O中一条固定的弦,点C是优弧AB上一个动点(点C不与A,B重合).(1)设⊙ACB的角平分线与劣弧AB交于点P,试猜想点P在AB⊙上的位置是否会随点C的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O的半径为5,在(1)的条件下,四边形ACBP的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.6.如图,在ΔABC中,∠ACB=90°,∠ABC=45°,BC=12cm,半圆O的直径DE=12cm.点E 与点C重合,半圆O以2cm/s的速度从左向右移动,在运动过程中,点D、E始终在BC所在的直线上.设运动时间为x(s),半圆O与ΔABC的重叠部分的面积为S(cm2).(1)当x=0时,设点M是半圆O上一点,点N是线段AB上一点,则MN的最大值为;MN的最小值为.(2)在平移过程中,当点O与BC的中点重合时,求半圆O与ΔABC重叠部分的面积S;(3)当x为何值时,半圆O与ΔABC的边所在的直线相切?7.如图,在△ABE中,BE>AE,延长BE到点D,使DE=BE,延长AE到点C,使CE=AE.以点E为圆心,分别以BE、AE为半径作大小两个半圆,连结CD.(1)求证:AB=CD;(2)设小半圆与BD相交于点M,BE=2AE=4.①当S△ABE取得最大值时,求其最大值以及CD的长;②当AB恰好与小半圆相切时,求弧AM的长.8.如图,在半径为5的扇形AOB中,⊙AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊙BC,OE⊙AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在⊙DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.9.如图,四边形ABCD中,AD∥BC,⊙ABC=90°,⊙C=30°,AD=3,AB=2√3,DH⊙BC 于点H.将⊙PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中⊙Q=90°,⊙QPM=30°,PM=4√3.(1)求证:⊙PQM⊙⊙CHD;(2)⊙PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且BK=9−4√3.若⊙PQM右移的速度为每秒1个单位长,绕点D 旋转的速度为每秒5°,求点K在⊙PQM区域(含边界)内的时长;③如图3.在⊙PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).10.对于平面直角坐标系xOy内任意一点P,过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(−2,√2)的垂点距离分别为,,;(2)点P在以Q(√3,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h的取值范围;(3)点T为直线l:y=√3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.11.如图,在⊙O中,OA=2,AB=2√3,将弦AB与AB⌢所围成的弓形(包括边界的阴影部分)绕点B顺时针旋转α(0°≤α≤360°),点A的对应点为A′.(1)点O到线段AB的距离是;∠AOB=°;当点O落在阴影部分(包括边界)时,α的取值范围是;(2)若线段A′B与优弧ACB的交点为D,当∠A′BA=90°时,点D AO的延长线上(填“在”或“不在”);(3)当直线..A′B与⊙O相切时,求α的值并求此时点A′运动路径的长度.12.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C、D分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.13.如图,已知▱ABCD,AB=4√3,BC=8√3,∠B=60°,其内有一个圆心角为240°扇形EOF,半径OE=r.(1)发现:如图1,当E、F在BC边上,扇形EOF与AD相切时,①优弧EF上的点与BC的最大距离为,r=,S扇形EOF=;②当BE=CF时,优弧EF⌢上的点与点D的最小距离为;(2)思考:如图2,当r=2时,扇形EOF在▱ABCD内自由运动①当扇形EOF与▱ABCD的两条边同时相切时,求此时两切点之间的距离是多少?②OE与AD垂直时,扇形EOF▲ (填“有可能”或“不可能”)与▱ABCD的边切于点F;(3)拓展:如图3,将扇形的圆心O放在BC的中点处,点E在线段OB上运动,点F在▱ABCD外,当优弧EF⌢与▱ABCD的边有六个交点时,直接写出r的取值范围:.14.小航在学习中遇到这样一个问题:⌢于C,如图,点F是线段AB上一动点,线段AB=8cm,AB的垂直平分线交AB⌢于E,连接AE.若△AEF是等腰三角取线段CD的中点O,连接FO并延长交AB形,求线段AF的长度.小航结合学习函数的经验研究此问题,请将下面的探究过程补充完整:(1)根据点F在线段AB上的不同位置,画出相应的图形,测量线段AF,EF,AE的长度,得到下表的几组对应值.填空:m的值为,n的值为;(2)将线段AF的长度作为自变量x,EF和AE的长度都是x的函数,分别记为y W和y,并在平面直角坐标系xOy中画出了函数y kx的图象,如图所示.请在同一坐标系中画出函数kxy的图象;w(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△AEF为等腰三角形时,线段AF长度的近似值(结果保留一位小数).15.如图1,扇形AOB的半径为4,圆心角为90°,点C为AB⌢上任意一点(不与点A,B 重合),且CD⊥BO于点D,点P为△COD的内心,连接OP,BP,CP.(1)求∠OPB的度数;⌢上运动.(2)如图2,⊙ M为△BOP的外接圆,点C在AB①当CD=OD时,判断OC与⊙ M的位置关系,并加以证明;②设⊙ M的半径为r,若r的值不随点C的运动而改变,请直接写出r的值;若随着点C 的运动而在一个范围内变化,请直接写出这个变化范围.16.如图,在⊙O中,AB为弦,CD为直径,且AB⊙CD,垂足为E,P为AC⌢上的动点(不与端点重合),连接PD.(1)求证:⊙APD=⊙BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:⊙AIP+⊙DAI=180°;(3)在(2)的条件下,连接IC、IE,若⊙APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.答案解析部分1.【答案】(1)解:当C点在⊙O上半圆移动时,D点位置不会变;理由如下:连接OD.∵CD平分⊙OCE,∴⊙1=⊙3,而OC=OD,∴⊙1=⊙2,∴⊙2=⊙3,∴CE⊙OD,∵CE⊙AB,∴OD⊙AB,∴AD̂= BD̂,即点D为半圆AB的中点.(2)解:∵在直角⊙AOD中,OA=OD=5,∴AD=5√2.过点A作CD的垂线,垂足为G,∵∠ACD=12∠AOD=45°,∴⊙AGC是等腰直角三角形,∵AC=6,∴AG=CG=3√2.在直角⊙AGD中,DG=√(5√2)2−(3√2)2=4√2,∴CD=CG+DG=3√2+4√2=7√2,∴线段AD的长度为5√2,线段CD的长度为7√2.2.【答案】(1)解:在Rt⊙ABC中,BC=4,⊙BAC=30°∴AC=4√3,AB=8∵EF=2∴半圆半径为1∴DP=1如图,当D、C、P三点共线时,CP最小∵P为半圆D的中点,⊙CBA=60°∴CD⊙AB,CD=2√3∴CP的最小值是2√3−1(2)解:∵半圆D同时与两直角边相切,如图∴DM⊙AC,DN⊙BC,设半圆的半径为r,则CN=DM=DN=r∴BN=4-r,∵⊙CAB=⊙NDB=30°∴tan30°=4−rr=√3 3∴r=123+√3∴EF=2r=3+√3=12−4√33.【答案】(1)45(2)解:取OB′的中点N,连接MN,A′N,构成△A′MN,延长AO交⊙O于点H,如图,根据三角形三边关系,A′M≤A′N+MN,当点A′,N,M三点共线时,A′M取最大值,在Rt△A′B′N中,tan∠A′NB′=A ′B′B′N=2,∵点M,N分别是AB′,OB′的中点,∴A′M∥AH,作∠A′NB′=∠HOB′,由网格图的特点可得,在OH上取格点G,取格点C,连接OC与⊙O交于B′,如图所示,OG=√2,CG=2√2,此时tan∠HOB′=2,∠A′NB′=∠HOB′,故连接OC与⊙O交于B′,点B′即为所求.4.【答案】(1)解:∵三角板ABC,∠C=90°,∠A=30°,BC=3cm,∴AB=2BC=6cm,∴由勾股定理:AC= √AB2−BC2=√36−9=3√3,边BC在平面内绕顶点A旋转一周.图形是以AB为半径的圆去掉以AC为半径的圆,所形成的圆环,如图所示:(2)解:BC扫过的面积S圆环= πAB2−πAC2=36π−27π=9π5.【答案】(1)解:如图,结论:点P在弧AB上的位置不会随点C的运动而发生变化∵CP平分⊙ACB∴ACP=⊙BCP (角平分线将这个角分为两个相等的角)∴AP⌢= BP⌢(在同圆或等圆中,相等的圆周角所对的弧相等)即点P为劣弧AB的中点(2)解:四边形A′C′B′P′的面积不是定值.当C′P′经过圆心时,点C′到A′B′的距离最大,故四边形A′C′B′P′的面积最大,此时C′P′垂直平分A′B′:设C′P′交A′B′于M∵A′M=4,A′O′=5 O′M⊙ A′B′∴O′M=3 (直角三角形勾股定理求值)∴M P′=2 C′=8∵C′M=8 M P′=2 C′P′⊙ A′B′A′B′=8 ;∴△A′B′C′的最大面积= 12×A′B′×C′M=32,△A′B′P′的面积= 12×A′B′×MP′=8∵点C在优弧上运动,且不与A、B重合∴8 <四边形ACBP的面积≤406.【答案】(1)24cm;(9√2−6)cm(2)解:当点O与BC的中点重合时,如图②,点O移动了12cm,设半圆与AB交于点H,连接OH、CH.∵BC为直径,∴∠CHB=90°,∵∠ABC=45°∴∠HCB=45°,∴HC=HB,∴OH⊥BC,OH=OC=OB=6,S阴影=S扇形HOC+SΔBOH=90360π⋅62+12×6×6=9π+18;(3)解:当半圆O与直线AC相切时,运动的距离为0或12,∴x=0(秒)或6(秒);当半圆O与直线AB相切时,如图③,连接OH,则OH⊥AB,OH=6∵∠B=45°,∠OHB=90°,∴OB=√2OH=6√2,OC=BC−OB=12−6√2,移动的距离为6+12−6√2=18−6√2(cm),运动时间为x=18−6√22=9−3√2(秒),综上所述,当x为0或6或9−3√2时,半圆O与ΔABC的边所在的直线相切.7.【答案】(1)证明:在△ABE和△CDE中,{BE=DE∠AEB=∠CEDAE=CE,∴△ABE≌△CDE;∴AB=CD(2)解:①当AE⊥BE时,S△ABE取得最大值,S△ABE最大值=12×BE×AE=12×4×2=4,在Rt△ABE中,AB=√BE2+CE2=√42+22=2√5,∴CD=AB=2√5;②当AB恰好与小半圆相切时,AB⊥AE,∵在Rt△ABE中,BE=2AE=4,∴AE=2,∴∠ABE=30°,∴∠BEA=60°,∴∠AEM=120°,∴弧AM的长=120π×2180=4π38.【答案】(1)解:如图(1),∵OD⊙BC,∴BD= 12BC=12×6=3,∵⊙BDO=90°,OB=5,BD=3,∴OD= √OB2−BD2=4,即线段OD的长为4.(2)解:存在,DE保持不变.理由:连接AB,如图(2),∵⊙AOB=90°,OA=OB=5,∴AB= √OB2+OA2=5 √2,∵OD⊙BC,OE⊙AC,∴D和E分别是线段BC和AC的中点,∴DE= 12AB=5√22,∴DE保持不变.9.【答案】(1)证明:∵AD∥BC,DH⊥BC∴DH⊥AD则在四边形ABHD中∠ABH=∠BHD=∠HDA=90°故四边形ABHD为矩形DH=AB=2√3,BH=AD=3在Rt△DHC中,∠C=30°∴CD=2DH=4√3,CH=√3DH=6∵{∠DHC=∠Q=90°∠C=∠QPM=30°CD=PM=4√3∴△CHD≌△PQM(AAS);(2)解:①过点Q作QS⊥AM于S由(1)得: AQ =CH =6 在 Rt △AQS 中, ∠QAS =30°∴AS =√32AQ =3√3平移扫过面积: S 1=AD ⋅AS =3×3√3=9√3 旋转扫过面积: S 2=50°360°⋅π⋅PQ 2=50°360°⋅π⋅62=5π故边PQ 扫过的面积: S =S 1+S 2=9√3+5π ②运动分两个阶段:平移和旋转 平移阶段:KH =BH −BK =3−(9−4√3)=4√3−6t 1=KH v =(4√3−6)s旋转阶段:由线段长度得: PM =2DM取刚开始旋转状态,以PM 为直径作圆,则H 为圆心,延长DK 与圆相交于点G ,连接GH ,GM ,过点G 作 GT ⊥DM 于T设 ∠KDH =θ ,则 ∠GHM =2θ 在 Rt △DKH 中:KH =BH −BK =3−(9−4√3)=4√3−6=2√3×(2−√3)DK=√DH2+KH2=√(2√3)2+(4√3−6)2=4√3×√2−√3设t=√2−√3,则KH=2√3t2,DK=4√3t,DH=2√3tanθ=KHDH=t 2,sinθ=KHDK=t2,cosθ=DHDK=12t∵DM为直径∴∠DGM=90°在Rt△DGM中:DG=DM⋅cosθ=4√3×12t=2√3 t在Rt△DGT中:GT=DG⋅sinθ=2√3t×t2=√3在Rt△HGT中:sin2θ=GTGH=√32√3=12∴2θ=30°,θ=15°PQ转过的角度:30°−15°=15°t2=15°5°=3s总时间:t=t1+t2=4√3−6+3=(4√3−3)s③CF=60−12d9−d10.【答案】(1)ℎA=2;ℎB=4√2;ℎC=√6(2)解:如图,过点P作PM⊥x轴于点M,PN⊥y轴于点N.∵∠PMO=∠PNO=∠MON=90°,∴四边形PMON是矩形.∴OP=MN.∵Q点坐标为(√3,1),∴OQ=2.∵PQ−OQ⩽OP⩽PQ+OQ,∴3−2≤OP⩽3+2.∴1⩽ℎ⩽5(3)解:如图,设直线l与x轴,y轴的交点分别为A,B,过点O作OM⊥直线l于点M,以OA为半径作⊙O,交直线l于点N.∵∠BAO=60°,AO=2√3,∴AM=√3.过点M,N分别作x轴的垂线,垂足分别为C,D,则AC=√32,即OC=3√32.∵△AON是等边三角形,∴OD=12AO=√3.∴t=−3√32或−√3⩽t<0.11.【答案】(1)1;120;30°≤α≤60°(2)在(3)解:①当A′B与⊙O相切,∴⊙OBA′=90°,此时α=⊙ABA′=90°+30°=120°,或α=120°+180°=300°;②当α=120°时,A′运动路径的长度= 120π⋅2√3180=4√33π.当α=300°时,A′运动路径的长度= 300π⋅2√3180=10√33π.综上可知,α=120°或α=300°;A′运动路径的长度为4√33π或10√33π.12.【答案】(1)解:如图1中,∵AB是直径,∴⊙ACB=90°,∵AC=4,BC=4 √3,∴AB =√AC2+BC2=√42+(4√3)2=8,∴⊙O的半径为4.(2)如图1中,连接OC,OD.∵CD=4 √2,OC=OD=4,∴CD2=OC2+OD2,∴⊙COD=90°,∴⊙OCD=45°,∵AC=OC=OA,∴⊙AOC是等边三角形,∴⊙ACO=60°,∴⊙ACD=⊙ACO﹣⊙DCO=60°﹣45°=15°.(3)如图2中,连接OM,OC.∵AM=MD,∴OM⊙AD,∴点M的运动轨迹以AO为直径的⊙J,连接CJ,JM.∵⊙AOC是等边三角形,AJ=OJ,∴CJ⊙OA,∴CJ =√AC2−AJ2=2 √3,∵CM≤CJ+JM=2 √3+2,∴CM的最大值为2 √3+2.13.【答案】(1)6;4;32π3;2√31−4(2)解:①2或者2√3理由:(i)如图当扇形与AB、AD边相切时(当扇形与CB、CD边相切时),过点O做OM⊥AD,ON⊥AB,连接AO,易证Rt△AMO≌Rt△ANO,∠ONA=∠OMA=60°,∠NOM=60°,∴ΔOMN为等边三角形,∴MN=2(ii)当扇形与DC、AD边相切时(当扇形与AB、BC边相切时),同理可求得∠NOM= 120°,MN=2√3②有可能(3)6<r<4√314.【答案】(1)3.0;5.6(2)解:如图,描点连线:(3)解:如图,作直线y=x,△AEF为等腰三角形有三种情况:①AE=EF时,即AF=x为y kx与y w的交点横坐标,如图,AF=5.4cm,②当AF=EF时,即求y=x与y w的交点横坐标,如图,AF=3.3cm,③当AE=AF时,即求y kx与y=x的交点横坐标,如图,AF=4.6cm,综上所述,当⊙AEF为等腰三角形时,AF的长为3.3cm,4.6cm,或5.4cm. 15.【答案】(1)解:∵点P为△COD的内心,∴∠COP=∠BOP.又∵PO=PO,CO=BO,∴△COP≌△BOP.∵CD⊥BO于点D,∴∠OCD+∠COD=90°.∴12∠OCD+12∠COD=45°.∴∠OPC=135°.∴∠OPB=∠OPC=135°.(2)解:①当CD=OD时,OC与⊙M相切.证明如下:如图,在优弧OB上取一点Q,连接OQ,BQ.∵点P在劣弧OB上,且∠OPB=135°,∴∠OQB=45°.∴∠OMB=90°.连接MO,MB.∴OM=BM.∴∠BOM=∠OBM=45°.而当CD=OD时,∠COD=∠OCD=45°,∴∠COD+∠BOM=90°.∴当CD=OD时,OC与⊙M相切.②r的值是定值;r=2√2.理由如下:⌢上运动时,由(2)证得∠OMB=90°,OM=MB=r,⊙OBM为等腰直角三角形,而当点C在ABOB=4,故OM=MB= r=2√2.16.【答案】(1)证明:∵直径CD⊙弦AB,⌢=BD⌢,∴AD∴⊙APD=⊙BPD;(2)解:如图,作⊙BAP的平分线,交PD于I,证:∵AI平分⊙BAP,∴⊙PAI=⊙BAI,∴⊙AID=⊙APD+⊙PAI=⊙APD+BAI,⌢=BD⌢,∵AD∴⊙DAB=⊙APD,∴⊙DAI=⊙DAB+⊙BAI=⊙APD+⊙BAI,∴⊙AID=⊙DAI,∵⊙AIP+⊙DAI=180°,∴⊙AIP+⊙DAI=180°;(3)解:如图2,连接BI,AC,OA,OB,∵AI平分⊙BAP,PD平分⊙APB,∴BI平分⊙ABP,⊙BAI=12⊙BAP,∴⊙ABI=12⊙ABP,∵⊙APB=60°,∴⊙PAB+⊙PBA=120°,∴⊙BAI+⊙ABI=12(⊙BAP+⊙ABP)=60°,∴⊙AIB=120°,∴点I的运动轨迹是AB⌢,∴DI=DA,∵⊙AOB=2⊙APB=120°,∵AD⊙AB,∴AD⌢=BD⌢,∴⊙AOB=⊙BOD=60°,∵OA=OD,∴⊙AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴⊙DAC=90°,∵CD⊙AB,∴⊙AED=90°,∴⊙AED=⊙CAD,∵⊙ADC=⊙ADE,∴⊙ADE⊙⊙CDA,∴ADCD=DEAD,∴AD2=DE•CD,∵DI′=DI=AD,∴DI2=DE•CD,∵⊙I′DE是公共角,∴⊙DIE⊙⊙DCI,∴ICIE=CDDI=2.。
中考数学 拔高题练习题(完美版)

中考数学拔高题练习题一.选择题(共14小题)1.(2014?陕西)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A .c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b2.(2014?陕西)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A .4 B.C.D.53.(2014?娄底)一次函数y=kx﹣k(k<0)的图象大致是()A .B.C.D.4.(2014?娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A .40°B.45°C.50°D.60°5.(2014?深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A .B.C.D.6.(2014?深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A .600﹣250B.600﹣250 C.350+350D.5007.(2014?深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A .2 B.3 C.4 D.58.(2014?深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A .1 B.3﹣C.﹣1 D.4﹣29.(2014?汕头)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A .函数有最小值B.对称轴是直线x=C.当x <,y随x的增大而减D.当﹣1<x<2时,y>0小10.(2014?天水)如图,扇形OAB动点P从点A 出发,沿线段B0、0A匀速运动到点A,则0P的长度y 与运动时间t之间的函数图象大致是()A .B.C.D.11.(2014?天水)如图,是某公园的一角,∠AOB=90°,的半径OA长是6米,点C是OA的中点,点D 在上,CD∥OB,则图中草坪区(阴影部分)的面积是()A.(3π+)平方米B.(π+)平方米C .(3π+9)平方米D.(π﹣9)平方米12.(2014?绥化)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A .2个B.3个C.4个D.5个13.(2014?绥化)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A .b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<014.(2014?海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A .B.C.D.二.填空题(共15小题)15.(2014?陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.16.(2014?娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.17.(2014?娄底)如图,?ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是.18.(2014?成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=度.19.(2014?成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)20.(2014?深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=.21.(2014?深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.22.(2014?汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.23.(2014?天水)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为()24.(2014?天水)如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为.25.(2014?绥化)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B 落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.26.(2014?绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.27.(2014?沈阳)如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.28.(2014?海南)如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD 的度数为90°,则∠B的度数是.29.(2014?海南)如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=.三.解答题(共1小题)30.(2014?海南)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).中考数学拔高题练习题(解析版)一.选择题(共14小题)1.(2014?陕西)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A .c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.2.(2014?陕西)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A .4 B.C.D.5考点:菱形的性质.专题:几何图形问题.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC?AE=AC?BD可得答案.解答:解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC?DB=×6×8=24,∴BC?AE=24,AE=,故选:C.点评:此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.3.(2014?娄底)一次函数y=kx﹣k(k<0)的图象大致是()A .B.C.D.考点:一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.4.(2014?娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A .40°B.45°C.50°D.60°考点:平行线的性质.分析:由把一块直角三角板的直角顶点放在直尺的一边上,∠1=40°,可求得∠3的度数,又由AB∥CD,根据“两直线平行,同位角相等“即可求得∠2的度数.解答:解:∵∠1+∠3=90°,∠1=40°,∴∠3=50°,∵AB∥CD,∴∠2=∠3=50°.故选:C.点评:此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.5.(2014?深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A .B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选:C.点本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,评:列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.(2014?深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A .600﹣250B.600﹣250 C.350+350D.500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.7.(2014?深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A .2 B.3 C.4 D.5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c <0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选:B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.8.(2014?深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A .1 B.3﹣C.﹣1 D.4﹣2考点:等腰梯形的性质.专题:压轴题.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG?cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF?sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选:D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.9.(2014?汕头)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A .函数有最小值B.对称轴是直线x=C.当x <,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.专题:压轴题;数形结合.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x <时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.10.(2014?天水)如图,扇形OAB动点P从点A 出发,沿线段B0、0A匀速运动到点A,则0P的长度y 与运动时间t之间的函数图象大致是()A .B.C.D.考点:动点问题的函数图象.专题:动点型.分析:分点P在弧AB上,在线段BO上,线段OA上三种情况讨论得到OP的长度的变化情况,即可得解.解答:解:点P在弧AB上时,OP的长度y等于半径的长度,不变;点P在BO上时,OP的长度y从半径的长度逐渐减小至0;点P在OA上时,OP的长度从0逐渐增大至半径的长度.纵观各选项,只有D选项图象符合.故选:D.点评:本题考查了动点问题的函数图象,根据点P的位置分点P在弧上与两条半径上三段讨论是解题的关键.11.(2014?天水)如图,是某公园的一角,∠AOB=90°,的半径OA长是6米,点C是OA的中点,点D在上,CD∥OB,则图中草坪区(阴影部分)的面积是()A.(3π+)平方米B.(π+)平方米C .(3π+9)平方米D.(π﹣9)平方米考点:扇形面积的计算.专题:应用题.分析:连接OD,根据直角三角形30°角所对的直角边等于斜边的一半可得∠CDO=30°,再根据直角三角形两锐角互余求出∠COD=60°,根据两直线平行,内错角相等可得∠BOD=∠CDO,然后根据S阴影=S△COD+S扇形OBD列式计算即可得解.解答:解:如图,连接OD,∵∠AOB=90°,CD∥OB,∴∠OCD=180°﹣∠AOB=180°﹣90°=90°,∵点C是OA的中点,∴OC=OA=OD=×6=3米,∴∠CDO=30°,∴∠COD=90°﹣30°=60°,∴CD=OC=3,∵CD∥OB,∴∠BOD=∠CDO=30°,∴S阴影=S△COD+S扇形OBD,=×3×3+,=+3π.故选:A.点评:本题考查了扇形的面积计算,主要利用了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,平行线的性质,作辅助线,把阴影部分分成直角三角形和扇形两个部分是解题的关键.12.(2014?绥化)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A .2个B.3个C.4个D.5个考点:矩形的性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.专题:几何图形问题.分析:①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.解答:解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.点评:本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.13.(2014?绥化)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A .b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以C选项错误;∵当x=2时,y>0,故选:A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.14.(2014?海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A .B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:数形结合.分析:根据反比例函数y=(k≠0),当k<0时,图象分布在第二、四象限和一次函数图象与系数的关系进行判断;解答:解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选:C.点评:本题考查了反比例函数的图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.二.填空题(共15小题)15.(2014?陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB?CD+AB?CE=AB(CD+CE)=AB?DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S=S△DAB+S△EAB=AB?CD+AB?CE=AB(CD+CE)=AB?DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.16.(2014?娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.专题:规律型.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.17.(2014?娄底)如图,?ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是9.考点:平行四边形的性质;三角形中位线定理.分析:根据平行四边形的性质得出DE=AD=BC,DO=BD,AO=CO,求出OE=CD,求出△DEO的周长是DE+OE+DO=(BC+DC+BD),代入求出即可.解答:解:∵E为AD中点,四边形ABCD是平行四边形,∴DE=AD=BC,DO=BD,AO=CO,∴OE=CD,∵△BCD的周长为18,∴BD+DC+BC=18,∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,故答案为:9.点评:本题考查了平行四边形的性质,三角形的中位线的应用,解此题的关键是求出DE=BC,DO=BD,OE=DC.18.(2014?成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40度.考点:切线的性质;圆周角定理.题:分析:连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到∠A=∠ODA,求出∠ODA的度数,再由∠COD为△AOD外角,求出∠COD度数,即可确定出∠C的度数.解答:解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40点评:此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键.19.(2014?成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)考点:一次函数图象上点的坐标特征.分析:根据一次函数的性质,当k>0时,y随x的增大而增大.解答:解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.点评:此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.20.(2014?深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=8.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.评:形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.21.(2014?深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.22.(2014?汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.23.(2014?天水)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为((9.5,﹣0.25))考点:二次函数图象与几何变换.专题:规律型.分根据旋转的性质,可得图形的大小形状没变,可得答案.解答:解:y=﹣x(x﹣1)(0≤x≤1),OA1=A1A2=1,P2P4=P1P3=2,P2(1.5,﹣0.25)P10的横坐标是1.5+2×[(10﹣2)÷2]=9.5,p10的纵坐标是﹣0.25,故答案为(9.5,﹣0.25).点评:本题考查了二次函数图象与几何变换,注意旋转前后的图形大小与形状都没发生变化是解题关键.24.(2014?天水)如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB 交反比例函数y=的图象于点C,则△OAC的面积为2.考点:反比例函数系数k的几何意义.专题:代数几何综合题.分析:由于AB⊥x轴,根据反比例函数k的几何意义得到S△AOB=3,S△COB=1,然后利用S△AOC=S△AOB﹣S△COB进行计算.解答:解:∵AB⊥x轴,∴S△AOB=×|6|=3,S△COB=×|2|=1,∴S△AOC=S△AOB﹣S△COB=2.故答案为:2.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.25.(2014?绥化)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为3或6.考点:翻折变换(折叠问题).专题:分类讨论.分析:分两种情况:①当∠EFC=90°时,先判断出点F在对角线AC上,利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折变换的性质可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②当∠CEF=90°时,判断出四边形ABEF是正方形,根据正方形的四条边都相等可得BE=AB.解答:解:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折的性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,即x2+42=(8﹣x)2,解得x=3,即BE=3;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE的长为3或6.故答案为:3或6.点评:本题考查了翻折变化的性质,勾股定理,正方形的判定与性质,此类题目,利用勾股定理列出方程求解是常用的方法,本题难点在于分情况讨论,作出图形更形象直观.26.(2014?绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.27.(2014?沈阳)如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.考点:三角形中位线定理;几何概率.专题:几何图形问题.分析:先设阴影部分的面积是x,得出整个图形的面积,再根据几何概率的求法即可得出答案.解答:解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴ED∥AB,且DE=AB,∴△CDE∽△CBA,。
2023年中考九年级数学高频考点拔高训练--三角形的动点问题(含解析)

2023年中考九年级数学高频考点拔高训练--三角形的动点问题1.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=cm,BQ=cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10 cm2?2.如图1,A、B两点的坐标分别为(a,0),(b,0),且a、b满足(a+2)2+ |b−8|=0,C的坐标为(3,c)(1)判断△ABC的形状.(2)动点P从点A出发,以1个单位/ s的速度在线段AC上运动,另一动点Q从点C出发,以3个单位/ s的速度在射线CB上运动,运动时间为t.①如图2,若AC=13,直线PQ交x轴于H,当PH=QH时,求t的值.②如图3,若c=5,当Q运动到BC中点时,M(3,m)为AQ上一点,连CM,作CN⊥AQ交AB于N.试探究AM和CN的数量关系,并给出证明. 3.如图,OC、AB互相垂直,已知OA=8,OC=6,且AB=AC.(1)求OB的长;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若△OME的面积为1,求t的值;②如图③,在点M运动的过程中,△OME能否成为直角三角形?若能,求出此时t的值,并写出相应的OM的长;若不能,请说明理由.4.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(a,0),B(b,4),C(2,c),BC//x轴,且a、b满足√a+b−1+|2a−b+10|= 0.(1)则a=;b=;c=;(2)如图1,在y轴上是否存在点D,使三角形ABD的面积等于三角形ABC 的面积?若存在,请求出点D的坐标;若不存在,请说明理由;(3)如图2,连接OC交AB于点M,点N(n,0)在x轴上,若三角形BCM的面积小于三角形BMN的面积,直接写出n的取值范围是.5.如图1,△ABC中,CD△AB于D,且AD:BD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=160cm2,如图2,动点M从点A出发以每秒2cm的速度沿线段AB向点B运动,同时动点N从点B出发以相同速度沿线段BC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与AC平行,求t的值;②若点E是边BC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.6.如图,在Rt△ABC中,△ACB=90°,AC=8,BC=6,DE是△ABC的中位线,点F 是BC边上的一个动点,连结AF交BD于点H,交DE于点G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.单项选择。
1. 如图, 梯形 ABCD 中,AB ∥ CD ,AB ⊥ BC ,M 为 AD 中点,AB=2cm ,BC=2cm ,CD=0.5cm , 点 P 在梯形的边上沿 B? C? D? M 运动,速度为 1cm/s ,则△ BPM 的面积 ycm 2 与点 P 经过的路程 xcm 之间的函数关系用图象表示大致是下图中的( )2. 如图,等边三角形 ABC 的边长为 4厘米,长为 1厘米的线段 MN 在△ ABC 的边 AB 上沿 AB 方向以 1厘米 / 秒的速度向 B 点运动(运动开始时,点 M 与点 A 重合,点 N 到达点 B 时运动终止),过点 M 、N 分别作 AB 边的垂线,与△ ABC 的其它边交于 P 、 Q 两点.线段 MN 在运动的过程中,四边形 MNQP 的面积为 S ,运动的4. 如图, Rt △ABC 中,AC ⊥BC ,AD 平分∠ BAC 交BC 于点 D ,DE ⊥AD 交AB 于点 E ,M 为 AE 的中点,BF ⊥BC 交 CM 的延长线于点 F ,BD =4,CD =3.下列结论:①∠ AED =∠ ADC ;② D D A E =34 ;③ AC ·BE = 12;④ 3BF= 4AC ,其中结论正确的个数有()A .1个B .2 个 C.3个D .4个AB CD3. 如图,四边形 AB 于 M ,交D 不重合), BE 的中垂线交时间为 t .则大致反映 S 与 t 变化关系的图象是( )ABCD 为正方形,若 AB=4, E 是 AD 边上一点(点 E 与点 A 、5. 如图,分别以Rt △ ABC的斜边AB、直角边AC为边向外作等边△ ABD和△ACE, F 为AB的中点,连接DF、EF、DE,EF与AC交于点O,DE与AB交于点G,连接OG,若∠ BAC=30°,下列结论:①△ DBF≌△ EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△ AOG与△ EOG的面积比为1:4.其中正确结论的序号是()A 、①②③B 、①④⑤C 、①③⑤D 、①③④6. 如图,正方形ABCD中,在AD的延长线上取点E、F,使DE=AD,DF=BD;BF分别交CD,CE于H、G点,连接DG,下列结论:①∠ GDH=∠GHD;②△ GDH为正三角形;③ EG=CH;④ EC=2DG;⑤ S△CGH:S△DBH=1:2.其中正确的是(A 、①②③B 、②③④C 、③④⑤D 、①③⑤7. 如图∠ A=∠ ABC=∠ C=45°,E、F 分别是AB、BC的中点,则下列结论,①⊥BD,② EF= BD,③∠ ADC=∠BEF+∠BFE,④ AD=DC,其中正确的是()A 、①②③④B 、①②③C 、①②④D 、②③④8. 如图,△ ABC 为等腰直角三角形,∠ BAC=90°, BC=2, E 为 AB 上任意一动点,以 CE 为斜边作等腰 Rt △ CDE ,连接 AD ,下列说法:积有最大值,且最大值为A 、①②④B 、①③⑤、①∠ BCE=∠ACD ;②AC ⊥ED ;③△ AED ∽△ ECB ;④ AD ∥ BC ;⑤四边形ABCD 的面 .其中,正确的结论是(②③④ D 、①④⑤9. 如图,在 Rt △ ABC 中, AB=AC . D , E 是斜边 BC 上两点,且∠ DAE=45°,将△ ADC 绕点 A 顺时针旋转 90° 后,得到△ AFB ,连接 EF ,下列结论: ①△ AED ≌△ AEF ;②△ ABE ∽△ ACD ;③BE+DC=D ;E④BE 2+DC 2=DE 2.其 中正确的是( )A 、②④B 、①④C 、②③D 、①③10. 如图, ABCD 、 CEFG 是正方形, E 在 CD 上,直线 BE 、DG 交于 H ,且 HE?HB= , BD 、 AF 交于 M ,当 E 在线段 CD (不与 C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为 45°;③GD= ;④若 BE 平分∠ DBC ,则正方形 ABCD 的面积为 4.其中正确的结论个数有(A 、1 个B 、2 个C 、3 个D 、4个11. 如图,在正方形ABCD中,AB=4,E为CD上一动点,连AE交BD于F,过F作FH⊥AE交BC于H,过H 作GH⊥ BD交BD于G,下列有四个结论:⑴ AF=FH,⑵∠ HAE=45°,⑶ BD=2FG,⑷△ CEH的周长为定值,其中正确的结论是()A.⑴⑵⑶B.⑴⑵⑷ C .⑴⑶⑷D.⑴⑵⑶⑷12. 如图,已知边长为4的正方形ABCD中,E为AD中点,P为CE中点,F为BP 中点,FH⊥BC交BC于H,连接PH,则下列结论正确的是()① BE=CE;② sin ∠EBP= ;③ HP∥ BE;④ HF=1;⑤ S△BFD=1.A 、①④⑤ B、①②③ C、①②④ D、①③④13. . 在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E 为AB上一点,AE=AD,且BF∥ CD,AF⊥ CE于F.连接DE交对角线AC于H.下列结论:①△ ACD≌ACE;② AC垂直平分ED;③ CE=2BF;④ CE平分∠ ACB.其中结论正确的是()A、①②B、①②④ C 、①②③ D 、①②③④14. 如图,在梯形ABCD中,DC∥AB,AB=AC,E为BC的中点,BD交AC于F,交AE 于G,连接CG.下列结论中:①AE平分∠BAC,② BG=CG,③ CD=CG,④若BG=6,FG=4,则DF=5,⑤ DC:AB=1:3,正确的有(A、 2 个 B 、3 个 C 、4个 D 、5 个15. 已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A 作AE的垂线交DE于点P.若AE =AP=1,PB= 5 .下列结论:①△ APD≌△ AEB;②点B到直线AE的距离为 2 ;③EB⊥ED;④S△APD +S△APB= 1 + 6 ;⑤ S 正方形ABCD=4+ 6 .其中正确结论的序号是()A.①③④B .①②⑤C .③④⑤D .①③⑤10.填空。
16. 如图,矩形 ABCD 中, AB 3cm , AD 6cm ,形,且 EF 2BE ,则 S △AFC cm 2.点 E 为 AB 边上的任意一点,四边形 EFGB 也是矩E17. P 1,如图 ,将边 长为 1 的 正 三 P 2,P 3, ,P 2008 的位置,则点角 形 OAP 沿 x 轴正 方向 连 续翻 转 2008 次 ,点 P 依 次落 在点 P 2008 的横坐标为.yP PAO P 1x第 17 题)18. 如图,⊙ O 1、⊙ O 2内切于 P 点,连心线和⊙ O 1、⊙ O 2分别交于 A 、B 两点,过 分别交于 C 、D 两点,若∠ BPC=60o , P 点的直线与⊙ O 1、⊙ O 2AB=2,则 CD= . 19. 已知:如图,直线 MN 切⊙ O 于点 AE ⊥MN ,BF ⊥MN ,E 、 F 分别为垂足, D 为垂足 , 连结 OC 、CG. 下列结论:其中正确的有 ①CD=CF=C ;E ③AD?DB=FG?FB ; C ,AB 为⊙ O 的直径,延长 BA 交直线 MN 于 M 点, BF 交⊙O 于 G ,连结 AC 、BC ,过点 C 作CD ⊥AB , ②EF 2=4AE?BF; ④MC?CF=MA?B F. P 为⊙ O 上任意一点, F 两点,连结 PE 、 PF 、 BC , 20. 如图, M 为⊙ O 上的一点 , ⊙ M 与⊙ O 相交于 A 、B 两点, 直线 PA 、 PB 分别交⊙ M 于 C 、 D 两点,直线 CD 交⊙ O 于 E 、 下列结论: ① PE=PF ; ② PE 2=PA ·PC; ③ EA ·EB=EC ·ED ; PB R ④ (其中 R 、r 分别为⊙ O 、⊙ M 的半径) . BC r 其中正确的有 . P AMF OB三.解答题。
221.如图13,抛物线y=ax2+bx+c(a ≠0)的顶点为(1,4 ),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0 )(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y 轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x 轴上是否存在一点H,使D、G、F、H 四点围成的四边形周长最小. 若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T 作x 的垂线,垂足为M,过点M作直线MN∥ BD,交线段AD于点N,连接MD,使△ DNM∽△ BMD,若存在,求出点T 的坐标;若不存在,说明理由.22. 已知在平面直角坐标系中,四边形OABC是矩形,点A、C的坐标分别为A(3,0)、C(0,4),点D的坐标为D(﹣5,0),点P是直线AC上的一动点,直线DP与y 轴交于点M.问:(1)当点P 运动到何位置时,直线DP平分矩形OABC的面积,请简要说明理由,并求出此时直线DP的函数解析式;(2)当点P沿直线AC移动时,是否存在使△DOM与△ABC相似的点M,若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P 沿直线AC移动时,以点P为圆心、半径长为R(R>0)画圆,所得到的圆称为动圆P.若设动圆P 的直径长为AC,过点D作动圆P的两条切线,切点分别为点E、F.请探求是否存在四边形DEPF 的最小面积S,若存在,请求出S 的值;若不存在,请说明理由.交射线CA于点E. .(1)若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域;(2)当分别以线段BD,CE为直径的两圆相切时,求DE的长度;(3)当点D在AB边上时,BC边上是否存在点F,使△ ABC与△ DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.24. 如图1,已知A、B是线段MN上的两点,MN 4 ,MA 1,MB 1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB x .(1)求x 的取值范围;(2)若△ ABC为直角三角形,求x 的值;3)探究:25. 已知:在平面直角坐标系xOy 中,一次函数y kx 4k 的图象与x轴交于点A ,抛物线y ax2 bx c 经过O ,A 两点.⑴试用含 a 的代数式表示b;⑵设抛物线的顶点为D,以 D 为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x 轴翻折,翻折后的劣弧落在⊙ D 内,它所在的圆恰与OD 相切,求⊙ D 半径的长及抛物线的解析式;⑶设点B是满足(2 )中条件的优弧上的一个动点,抛物线在x 轴上方的部分上是否存在这样的点P,使得∠POA 34∠OBA ?若存在,求出点P的坐标;若不存在,说明理由.10参考答案1. D解:根据题意,分 3 个阶段;面积公式可得, S= t ;一条线段;2. A解:过点 C 做 CG ⊥ AB ,∵MN=1,四边形 MNQP 为直角梯形,∴四边形 MNQP 的面积为MN ×(PM+QN ),∴N 点从 A 到 G 点四边形 MNQP 的面积为 S= MN ×(PM+Q )N中, PM , 都在增大,所以面积也增大;当 QN=CG 时, QN 开始减小,但 PM 仍然增大,且 PM+QN 不变,∴四边形 MNQP 的面积不 发生变化,当 PM <CG 时, PM+QN 开始减小,∴四边形 MNQP 的面积减小,故选 A . 3 .CS=16-( x 2+8) =- x 2+8. 根据二次函数的图形和性质,这个函数的图形是开口向下,对称轴是 Y 轴,顶点是( 0,8),自变量的取 值范围是 0<x < 4.故选 C .4. C解:①∠ AED=90°- ∠ EAD ,∠ ADC=90°- ∠ DAC ,∵∠ EAD=∠ DAC ,∴∠ AED=∠ ADC .故本选项正确; ②∵∠ EAD=∠ DAC ,∠ ADE=∠ ACD=90°,∴△ ADE ∽△ ACD ,得 DE :DA=DC :AC=3:AC ,但 AC 的值未知,故不一定正确;③ 由①知∠ AED=∠ ADC ,∴∠ BED=∠ BDA ,又∵∠ DBE=∠ ABD , ∴△ BED ∽△BDA ,∴DE :DA=BE :BD ,由②知 DE : DA=DC : AC , ∴BE :BD=DC :AC ,∴ AC?BE=BD?DC=12.故本选项正确;④ 连接 DM ,则 DM=M .A ∴∠ MDA=∠MAD=∠DAC ,∴ DM ∥ BF ∥AC ,由 DM ∥ BF 得FM :MC=B :D DC=4:3;由 BF ∥ AC 得△ FMB ∽△ CMA ,有 BF :AC=FM : MC=4: 3,∴ 3BF=4AC .故本选项正 确. 综上所述,①③④正确,共有 3 个.故选 C .①P 在 BC 之间时,△ BMP 中, BP=t ,为底, M 到 BC 的距离,即中位线的长度为高,则高为 ,有三角形的②P 在 CD 之间时,△ BMP 中, BM 为底, P 到 BM 的距离为高,有三角形的面积公式可得, S= ( 2-t ),成③P 在 AM 之间时,△ BMP 中, BM 为底, P 到 BM 的距离为高,有三角形的面积公式可得, S 逐渐减小,且比②减小得快,是一条线段;分析可得: D 符合;故选 D .解:在△ ABE 中, BE== , ∵ ABCD 是正方形,∴ BE=M ,N∴S 四边形 MBNE = BE?MN= x 2+8,∴阴影部分的面积5. D解: Rt △ABC 中,若∠ BAC=30°,设 BC=2,则 AC=2 ,AB=4;∴ AF=2,AE=2 ,∵∠BAC+∠OAE=30°+60°=90°,即△ FAE 是直角三角形,∴ tan ∠AEF=∠ AEF=30°,EF 平分∠ AEC ,根据等边三角形三线合一的性质知: EF ⊥ AC ,且 O是 AC 的中点;故③正确① ∵ F 是 AB 的中点,∴ AF=BF ;∵∠ BAC=30°,∴∠ AFO=90°- ∠ BAC=60°,即∠ DBF=∠ AFE=60°;∵∠FAE=30°+60°=90°=∠BFD ,∴△ DBF ≌△ FEA ,故①正确;② 在 Rt △ ABC 中, AB >AC ,故 AD >AE ,②错误;DFG=∠GAE=90°,∠ DGF=∠ AGE ,∴△ DFG ≌△ EAG ,即 AG=GF ,∴AD=2AF=4A ,G 故④正确;根据以上条件得△ AQC ≌△ BQD ∴BD=AC ∴EF= AC ,故②正确.=④由①得全等三角形知: DF=AE ,又∵∠ ⑤由④知: G 是 AF 中点,∴ S △OEG = OE? OA ) = ×3×;又 S △ AGO = ?( AB ) ?AG?sin60×1× =,故△ AOG 与△ EOG 的面积比为 1:3,⑤错误;因此正确的结论是①③④,故选6. DD .解:( 1) ∵选项都有③,故可确定 EG=CH .( 2)有题意可得四边形 BCED 为平行四边形,进而推出△ DHB∽△ CHG ,= = ,∵面积比等于相似比的平方∴S △CGH : S △DBH =1:2.( 3)先看①设正方形边= =所以 OD=1- ,又可求得 CH= ,= = = === ∴ DH=. 得 DO=OH ,△ DGH 为等腰三角形,即得∠ GDH=∠ GHD ,①正确 故选 D .7. A解:如下图所示:连接 AC , 延长 BD 交 AC 于点 M ,延长 AD 交 BC 于 Q ,延长 CD 交 AB 于 P . ∵∠ ABC=∠C=45°∴ CP ⊥ AB ∵∠ ABC=∠A=45°∴ AQ ⊥ BC 点 D 为两条高的交点,所以 BM 为 AC 边上的高,即: BM ⊥AC .由中位线定理可得 EF ∥AC , EF= AC ∴BD ⊥EF ,故①正确.∵∠ DBQ+∠DCA=45°∠DCA+∠CAQ=45°∴∠ DBQ=∠ CAQ ∵∠A=∠ABC ∴AQ=BQ∵∠ BQD=∠AQC=90° ∴ ,即 长为 1.则DO=DH-OH=1- ∴可∵∠ A=∠ ABC=∠ C=45° ∴∠ DAC+∠ DCA=180°- (∠ A+∠ ABC+∠ C) =45° ∴∠ ADC=180°- (∠ DAC+∠ DCA) =135°=∠ BEF+∠AC 中点∴ △ ADM ≌△CDM ∴AD=CD ,故④正确.故选 A . 8. D解:∵△ ABC 、△ DCE 都是等腰 Rt △,∴ AB=AC= BC= ,CD=DE= CE ;∠B=∠ACB=∠DEC=∠DCE=45°;① ∵∠ ACB=∠ DCE=45°,∴∠ ACB-∠ ACE=∠DCE-∠ ACD ;即∠ ECB=∠DCA ;故①正确;② 当 B 、E 重合时, A 、D 重合,此时 DE ⊥AC ;当 B 、 E 不重合时, A 、 D 也不重合,由于∠ BAC 、∠EDC 都是 直角,则∠ AFE 、∠ DFC 必为锐角;故②不完全正确;④∵ ,∴ ;由①知∠ ECB=∠DCA ,∴△ BEC ∽△ ADC ;∴∠ DAC=∠B=45°;∴∠ DAC=∠BCA=45°,即 AD ∥ BC ,故④正确;③ 由④知:∠ DAC=45°,则∠ EAD=135°;∠ BEC=∠EAC+∠ ECA=90°+∠ECA ;∵∠ ECA < 45°,∴∠BEC <135°, 即∠ BEC <∠ EAD ;因此△ EAD 与△ BEC 不相似,故③错误;⑤ △ ABC 的面积为定值, 若梯形 ABCD 的面积最大, 则△ ACD 的面积最大; △ACD 中,AD 边上的高为定值 (即本题正确的结论是①④⑤,故选 D .9. B解:∵△ ADC 绕点 A 顺时针旋转 90°得△ AFB ,∴△ ADC ≌△ AFB ,∠ FAD=90°,∴AD=AF ,∵∠ DAE=45°,∴∠ FAE=90°- ∠ DAE=45°,∴∠ DAE=∠FAE ,AE 为△ AED 和△ AEF 的公共边,∴△AED ≌△ AEF ∴ ED=FE 在 Rt △ ABC 中,∠ ABC+∠ ACB=90°,又∵∠ ACB=∠ ABF ,∴∠ ABC+∠ ABF=90°即∠FBE=90°,∴在 Rt △ FBE 中 BE 2+BF 2=FE 2,∴ BE 2+DC 2=DE 2③显然是不成立的. 故正确的有①④, 不正确的有③,②不一定正确.故选 B10. D解:①正确, 证明如下: ∵BC=DC ,CE=CG ,∠BCE=∠DCG=90°,∴△ BEC ≌△ DGC ,∴∠ EBC=∠CDG ,∵∠ BDC+为 1 ),若△ ACD 的面积最大,则形 ABCD 面积最大时, E 、A 重AD 的长最大;由④的△ BEC ∽△ ADC 知:当 AD 最长时, BE 也最长; 此时 EC=AC= , AD=1; 故 S 梯形 ABCD =1+2)×1= ,故⑤正确; 故梯 因此②由于∠ BAD、∠ BCD、∠ BHD都是直角,因此A、B、C、D、H五点都在以BD为直径的圆上;由圆周角AC中点∴定理知:∠ DHA=∠ ABD=45°,故②正确;③ 由②知: A 、B 、C 、D 、H 五点共圆,则∠ BAH=∠BDH ;又∵∠ ABD=∠DBG=45°,∴△ ABM ∽△ DBG ,得 AM :DG=AB : BD=1: ,即 DG=AM ;故③正确;④ 过 H 作 HN ⊥ CD 于 N ,连接 NG ;若 BH 平分∠ DBG ,且 BH ⊥ DG ,易知: BH 垂直平分 DG ;得 DE=EG ,H 是 DG中点, HN 为△ DCG 的中位线;设 CG=1,则: HN= ,EG=DE= ,DC=BC= +1;易证得△ BEC ∽△ HEN , 则: BE :EH=BC :HN=2 +2,即 EH= ;∴ HE?BH=BH? =4-2 ,即 BE?BH=4 ;∵∠DBH=∠ CBE ,且∠ BHD=∠BCE=90°,∴△ DBH ∽△ CBE ,得: DB?BC=BE?BH=4 ,即 BC 2=4,得: ABCD 的面积为 4;故④正确;因此四个结论都正确,故选 D11. D解:( 1)连接 HE , FC ,延长 HF 交 AD 于点 L ,∵ BD 为正方形 ABCD 的对角线,∴∠ ADB=∠CDF=45°.∵ AD=CD ,DF=DF ,∴△ ADF ≌CDF .∴FC=AF ,∠ECF=∠DAF .∵∠ ALH+∠LAF=90°,∴∠ LHC+∠DAF=90°.∵∠ ECF=∠ DAF ,∴∠ FHC=∠ FCH ,∴ FH=FC .∴ FH=AF .(2)∵ FH ⊥ AE ,FH=AF ,∴∠ HAE=45°.( 3)连接 AC 交 BD 于点 O ,可知: BD=2OA ,∵∠ AFO+∠GFH=∠ GHF+∠ GFH ,∴∠ AFO=∠GHF . ∵AF=HF ,∠AOF=∠FGH=90°,∴△ AOF ≌△ FGH .∴ OA=G .F ∵ BD=2OA ,∴ BD=2FG .(4)延长 AD 至点 M ,使 AD=DM ,过点 C 作 CI ∥HL ,则: LI=HC ,根据△ MEC ≌△ MIC ,可得:CE=IM ,同理, 可得: AL=HE ,∴ HE+HC+EC=AL+LI+IM=AM=.8∴△ CEM 的周长为 8,为定值.故( 1)( 2)( 3)( 4)结论 都正确.故选 D .12. A解:由于 AB=CD ,AE=DE ,∠ BAE=∠CDE ,所以△ BAE ≌△ CDE ,BE=CE ,所以①正确.由于△角形而是等腰三角形,而 P 是 EC 中点,所以 BP 并不垂直于 EC ,BE=2EP ,只有当∠ BPE=90°时 sin ∠EBP=BC 2=4,即正方形EBC 不是等边三,但∠ EBP并不等于90°,所以②不正确,由此排除B、C选项.由于P 是EC中点,假如HP∥EB,则HP 是一条中位线,即H 是BC中点,有三角形的性质:各边中线的交点到各顶点的距离是本条中线长度的三分之二,由此可知 F 并不是各中线的交点,而E向BC的垂线就是中线,所以H并不是BC中点,故HP并=1+ 6 ,由勾股定理可得 AB = 4+ 6 ,213. D证明:∵ AD ∥ BC ,∠ ABC=90°,∴∠ BAD=90°.∵ AB=CB ,∴∠ BAC=45°, ∴∠ DAC=45°.又∵ AC=AC ,∴△ AEC ≌△ ADC .∴①△ ACD ≌ ACE 正确. ∵△ AEC ≌△ ADC ,∴ DC=CE .又∵ AD=AE ,∴ AC 是 DE 的垂直平分线. 即 AC 垂直平分 ED .∴② AC 垂直平分 ED 正确.取 CF 的中点 O 连接 BO ,∵AF ⊥CF ,∴∠AFC=90°.∵∠ABC=90°,∠AEF=∠CEB ,∴∠ FAB= ∠BCE .∵AD=AE ,∠EAD=90°,∴∠AED=∠ADE=45°.∴∠DEB=135°,∴∠ HEC+∠BEC=135°.∵AB=AC ∠ABC=90°,∴∠ ACE+∠ BCE=45°.∵△ AEC ≌△ ADC ,∴∠ DCH=∠ECH ,∴∠ DCH+∠BCE=45°.∵四边形 DEBC 四个角的和是 360°,∴∠ EDC+∠BCD=360°-90 °-135 °=135°.∴∠ BCE=∠ ECH .即 CE 平分∠ ACB .∴④ CE 平分∠ ACB 正确.∵∠ ABC=90°,OE=OC ,∴ BO=CO= CE ∴∠ OCB=∠OBC .∵∠ FOB=∠ OCB+∠ OBC ,∴∠ FOB=2∠ OCB .∵ BF ∥CD ,∴∠ BFO=∠DCF .∵∠ BFO=∠DCF=∠OCB ,∴∠ BFO=2∠OCB . ∴ BF=OB .∴ BF= CE ,即 CE=2BF ,∴③ CE=2BF 正确.故答案选 D.14. B解:∵梯形 ABCD 中, DC ∥AB ,AB=AC ,E 为 BC 的中点,∴① AE 平分∠ BAC ,正确; ∵AB=AC ,E 为 BC 的中点,∴ AE ⊥ BC ,AE 是 BC 的垂直平分线,∴② BG=C ,G 正确; 延长 CG 与AB 相交于 H ,∵ CG=G ,B ∴∠ HCB=∠DBC ,∵ AB=AB ,∴∠ ACB=∠ABC ,∴ ∠ACH=∠ABG ,∵BG=CG ,∠FGC=∠BGH ,∴△CGF ≌BGH ,∴GH=FG=,5 CG=6, ∵AB ∥ CD ,∴△ DCG ∽△ BGH ,∴ = ,即 = ,解得 DF=5,故④正确.而③⑤无法判断, 故选 B .15. D【分析】△ APD 绕点 A 旋转 90°后与△ AEB 重合,所以△ APD ≌△ AEB ;且有∠ APD =∠ AEB = 135°因为 ⊥AP ,AE =AP =1,所以△ APE 为等腰直角三角形,有勾股定理可得 AE = 2 ,∠ APE =∠ AEP =45°,,所以△ BPE 为直角三角形, EA所EB3 ,易证△ BFE 为等腰直角三角形,所以BF =FE = 6 ,在直角三角形2PB = 5 ,AE = 2 ,所以 6BFA 中 BF = , AF =AE +EF2所以正方形的面积为,S△APD+S△APB=四边形AEBP的面积=S△AEP+S△EPB= 1 6,所以正确的是①③⑤.216.917.200818.1 提示:连接AC,BD,19. ①②③④①由MN与圆O相切于点C,根据弦切角定理可得∠ ACE=∠ ABC,又由AB为圆O直径,可得AC⊥BC,则可证得Rt△AEC≌Rt △ ADC,同理可得Rt△BCD≌Rt△ BCF,根据全等三角形的对应边相等,即可得CD=CF=C;E②由①可证得Rt △ACE∽Rt△CBF,根据相似三角形的对应边成比例,与CE=CF=12EF,即可证得EF2=4AE?BF;③由Rt △BCD≌Rt△ BCF与Rt △ACE≌Rt △GCF即可证得AD?DB=FG?FB;④由△ AME∽△ CMD与Rt△ACD∽Rt△ BCF.利用相似三角形的对应边成比例,即可求得MC?CF=MA?BF.20. ①②③④提示:利用圆周角定理以及三角形的外角证明∠ F=∠PEF,即可得出PE=PF,再利用圆周角定理证明△ PAE∽△ PEC,得出PE2=PA?PC,作直径CH,PN,得出△ BCH∽△ BPN21. 解:( 1)设所求抛物线的解析式为:y a(x 1)24 ,依题意,将点B( 3,0)代入,得:a(3 1)24 0解得:a=-1∴所求抛物线的解析式为:y (x 1)24(2)如图6,在y轴的负半轴上取一点I,使得点F与点I 关于x轴对称,在x 轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI⋯⋯⋯⋯⋯⋯⋯① 设过A、E两点的一次函数解析式为:y=kx+b( k≠ 0),∵点E在抛物线上且点E的横坐标为2,将x=2 代入抛物线y (x 1)24,得y (2 1)24 3∴点E坐标为(2,3)2又∵抛物线y (x 1)24图像分别与x 轴、y 轴交于点A、B、D ∴当y=0 时,(x 1)24 0,∴x=-1 或x=3当x=0 时,y =-1+4=3,∴点A(-1,0),点B(3,0),点D(0,3)又∵抛物线的对称轴为:直线x=1,∴点D与点E关于PQ对称,GD=GE⋯分别将点A(-1,0)、点E (2,3)代入y=kx+b,得:kb02k b 3k1解得:b1过A、E 两点的一次函数解析式为:y=x+1∴当x=0 时,y=1∴点F坐标为(0,1)∴ DF =2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯③又∵点 F 与点I 关于x 轴对称,∴点I 坐标为(0,-1)∴ EI DE2DI 222422 5⋯⋯⋯④又∵要使四边形DFHG的周长最小,由于∴只要使DG+GH+HI 最小即可由图形的对称性和①、②、③,可知,DF是一个定值,DG +GH+HF=EG+GH+HI 只有当EI 为一条直线时,EG+GH+HI 最小设过E(2,3)、I (0,-1)两点的函数解析式为:y k1x b1(k1 0),分别将点E(2,3)、点I(0,-1)代入y k1x b1,得:2k1 b1 3 b1 1k1 2解得:1b1 1过A、E 两点的一次函数解析式为:y=2x-11∴当x=1 时,y=1;当y=0 时,x=;21∴点 G 坐标为( 1, 1),点 H 坐标为( ,0)2∴四边形 DFHG 的周长最小为: DF +DG +GH +HF = DF +EI 由③和④,可知:DF + EI = 2 2 5∴四边形 DFHG 的周长最小为 2 2 5 。