用全站仪进行工程(公路)施工放样、坐标计算

合集下载

全站仪坐标计算

全站仪坐标计算

请教高人,全站仪测量高程时后视点的z坐标有用吗?起到什么作用,它与仪器点的z坐标之间有什么关系?悬赏分:25 - 解决时间:2009-9-11 15:50问题补充:按照水准仪测量高程的方法,我感觉仪器点的高程和后视点的高程只需知道一个就能测出未知点的高程,但是测量时两个点都要输入,如果哪个输入错误会产生什么结果呢?全站仪测量待测点的高程是根据什么?有没有与仪器点和后视点之间的关系式?提问者:玟龍- 三级最佳答案后视的高程是不必须的,首先要搞明白后视的目的,他的目的是定向,只需要后视点的水平坐标,跟高程没关系,所以测量时后视点的高程可以不用输入。

全站仪测量点的根据,通俗的说就是,根据你测站点的水平坐标与高程,以及后视定向所确定的水平方位角确定未知点的坐标和高程,其结算公式是在仪器内部自行结算的。

希望能对你有帮助5我来评论>>后视点可以检查你输入仪器的数据是否正确,好还可以检查你的仪器测量高程的精度如何。

都是已知点,回答者:222.75.3.* 2009-8-25 01:39 后视只需平面坐标即可。

对准后视点,然后测量水平角。

在实际中,如果条件好,我们会用十字丝中心对准后视棱镜的最下端。

回答者:115.84.64.* 2009-8-29 15:51 后视高程可以不输入,有的仪器在输入后视的时候根本不提示输入高程。

可以肯定的是,没用。

而且本身它也检查部出来什么的。

回答者:吊啷当- 三级2009-9-3 16:59全站仪测高程是应用了三角高程原理。

误差较大。

需要连续的复测。

Z坐标就是高程坐标。

三角高程测量的传统方法如图一所示,设A,B为地面上高度不同的两点。

已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。

图一图中:D为A、B两点间的水平距离а为在A点观测B点时的垂直角i为测站点的仪器高,t为棱镜高HA为A点高程,HB为B点高程。

V为全站仪望远镜和棱镜之间的高差(V=Dtanа)首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。

谈全站仪和rtk在施工放样的应用

谈全站仪和rtk在施工放样的应用

谈全站仪和RTK在施工放样的应用摘要:建筑工程的施工放样工作不仅是工程建设的关键,而且是设计工程质量的关键,随着近几年国内外社会经济的快速发展,各种各样的建筑物拔地而起,其中最关键的就是放样工作,放样的具体实施对工程师的技术要求越来越高,施工放样是建筑的一项重要工程,所以施工放样质量的好坏直接影响建筑物的寿命。

本论文主要介绍全站仪与RTK的基本原理、系统组成、技术特点、和使用方法及操作步骤,介绍了全站仪在施工放样中的具体放样方法以及步骤和相关注意事项,说明了全站仪在施工放样中的重要地位,并利用RTK在工程测量中进行点放样,对测量结果进行精度分析,并且阐述了RTK具有工作效率高、定位精度高、全天候作业、数据处理能力强和操作简单易于使用等特点。

最后介绍全站仪和RTK在各个方面的对比。

关键词:全站仪; RTK;施工放样Talk about total station and the application of RTK in construction loftingAbstract: the construction of the construction work is not only the key to the project construction, and the design is the key of project quality at home and abroad in recent years, with the rapid development of society and economy, various buildings have sprung up, one of the most critical is the layout work, so the engineers of the technical requirements of increasingly high, construction lofting construction an important project, so construction quality directly affects the service life of buildings.This paper mainly introduces the total station and the basic principle of RTK, system composition, technical characteristics, and use methods and operation steps, this paper introduces the application of total station in the construction lofting lofting in specific methods and steps and related matters needing attention, illustrates the total station in the important position of construction lofting, and by using the gps-rtk points in engineering survey lofting, the measurement results are accuracy analysis, and expounds the RTK has high working efficiency, high positioning accuracy, all-weather operation, data processing ability strong and the operation is simple and easy to use, etc. Finally introduces the total station and the comparison of RTK in all aspects.Key words: total station,RTK,Construction lofting目录前言 (1)第1章绪论 (2)1.1测绘仪器的发展 (2)1.2放样介绍 (2)1.3 传统放样方法 (2)1.4坐标放样阶段 (3)1.5 现代数字化阶段 (3)第2章全站仪的介绍和其放样的方法 (4)2.1 全站仪的介绍及操作流程 (4)2.2 全站仪坐标法设站+极坐标法放样 (5)2.3 全站仪边角交会法设站+极坐标法放样 (6)2.4 全站仪测角后方交会法+极坐标法放样 (6)2.5 方向交会法放样 (7)2.6 正倒镜投点法单方向设站 (8)2.7 轴线交会法设站+方向线法放线 (9)2.8 方向线平移法放线 (9)2.9 全站仪在建筑工程中的施工放样 (10)2.9.1 全站仪在建筑工程平面施工放样定位 (10)2.9.2 全站仪在建筑工程中高程施工放样定位 (11)第3章 RTK的形成和作业基本原理 (13)3.1 RTK的发展形成 (13)3.2 RTK的系统组成 (13)3.2.1RTK的基本原理 (14)3.2.2 RTK的技术特点 (14)3.3利用RTK进行点放样 (15)第4章全站仪与RTK在测量之间的对比 (18)4.1全站仪与RTK (18)4.2使用条件上的对比 (18)4.3 测量距离上的对比 (19)4.4 测量误差上的对比 (19)4.5 测量引点上的对比 (19)第5章总结 (21)致谢 (22)参考文献 (23)附表1 (24)前言在工程测量中当施工控制网建立以后,为了满足工程建设的需求,需要将已设计好的资料在实地标出,以便施工,这个过程我们称为放样。

用全站仪进行工程(公路)施工放样、坐标计算

用全站仪进行工程(公路)施工放样、坐标计算

用全站仪进行工程(公路)施工放样、坐标计算(九)悬高测量(REM ) *为了得到不能放置棱镜的目标点高度,只须将棱镜架设于目标点所在铅垂线 上的任一点,然后测量出目标点高度VD 。

悬高测量可以采用“输入棱镜高”和 “不输入棱镜高”两种方法。

1、 输入棱镜高(1) 按 MENU ―― P1 J ―― F1 (程序)一一F1 (悬高测量)一一F1(输入棱镜高),如:1.3m 。

(2) 照准棱镜,按测量(F1 ),显示仪器至棱镜间的平距 HD ―― SET(设 置)。

(3) 照准高处的目标点,仪器显示的 VD ,即目标点的高度。

2、 不输入棱镜高(1)按 MENU ―― P1 J ―― F1 (程序)一一F1 (悬高测量)一一F2(不输入棱镜高)。

(2) 照准棱镜,按测量(F1 ),显示仪器至棱镜间的平距 HD ―― SET(设 置)。

(3) 照准地面点G ,按SET (设置)(4) 照准高处的目标点,仪器显示的 VD ,即目标点的高度。

(十)对边测量(MLM ) *对边测量功能,即测量两个目标棱镜之间的水平距离( dHD )、斜距(dSD )、高差(dVD )和水平角(HR )。

也可以调用坐标数据文件进行计算。

对边测量MLM 有两个功能,即:MLM-1 (A-B ,A-C ):即测量 A-B ,A-C ,A-D ,…和 MLM-2 (A-B , B-C ):即测量 A-B , B-C ,C-D,…。

以 MLM-1 ( A-B , A-C )为例,1、 按MEN P1 J ――程序(F1 )――对边测量(F2 )――不使 用文件(F2)―― F2 (不使用格网因子)或F1 (使用格网因子)一一MLM-1(A-B ,A-C )( F1 )02、 照准A 点的棱镜,按测量(F1),显示仪器至A 点的平距HD ―― SET (设置)3、 照准B 点的棱镜,按测量(F1),显示A 与B 点间的平距dHD 和高 差 dVDo4、照准C 点的棱镜,按测量(F1),显示A 与C 点间的平距dHD 和高 差dVD …,按丄,可显示斜距。

全站仪的坐标放样,那个坐标怎么计算出来的啊?

全站仪的坐标放样,那个坐标怎么计算出来的啊?

坐标要已知才能放样呀,如果要计算坐标,可以用CAsio4800编程计算,只要有公式就可以自己编入计算器运用,当然你可直接上网下载如果是公路的我整理的你可以参考CASIO4800程序组1、极坐标法放样Prog:FYLb1 0:A“X0”:B“Y0”:I=0:J=0:Pol((C“XA”-A),(D“YA”-B):J<0=>G“FW- OA”=J+360▲L“L0”=I▲Goto 1:≠> G“FW O-A”=J▲L“L0”=I▲Lb1 1:{EQ}:E“Xi”:Q“Yi”:Pol((E-A),(Q-B)):J<0=>J=J+360:Goto 2:≠> Goto 2Lb1 2:F“FW-OB”=J▲L=I▲0=F-G:O<0=>O“BJ”=O+360▲Goto 3:≠> O “BJ” ▲Lb1 3:P=O-180▲Goto 1注:a、输入:(X0、Y0)、(XA、YA)——测站点坐标、后视点坐标Xi、Yi ——放样点坐标b、输出:FW-OA——测站至后视边方位角、L0——后视边长FW-OB——测站至放样点方位角、L——放样边长BJ——后视边置零,放样点顺时针拨角P——偏角(+为右偏、-为左偏){本值用于计算路线偏角}2、公路竖曲线高程计算程序Prog:SQXLbl A:A“+(-)i1”:B“+(-)i2” W=(B-A)÷100:R:T=Abs(RW)÷2:L=T*2:E=T2÷(2R):K“JD K+”:G“JD H”:C=K-T:D=K+T:Lbl 0:J“Ki+”:J<0=>Goto 1:≠> Goto 2△△Lb1 1:“Out QX1”:H=G-(K-J)A÷100▲Goto 5Lb1 2:J>D=>Goto 4 △W<0=>F=-1△W>0=>F=1△J>K=>Goto 3△H=G-(K-J)A÷100+F(J-C)2÷(2R)▲Goto 5△Lb1 3:H=G+(J-K)B÷100+F(D-J)2÷(2R)▲Goto 5△Lb1 4:“OUT QX2”:H=G+(J-K)B÷100▲Goto 5△Lb1 5:M“DHi”:H=H+M▲注:a、公式:L=|R(i2-i1)| 、T=L÷2、E=T2÷(2R)、h=l2÷(2R)b、功能:已知前后坡度%、竖曲线半径,计算各桩高程。

全站仪在公路工程测量中的应用

全站仪在公路工程测量中的应用

全站仪在公路工程测量中的应用在公路工程建设中,测量工作是至关重要的一环,它为工程的规划、设计、施工和质量控制提供了准确的数据支持。

全站仪作为一种先进的测量仪器,在公路工程测量中发挥着重要的作用。

全站仪,又称为全站型电子速测仪,是一种集光、机、电为一体的高技术测量仪器,能够同时进行角度测量、距离测量和数据处理。

它具有高精度、高效率、多功能等优点,能够满足公路工程测量中各种复杂的测量任务。

一、全站仪在公路工程测量中的主要应用1、控制测量控制测量是公路工程测量的基础,其目的是为后续的施工测量提供可靠的控制点。

全站仪可以通过测量控制点之间的角度和距离,建立高精度的平面控制网和高程控制网。

在测量过程中,全站仪能够自动记录测量数据,并通过内置的软件进行数据处理和精度分析,大大提高了控制测量的效率和精度。

2、中线测量中线测量是确定公路中心线位置的测量工作。

全站仪可以通过测量中线上的点的坐标,精确地确定公路中心线的位置。

在测量过程中,只需在已知控制点上设站,后视另一个控制点,然后测量中线上的点的坐标,即可快速得到中线的位置。

与传统的测量方法相比,全站仪测量中线具有速度快、精度高、操作简便等优点。

3、横断面测量横断面测量是测量公路横断面地面线的工作,其目的是为了计算土石方工程量和设计路基横断面。

全站仪可以通过测量横断面线上点的坐标和高程,快速绘制出横断面图。

在测量过程中,全站仪可以设置在中线上的任意点上,通过测量横断面线上点与中线点之间的距离和高差,即可得到横断面线上点的坐标和高程。

然后,通过数据处理软件,可以将测量数据绘制成横断面图,为土石方计算和路基设计提供依据。

4、纵断面测量纵断面测量是测量公路中线地面线的工作,其目的是为了设计公路的纵坡。

全站仪可以通过测量中线上点的高程,绘制出纵断面图。

在测量过程中,全站仪可以沿着中线逐点测量高程,然后通过数据处理软件,将测量数据绘制成纵断面图。

与传统的水准测量方法相比,全站仪测量纵断面具有速度快、效率高、不受地形限制等优点。

工程施工放样施工方法

工程施工放样施工方法

工程施工放样是工程建设中的一项基础工作,其目的是将设计图纸上的建筑物、构筑物的平面位置和高程按照设计要求,以及一定的精度在实地标定出来,为施工提供依据。

本文将介绍几种常用的工程施工放样方法。

一、全站仪坐标法全站仪坐标法是利用全站仪的高精度角度和距离测量功能,将设计图纸上的建筑物的各个控制点坐标,通过测量仪器测设到实地上的方法。

具体步骤如下:1. 在控制点上架设全站仪并对中整平,输入测站点的坐标,量取并输入仪器高,输入后视点坐标,照准后视点进行后视。

2. 瞄准另一控制点,检查方位角或坐标;在另一已知高程点上竖棱镜或尺子检查仪器的视线高。

3. 在各待定测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。

4. 在测站点上按步骤1安置全站仪,照准另一立镜测站点检查坐标和高程。

5. 记录员转动仪器点和拟放样点坐标反算出测站点。

二、极坐标法极坐标法是利用点位之间的边长D和角度Q关系进行测设的方法。

具体步骤如下:1. 在已知点上架设全站仪,测量待放样点与已知点之间的距离和角度。

2. 根据测量得到的距离和角度,计算待放样点的坐标。

3. 在待放样点上设立标志,完成放样。

三、直接坐标法直接坐标法是根据点位设计坐标直接进行点位测设的方法。

具体步骤如下:1. 根据设计图纸,计算出待放样点的坐标。

2. 在实地上架设全站仪,照准待放样点,调整全站仪的坐标,使其与待放样点的坐标一致。

3. 在待放样点上设立标志,完成放样。

四、距离交会法距离交会法是利用点位之间的距离交会进行点位测设的方法。

具体步骤如下:1. 在已知点上架设全站仪,测量待放样点与已知点之间的距离。

2. 在待放样点上设立标志,并测量标志与已知点之间的距离。

3. 根据测量得到的距离,计算待放样点的坐标。

4. 在待放样点上设立标志,完成放样。

五、角度交会法角度交会法是利用点位之间的角度交会进行点位测设的方法。

具体步骤如下:1. 在已知点上架设全站仪,测量待放样点与已知点之间的角度。

全站仪在施工放样中的应用

全站仪在施工放样中的应用

全站仪在施工放样中的应用一、引言全站仪作为一种高精度、高效率的测量工具,广泛应用于土木工程、建筑工程、道路施工等领域。

全站仪具备测量角度、距离和高程的功能,可以在施工放样中起到关键作用。

本文将详细探讨全站仪在施工放样中的应用,包括其原理、操作流程以及优势等方面。

二、全站仪原理及技术特点1. 全站仪原理全站仪是由角度测量系统和距离测量系统组成的。

角度测量系统通过水平轴和垂直轴对目标点进行精确定位,实现对目标点水平角和垂直角的测量。

距离测量系统通过红外线或激光束发射器发射出来的光束,经过反射后返回到接收器,通过计算光束来回时间差以及光速来计算出目标点与全站仪之间的距离。

2. 全站仪技术特点(1)高精度:全站仪具备很高的角度和距离测量精度,可以满足各种施工放样的要求。

(2)高效率:全站仪的操作简单,测量速度快,可以大大提高施工放样的效率。

(3)多功能:全站仪不仅可以测量角度和距离,还可以进行高程测量、坐标测量、线路测量等多种功能。

三、全站仪在施工放样中的应用1. 施工放样前的准备工作在进行施工放样前,需要对现场进行准备工作。

首先需要确定基准点和控制点,以及确定全站仪坐标系和控制点坐标系之间的关系。

然后对控制点进行测量,并将其坐标输入到全站仪中。

之后需要设置全站仪参数,包括单位设置、角度单位设置、距离单位设置等。

2. 施工现场实际操作在实际操作中,首先需要对目标点进行观测。

观测时要注意保持稳定,并使用三角定位法来确定目标点的水平角和垂直角。

观测完成后,将目标点与控制点之间的水平距离和垂直距离输入到全站仪中,并计算出目标点与控制点之间的平面距离和空间距离。

3. 施工放样的优势全站仪在施工放样中具有以下优势:(1)高精度:全站仪具备很高的测量精度,可以满足施工放样的要求,保证施工质量。

(2)高效率:全站仪操作简单,测量速度快,可以大大提高施工放样的效率,节约时间和人力成本。

(3)多功能:全站仪不仅可以测量角度和距离,还可以进行高程测量、坐标测量、线路测量等多种功能,满足不同施工要求。

用全站仪进行工程施工放样坐标计算

用全站仪进行工程施工放样坐标计算

用全站仪进行工程施工放样坐标计算全站仪是一种测量设备,能够在工程施工中进行放样和坐标计算。

它集合了电子测距仪、水平仪和方向仪等多种功能,并通过电子计算和显示来提供高精度的测量结果。

全站仪的应用广泛,从建筑施工到土木工程都可以使用。

在工程施工中,全站仪可以用来进行放样。

放样是根据设计图纸上的数据,在现场确定建筑物或结构物的实际位置和尺寸。

在使用全站仪进行放样时,首先需要在放置的位置上树立起一个基准点,然后通过全站仪测量基准点的坐标,并进行记录。

然后,根据设计图纸上的数据,将全站仪移动到需要放样的地方,并通过测量和计算确定建筑物或结构物的具体位置和尺寸。

全站仪的高精度和自动化功能使得放样过程更加方便和准确。

除了放样,全站仪还可以用来进行坐标计算。

坐标计算是根据已知点的坐标和测量数据,计算其他点的坐标。

在工程施工中,全站仪可以通过测量已知点的坐标,并结合其他测量数据,如角度、距离等,进行计算,并得出其他点的坐标。

这些坐标数据可以用于施工图纸的编制、建筑物的定位和尺寸计算等。

全站仪在工程施工中的应用具有多种优势。

首先,全站仪具有高精度的测量能力,能够提供准确的测量结果,从而保证工程施工的精度和质量。

其次,全站仪具有自动化功能,能够实时计算和显示测量结果,提高工作效率和减少人工操作。

此外,全站仪还具有远距离测量能力和数据传输功能,能够在复杂环境和远距离测量中使用,提高施工的灵活性和适应性。

总而言之,全站仪在工程施工中的应用非常重要。

通过应用全站仪进行工程施工放样和坐标计算,可以提高施工的精度和质量,提高工程施工的效率和安全性。

全站仪的发展和应用还将继续推动工程施工的自动化和智能化,使工程施工更加高效、准确和可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用全站仪进行工程(公路)施工放样、坐标计算(九)悬高测量( REM ) *为了得到不能放置棱镜的目标点高度,只须将棱镜架设于目标点所在铅垂线上的任一点,然后测量出目标点高度 VD 。

悬高测量可以采用“输入棱镜高”和“不输入棱镜高”两种方法。

1、输入棱镜高(1)按 MENU ——P1 ↓—— F1(程序)—— F1(悬高测量)—— F1(输入棱镜高),如:1.3m 。

(2)照准棱镜,按测量( F1 ),显示仪器至棱镜间的平距 HD ——SET (设置)。

(3)照准高处的目标点,仪器显示的 VD ,即目标点的高度。

2、不输入棱镜高(1)按 MENU ——P1 ↓—— F1(程序)—— F1(悬高测量)—— F2(不输入棱镜高)。

(2)照准棱镜,按测量( F1 ),显示仪器至棱镜间的平距 HD ——SET (设置)。

(3)照准地面点 G ,按 SET (设置)(4)照准高处的目标点,仪器显示的 VD ,即目标点的高度。

(十)对边测量(MLM ) *对边测量功能,即测量两个目标棱镜之间的水平距离( dHD )、斜距(dSD) 、高差 (dVD) 和水平角 (HR) 。

也可以调用坐标数据文件进行计算。

对边测量 MLM 有两个功能,即:MLM-1 (A-B ,A-C):即测量 A-B ,A-C ,A-D ,…和 MLM-2 (A-B ,B-C):即测量A-B, B-C ,C-D ,…。

以 MLM-1 ( A-B ,A-C )为例,其按键顺序是:1、按 MENU ——P1 ↓——程序( F1 )——对边测量( F2 )——不使用文件( F2 )——F2 (不使用格网因子)或 F1 (使用格网因子)——MLM-1 ( A-B , A-C )( F1 )。

2、照准 A 点的棱镜,按测量(F1),显示仪器至 A 点的平距 HD ——SET (设置)3、照准 B 点的棱镜,按测量(F1),显示 A 与 B 点间的平距 dHD 和高差 dVD 。

4、照准 C 点的棱镜,按测量(F1),显示 A 与 C 点间的平距 dHD 和高差dVD …,按◢ ,可显示斜距。

(十一)后方交会法( resection )(全站仪自由设站) *全站仪后方交会法,即在任意位置安置全站仪,通过对几个已知点的观测,得到测站点的坐标。

其分为距离后方交会(观测 2 个或更多的已知点)和角度后方交会(观测 3 个或更多的已知点)。

其按键步骤是:1、按 MENU —— LAYOUT (放样)( F2 )—— SKIP (略过)——P↓(翻页)( F4 )——P↓(翻页)( F4 )—— NEW POINT(新点)( F2 )—— RESECTION (后方交会法)( F2 )。

2、按 INPUT (F1),输入测站点的点号——ENT (回车)——INPUT (F1),输入测站的仪器高—— ENT (回车)。

3、按 NEZ(坐标)(F3),输入已知点 A 的坐标——INPUT (F1),输入点 A 的棱镜高。

4、照准 A 点,按 F4 (距离后方交会)或 F3 (角度后方交会)。

5、重复 3 、4 两步,,观测完所有已知点,按 CALA (计算)( F4 ),显示标准差,再按 NEZ (坐标)( F4 ),显示测站点的坐标。

第二章高等级公路中桩边桩坐标计算方法一、平面坐标系间的坐标转换公式如图 9 ,设有平面坐标系 xoy 和 x'o'y' (左手系——x 、 x' 轴正向顺时针旋转90°为 y 、 y' 轴正向); x 轴与 x' 轴间的夹角为θ( x 轴正向顺时针旋转至 x' 轴正向,θ范围:0° —360°)。

设 o' 点在 xoy 坐标系中的坐标为( xo',yo' ),则任一点 P 在 xoy 坐标系中的坐标( x,y )与其在 x'o'y' 坐标系中的坐标( x',y' )的关系式为:二、公路中桩边桩统一坐标的计算(一)引言传统的公路中桩测设,常以设计的交点( JD )为线路控制,用转点延长法放样直线段,用切线支距法或偏角法放样曲线段;边桩测设则是根据横断面图上左、右边桩距中桩的距离(、),在实地沿横断面方向进行丈量。

随着高等级公路特别是高速公路建设的兴起,公路施工精度要求的提高以及全站仪、 GPS 等先进仪器的出现,这种传统方法由于存在放样精度低、自动化程度低、现场测设不灵活(出现虚交,处理麻烦)等缺点,已越来越不能满足现代公路建设的需要,遵照《测绘法》的有关规定,大中型建设工程项目的坐标系统应与国家坐标系统一致或与国家坐标系统相联系,故公路工程一般用光电导线或GPS 测量方法建立线路统一坐标系,根据控制点坐标和中边桩坐标,用“极坐标法”测设出各中边桩。

如何根据设计的线路交点( JD )的坐标和曲线元素,计算出各中边桩在统一坐标系中的坐标,是本文要探讨的问题。

(二)中桩坐标计算任何复杂的公路平面线形都是由直线、缓和曲线、圆曲线几个基本线形单元组成的。

一般情况下在线路拐弯时多采用“完整对称曲线”,所谓“完整”指第一缓和曲线和第二缓和曲线的起点( ZH 或 HZ )处的半径为∞ ;所谓“对称”指第一缓和曲线长和第二缓和曲线长相等。

但在山区高速公路和互通立交匝道线形设计中,经常会出现“非完整非对称曲线”。

根据各个局部坐标系与线路统一坐标系的相互关系,可将各个局部坐标统一起来。

下面分别叙述其实现过程。

1、直线上点的坐标计算如图 10 a) b) 所示,设 xoy 为线路统一坐标系, x'-ZH-y' 为缓和曲线按切线支距法建立的局部坐标系,则 JDi-1—JDi 直线段上任一中桩 P 的坐标为:( 1 )式( 1 )中(, )为交点 JDi-1 的设计坐标;,分别为 P 点、 JDi-1 点的设计里程;为 JD i-1 ~JD i 坐标方位角,可由坐标反算而得。

曲线起点(ZH 或 ZY),曲线终点(HZ 或 YZ)均是直线上点,其坐标可按式(1)来计算。

2、完整曲线上点的坐标计算如图 10 a ) ,某公路曲线由完整的第一缓和曲线、半径为 R 的圆曲线、完整的第二缓和曲线组成。

(1)第一缓和曲线及圆曲线上点的坐标计算当 K 点位于第一缓和曲线( ZH—HY )上,按切线支距法公式有:( 2 )当 K 点位于圆曲线( HY—YH )上,有:( 3 )其中有:( 4 )式( 2 )( 3 )( 4 )中,为切线角;为 K 点至 ZH i 点的设计里程之差,即曲线长; R 、、、 p 、 q 为常量,分别表示圆曲线半径,第一缓和曲线长、缓和曲线角()、内移值()、切线增值()。

再由坐标系变换公式可得:( 5 )式( 5 )中 f 为符号函数,右转取“ + ”,左转取“ - ”(见图 1 b ))。

图 10 a)直线第一缓和曲线圆曲线段点坐标计算(右转)图 10 b)直线第一缓和曲线圆曲线段点坐标计算(左转)(2)第二缓和曲线上点的坐标计算如图 12 所示,当 M 点位于第二缓和曲线( YH—HZ )上,有:( 6 )式( 6 )中,,为 M 点至 HZ 点的曲线长; R 为圆曲线半径,为第二缓和曲线长。

再由坐标系变换公式可得:( 7 )式( 7 )中 f 为符号函数,线路右转时取“ - ”,左转取“ + ”。

(3)单圆曲线(ZY—YZ)上点的坐标计算单圆曲线可看作是带缓和曲线圆曲线的特例,即缓和曲线段长为零。

令式( 3 )( 4 )中内移值 p 、切线增长 q 、第一缓和曲线长、缓和曲线角为零,计算出单圆曲线上各点的局部坐标后,由式( 5 )可得 ZY~YZ 上各点的统一坐标。

图 12 第二缓和曲线段点坐标计算(右转)图 13 非完整缓和曲线段点坐标计算(右转)3、非完整曲线上点的坐标计算如图 13 所示,设非完整缓和曲线起点 Q 的坐标为(, ),桩号,曲率半径,切线沿前进方向的坐标方位角为;其终点 Z 的桩号,曲率半径,则 Z 点至 Q 点曲线长。

若> ,则该曲线可看成是曲率半径由∞ 到的缓和曲线去掉曲率半径由∞ 到后的剩余部分。

设 N 点为该曲线上一点, N 点至 Q 点的曲线长为; O 为对应完整缓和曲线的起点, Q 点至 O 点的曲线长为,则由回旋型缓和曲线上任一点曲率半径与曲线长成正比的性质,有:得:( 8 )设,则由缓和曲线的切线角公式及偏角法计算公式知:( 9 )( 10 )( 11 )由图 13 知:( 12 )则直线 QO 的坐标方位角为:( 13 )O点切线方向轴的坐标方位角为:( 14 )式( 13 )( 14 )中, f 为符号函数,线路右转时,取“ - ”;线路左转时,取“ + ”。

故 O 点坐标()为:( 15 )将式(14)、(15)代入坐标平移旋转公式,得任一点 N 的坐标为:( 16 )式( 16 )中,(,)按式( 2 )计算,代入时用()替代; f 为符号函数,右转取“ + ”左转取“ - ”。

(三)边桩坐标计算有了中桩坐标( x,y )及其至左、右边桩的距离 d L 、 d R 后,计算出中桩至左、右边桩的坐标方位角 AZ-L 、 AZ-R ,则由式( 17 )、( 18 )得左、右边桩坐标(, )、(, )。

( 17 )( 18 ) 1、直线上点 AZ-L 、 AZ-R的计算从图 10 a ) b )知:( 19 )2、第一缓和曲线及圆曲线段点 AZ-L 、 AZ-R 的计算如图 10 a ) b )所示,有:( 20 )式( 20 )中,当 K 点位于第一缓和曲线上,按式( 9 )计算;当 K 点位于圆曲线段,按式( 4 )计算。

f 为符号函数,右转取“ + ”,左转取“ - ”。

3、第二缓和曲线段点AZ-L 、 AZ-R 的计算如图 12 所示,有:( 21 )式( 21 )中,按式计算; f 为符号函数,右转取“ - ”,左转取“ + ”。

(四)算例如图 13 设某高速公路立交匝道 ( 右转 ) 的非完整缓和曲线段起点 Q 的桩号 K8+249.527 ,曲率半径 R Q = 5400m ,切线沿前进方向的坐标方位角,坐标为( 91412.164 , 79684.008 );终点 Z 桩号 K8+329.527 ,曲率半径 R Z = 1800m 。

中桩 K8+309.527 到左、右边桩的距离 d L = 18.75m ,d R = 26.50m ,试计算 K8+309.527 的中、边桩坐标。

1、完整缓和曲线起点 O 的计算由公式( 8 )—( 15 )计算得:,,,,,,,。

相关文档
最新文档