第53讲 双曲线(解析版)

合集下载

高中数学(理)一轮复习课件:第9章 第53讲 双曲线

高中数学(理)一轮复习课件:第9章 第53讲 双曲线

双曲线的定义
【例1】 1 在 ABC中, BC =4,sinB-sinC= sinA,若 2 以BC的中点为原点,BC所在的直线为x轴建 立直角坐标系,则求动点A的轨迹方程.
【解析】依题意由正弦定理得: 1 AC - AB = BC =2,即顶点 2 A的轨迹是以B,C为焦点,实 轴长等于2的双曲线的一支(除 去该支的顶点). 建立如图所示直角坐标系,则C (-2,0),B 2,0 , 由2a=2,得a=1,又c=2,由a 2+b 2=c 2得b 2=3, y 所求轨迹方程为x - =1 x 1. 3
2
2
x y 解析:设所求的双曲线方程为 1, 16 k 4 k 18 4 又双曲线过(3 2,,所以 2) 1,解得k 16 k 4 k 4或k 14. 又16 k 0, 4 k 0,所以 4 k 16, 所以k 4, x2 y 2 故所求的双曲线方程为 1. 12 8
4 2
2 3 所以e 2,所以应舍去e= ,所以e=2. 3
本题是一道求圆锥曲线离心率的大小 ( 或范围 ) 的典型题,求解的关键在于根据 条件列出关于该曲线的基本量 a , c的齐次 方程(或不等式),再解方程(或不等式),进 而求得离心率的值 ( 或范围 ) .值得注意的 是,本题极易忽视题设中的条件“ 0<a<b”, 从而出现增解.
面积为 12 .
解析:设 PF1 3k,则 PF1 PF2 3k 2k k 2 ,则 PF1 6, PF2 4, | F1 F2 | 2 3,故VPF1 F2是直 角三角形,则其面积等于12.
x y 4.与双曲线 1共焦点,且过(3,的 2) 16 4 x2 y 2 1 双曲线的方程是 12 8

双曲线知识点abc关系-解释说明

双曲线知识点abc关系-解释说明

双曲线知识点abc关系-概述说明以及解释1.引言1.1 概述双曲线是数学中的一种重要曲线形式,它具有许多独特的性质和特点。

在本文中,我们将介绍双曲线的一些基本概念和相关知识点,包括知识点a、知识点b和知识点c。

通过深入研究和探索这些知识点,我们可以更好地理解双曲线的性质和应用。

在知识点a中,我们将讨论双曲线的定义和特点。

双曲线具有两个分支,其形状类似于对称的开口。

我们将探讨双曲线的方程形式、坐标轴、焦点和直角截距等重要概念,并介绍双曲线的几何性质和图形表示。

知识点b将进一步探讨双曲线的特点和应用。

我们将以具体的示例和实际应用为基础,展示双曲线在几何学、物理学、工程学等领域的重要性和用途。

通过深入了解双曲线的应用领域,我们可以更好地认识到双曲线对现实世界的实际意义和价值。

知识点c将围绕双曲线的探索和研究展开。

我们将介绍一些最新的研究成果和进展,包括双曲线的性质和变换、相关矩阵和方程、曲线的拟合等内容。

通过这些深入的研究,我们可以进一步掌握双曲线的数学本质和更高级的应用技巧。

通过本文的阐述,我们希望读者能够对双曲线有一个全面和深入的理解。

同时,我们也希望通过探索和研究双曲线的知识点a、b和c,能够拓宽我们在数学和其他领域中的思维和应用能力。

双曲线知识的掌握对于我们的学习和职业发展具有重要意义。

接下来,我们将深入讨论知识点a,揭示双曲线的定义和特点。

文章结构部分的内容可以如下编写:1.2 文章结构本文主要分为引言、正文和结论三个部分进行论述。

引言部分主要对文章的主题进行概述,并介绍了文章的结构和目的。

首先会对双曲线的概念进行简单介绍,解释其在数学领域的重要性和应用价值。

接着,会对文章的结构进行说明,具体列出了正文各个部分的内容,以便读者能够清晰地了解文章的逻辑组织。

最后,会明确本文的目的,即通过对知识点a、b和c的探索和研究,揭示它们之间的关系,并展望双曲线知识点的应用前景。

正文部分是本文的核心,主要包括了三个知识点的介绍和分析。

2020年人教版高考数学(理)一轮复习 第53讲双曲线

2020年人教版高考数学(理)一轮复习  第53讲双曲线

听课正文第53讲双曲线1.双曲线的定义平面内与两个定点F1,F2的等于常数(小于|F1F2|)的点的轨迹叫作双曲线.这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当时,P点的轨迹是双曲线;(2)当时,P点的轨迹是两条射线;(3)当时,P点不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2-y2b2=1(a>0,b>0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).3.双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形(续表)标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质范围,y∈R ,x∈R对称性对称轴:坐标轴.对称中心:原点顶点A1,A2A1,A2渐近线y= y=离心率e=ca,e∈a ,b ,c的关系c 2= (c>a>0,c>b>0)实、虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|= ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|= ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长常用结论双曲线的几个常用结论: (1)与双曲线x 2a2-y 2b 2=1(a>0,b>0)有共同渐近线的双曲线系的方程为x 2a2-y 2b2=λ(λ≠0).(2)双曲线上的点P (x 0,y 0)与左(下)焦点F 1或右(上)焦点F 2之间的线段叫作双曲线的焦半径,分别记作r 1=|PF 1|,r 2=|PF 2|,则①x 2a2-y 2b 2=1(a>0,b>0),若点P 在右支上,则r 1=ex 0+a ,r 2=ex 0-a ;若点P 在左支上,则r 1=-ex 0-a ,r 2=-ex 0+a.②y 2a2-x 2b2=1(a>0,b>0),若点P 在上支上,则r 1=ey 0+a ,r 2=ey 0-a ;若点P 在下支上,则r 1=-ey 0-a ,r 2=-ey 0+a.题组一 常识题1.[教材改编] 若双曲线E :x 29-y 225=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=5,则|PF 2|= .2.[教材改编] 已知双曲线经过点P (4,-2√2)和点Q (-4√2,2√3),则该双曲线的标准方程为 .3.[教材改编] 双曲线C :4x 2-10y 2=100的离心率是 ,渐近线方程是 .题组二 常错题◆索引:忽视双曲线定义中的条件“2a<|F 1F 2|”;忽视定义中的条件“差的绝对值”;忽视双曲线焦点的位置;忽视双曲线上的点的位置.4.平面内到点F 1(5,0),F 2(-5,0)距离之差的绝对值等于10的点P 的轨迹是 .5.已知A (-5,0),B (5,0),动点P 满足|PA |-|PB |=6,则点P 的轨迹是 .6.已知双曲线的实轴长为8,离心率为2,则双曲线的标准方程为 .7.P 是双曲线x 216-y 281=1上任意一点,F 1,F 2分别是它的左、右焦点,且|PF 1|=9,则|PF 2|= .探究点一 双曲线的定义及标准方程例1 (1)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF是边长为2的等边三角形(O 为原点),则双曲线的方程为 ( )A .x 24-y 212=1B .x 212-y 24=1 C .x 23-y 2=1D .x 2-y 23=1(2)[2018·辽宁朝阳一模] 设中心在原点、焦点在x 轴上的双曲线的焦距为12,圆(x-6)2+y 2=20与该双曲线的渐近线相切,点P 在双曲线上,若点P 到焦点F 1的距离是9,则点P 到F 2的距离是 ( ) A .17或1 B .13或5 C .13 D .17[总结反思] (1)应用双曲线的定义,可判定平面内动点的轨迹是否为双曲线,进而求出曲线方程;可在“焦点三角形”中,利用正弦定理、余弦定理,并结合||PF 1|-|PF 2||=2a ,运用配方法,建立与|PF 1|·|PF 2|的联系.应用双曲线的定义时,若去掉绝对值,则点的轨迹是双曲线的一支.(2)待定系数法求双曲线方程时,一要注意焦点位置的判断,二要注意c 2=a 2+b 2,a ,b ,c 的关系不要弄错.变式题 (1)[2018·合肥三模] 已知双曲线C :y 2a 2-x 2b 2=1(a>0,b>0)的上焦点为F ,M 是双曲线虚轴的一个端点,过F ,M 的直线交双曲线的下支于A 点.若M 为AF 的中点,且|AF|=6,则双曲线C 的方程为 ( ) A .y 22-x 28=1 B .y 28-x 22=1 C .y 2-x 24=1D .y 24-x 2=1(2)双曲线C的渐近线方程为y=±2√33x,一个焦点为F(0,-√7),点A(√2,0),点P为双曲线在第一象限内的点,则当点P的位置变化时,△PAF周长的最小值为()A.8B.10C.4+3√7D.3+3√7(3)已知双曲线的虚轴长为12,离心率为54,则其方程为.探究点二双曲线的几何性质有关问题微点1已知离心率求渐近线方程例2[2018·辽宁凌源二中月考]已知圆E:(x-3)2+(y+m-4)2=1(m∈R),当m变化时,圆E上的点与原点O的最短距离与双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率相等,则双曲线C的渐近线方程为()A.y=±2xB.y=±12xC.y=±√3xD.y=±√33x[总结反思]已知离心率求渐近线方程,即e=ca ⇒c2=e2·a2=a2+b2⇒e2=1+b2a2,即得渐近线方程为y=±√e2-1x.微点2已知渐近线方程求离心率例3[2018·赣州模拟]若双曲线y2a2-x2b2=1(a,b>0)的一条渐近线方程为y=34x,则该双曲线的离心率为()A.43B.53C.169D.259[总结反思]已知渐近线方程y=±kx,若焦点位置不明确要分k=ba 和k=ab两种情况讨论.已知渐近线方程为y=±ba ·x,可由c2=a2+b2⇒c2a2=1+b2a2,从而求得离心率e=√1+(ba)2.微点3由离心率研究渐近线夹角问题例4定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E:x2 a2-y2b2=1(a>0,b>0),当其离心率e∈[√2,2]时,对应双曲线的渐近线的夹角的取值范围为()A.[0,π6]B.[π6,π3]C.[π4,π3]D.[π3,π2][总结反思]已知离心率可得出双曲线的渐近线方程,即得出渐近线的斜率,从而可解决与渐近线夹角有关的问题.微点4利用渐近线与已知直线的位置关系求离心率范围例5已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1且与双曲线C的一条渐近线垂直的直线l与C的两条渐进线分别交于M,N两点,若|NF1|=2|MF1|,则双曲线C的离心率为.[总结反思]一般可以先求解已知直线与渐近线的交点,再结合相关条件得到关于a与b的方程(或不等式),利用c2=a2+b2,转化为关于a与c的方程(或不等式),从而得离心率的值(或范围).应用演练1.【微点1】[2018·永州模拟]双曲线x2-y2b2=1(b>0)的离心率e=√5,则双曲线的渐近线方程为 ( ) A .y=±12x B .y=±15xC .y=±2xD .y=±5x2.【微点2】[2018·合肥一模] 若双曲线x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线方程为y=-2x ,则该双曲线的离心率是 ( )A .√52B .√3C .√5D .2√33.【微点3】已知双曲线x 2a2-y 2b2=1的离心率为2√33,则双曲线的两条渐近线的夹角为 ( )A .π6B .π4C .π3D .π24.【微点4】[2018·珠海三模] 双曲线x 2a2-y 2b2=1的一条渐近线与直线x+2y-1=0垂直,则双曲线的离心率为( ) A .√52B .√5C .√3+12 D .√3+15.【微点2】已知双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的渐近线经过圆E :x 2+y 2-2x+4y=0的圆心,则双曲线C 的离心率为 ( )A .√5B .√52C .2D .√26.【微点4】过双曲线x 2a2-y 2b2=1(a>0,b>0)的右焦点F 作渐近线的垂线,垂足为P ,且该直线与y 轴的交点为Q ,若|FP|<|OQ|(O 为坐标原点),则双曲线的离心率的取值范围为 .探究点三 直线与双曲线的位置关系 例6 [2018·安阳一模] 如图8-53-1所示,在平面直角坐标系xOy 中,直线l 1:y=x 与直线l 2:y=-x 之间的阴影部分记为W ,区域W 中动点P (x ,y )到l 1,l 2的距离之积为1.(1)求点P 的轨迹C 的方程;(2)动直线l 穿过区域W ,分别交直线l 1,l 2于A ,B 两点,若直线l 与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.图8-53-1[总结反思]解决直线与双曲线的位置关系问题的常用方法:(1)将直线方程代入双曲线方程得到关于x(或y)的方程,利用根与系数的关系及整体代入的思想解题,设直线与双曲线交于A(x1,y1),B(x2,y2)两点,直线的斜率为k,则|AB|=√1+k2·|x1-x2|;(2)比较直线的倾斜角(或斜率)与渐近线的倾斜角(或斜率)的大小,得到直线与双曲线的交点情况;(3)与中点有关的问题常用点差法.变式题已知双曲线C以F1(-2,0),F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且OA⃗⃗⃗⃗⃗ ⊥OB⃗⃗⃗⃗⃗ (O为坐标原点),求直线l的方程.。

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。

修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。

2.理解数形结合的思想。

3.了解双曲线的实际背景及其简单应用。

一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。

点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。

2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。

点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。

双曲线的通径为 $2a$。

3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。

数学双曲线讲解

数学双曲线讲解

双曲线是几何学中的一种重要曲线,它定义在平面上的一个点集,这个点集由满足某种条件的点的集合组成。

具体来说,双曲线是由平面与一个固定焦点的距离和另一个固定点(称为中心)的距离之差等于常数的点的集合。

这个常数可以是正数、负数或零,这决定了双曲线的形状和性质。

当常数大于零时,双曲线有两个分支,它们像两个翼片一样展开,并随着接近无穷远处而趋于平行。

双曲线的两个分支在焦点之间相遇,形成一个封闭的曲线。

双曲线的离心率是一个重要的几何量,它表示双曲线与直线之间的偏离程度。

双曲线的标准方程是(x^2/a^2) - (y^2/b^2) = 1,其中a 和b 是常数,它们决定了双曲线的形状和大小。

离心率 e = c/a,其中c 是焦点到中心的距离,a 是中心到顶点的距离。

双曲线的应用非常广泛,包括天文学、光学、工程学和物理学等领域。

在天文学中,行星和卫星的运动轨迹可以用双曲线或椭圆来描述。

在光学中,透镜的形状和光学路径可以用双曲线来描述。

在工程学中,桥梁、建筑和航空器的设计可以涉及到双曲线的应用。

在物理学中,双曲线用于描述粒子的运动轨迹和波的传播路径。

总之,双曲线是一种重要的几何曲线,它具有丰富的性质和应用。

通过深入了解双曲线的性质和方程,我们可以更好地理解其应用和解决问题。

双曲线的基本性质详解PPT课件

双曲线的基本性质详解PPT课件
16 8
x 3y 0 的双曲线方程。
解: 椭圆的焦点在x轴上,且坐标为
F1(2 2,0),F(2 2 2,0) 双曲线的焦点在x轴上,且c 2 2
双曲线的渐近线方程为 y 3 x
b
3
,而c 2
a2
3 b2,a2
b2
8
a3
解出 a2 6,b2 2
双曲线方程为 x2 y2 1 62
(m
它与y y
bax0的)的位x 渐 置的近变线化为趋势
:
y N(x,y’)
Q
b B2
M(x,y)
A1
A2
o a
x
B1
(3)利用慢渐慢近靠线近可以较准确的 画出双曲线的草图
ybx a
ybx a
第五页,编辑于星期五:十二点 三十三分。
5、离心率 (1)定义:双曲线的焦距与实轴长的比e c ,叫做
a 双曲线的 离心率。
解:双曲线 x2 y2 1 的渐近线为 y 4 x ,令 x=-3,y=±4,因 2 3 4 ,
9 16
3
故点 (3, 2 3) 在射线 y 4 x (x≤0)及 x 轴负半轴之间, 3

双曲线焦点在
x
轴上,∴设双曲线方程为
x2 a2
y2 b2
1 (a>0,b>0),

b4 a3 (3)2
a
(3)顶点: (0,-a)、(0,a)
(4)c a
-b o b x -a
第八页,编辑于星期五:十二点 三十三分。
小结

双 曲
质 图象
线
范围
对称 性
顶点
渐近 线
离心 率
x2 a2

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析双曲线是解析几何中重要的曲线之一,它有着许多特殊的性质和应用。

本文将对双曲线的知识点进行归纳,并结合例题进行分析,帮助读者更好地理解和应用双曲线的相关概念。

一、基本概念双曲线是平面上满足特定几何性质的曲线,由平面上到两个给定的点的距离之差等于一个常数构成。

常见的双曲线方程有两种形式:椭圆型和双曲型。

椭圆型的方程形如:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$,而双曲型的方程形如:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$。

其中,a和b分别是椭圆的长轴和短轴的长度。

二、性质与特点1. 焦点和准线:双曲线的焦点是曲线上到两个定点的距离之和等于常数的点,而准线是指到两个定点的距离之差等于常数的直线。

在椭圆型的双曲线中,焦点和准线位于曲线的长轴上,而在双曲型双曲线中,焦点和准线位于曲线的短轴上。

2. 渐近线:双曲线的两条渐近线是曲线的一种特殊性质。

渐近线与曲线的距离趋于无穷远,但始终不与曲线相交。

在双曲型的双曲线中,渐近线的斜率等于正负短轴与长轴之比。

而在椭圆型的双曲线中,渐近线的斜率等于正负长轴与短轴之比。

3. 对称性:双曲线具有关于x轴、y轴和原点的对称性。

即在曲线上一点(x, y)处,如果(x, -y)也在曲线上,那么曲线关于x轴对称;如果(-x, y)也在曲线上,那么曲线关于y轴对称;如果(-x, -y)也在曲线上,那么曲线关于原点对称。

三、例题分析下面通过几个例题来加深对双曲线的理解:例题1:已知双曲线的焦点为(2, 0),离心率为2,求该双曲线的方程。

解析:根据离心率的定义可知,双曲线的离心率e满足$$e=\frac{\sqrt{a^2+b^2}}{a}$$,其中a和b分别为双曲线椭圆型方程中长轴和短轴的长度。

因此,代入题目中的离心率2,可以得到2=\frac{\sqrt{a^2+b^2}}{a}。

解方程可得a=\sqrt{5},再根据焦点所在的位置可知,椭圆型方程的焦点是位于横轴上的。

双曲线经典知识点总结

双曲线经典知识点总结

双曲线经典知识点总结双曲线是解析几何中的一种重要曲线,是一对非重叠又对称的曲线组成,它有着丰富的性质和应用。

在数学、物理和工程等领域都有广泛的应用。

本文将通过对双曲线的定义、性质、参数方程、极坐标方程以及相关的应用等方面进行详细的总结和解释。

一、双曲线的定义和基本性质1. 双曲线的定义双曲线定义是平面直角坐标系中满足以下方程的点的轨迹:\[\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\]其中a和b是正实数且a≠b。

当a>b时,曲线称为右双曲线;当a<b时,曲线称为左双曲线。

2. 双曲线的基本性质(1)对称性:关于x轴、y轴和原点对称。

(2)渐近线:右双曲线的渐近线为y=±\frac{b}{a}x,左双曲线的渐近线为y=±\frac{a}{b}x。

(3)焦点和准线:右双曲线的焦点为F_{1}、F_{2}(c,0),准线方程为x=c;左双曲线的焦点为F_{1}、F_{2}(0,c),准线方程为y=c。

(4)离心率:离心率ε定义为,ε=\frac{\sqrt{a^2+b^2}}{a}。

二、双曲线的参数方程和极坐标方程1. 双曲线的参数方程(1)右双曲线的参数方程:\[\begin{cases}x=a\text{sec}t \\y=b\tan t\end{cases}\]其中t为参数。

(2)左双曲线的参数方程:\[\begin{cases}x=a\text{csc}t \\y=b\cot t\end{cases}\]其中t为参数。

2. 双曲线的极坐标方程(1)右双曲线的极坐标方程:\[r=\frac{b}{\sin\theta}\](2)左双曲线的极坐标方程:\[r=\frac{a}{\cos\theta}\]三、双曲线的相关应用1. 数学方面双曲线广泛应用于解析几何、微积分、微分方程等数学领域。

在微积分中,双曲线的导数和积分形式复杂,常作为综合练习的一部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第53讲 双曲线一、课程标准1、了解双曲线的实际背景,感受双曲线在刻画现实世界和解决实际问题中的作用.2、了解双曲线的定义、几何图形和标准方程,以及它的简单几何性质.3、通过双曲线的学习,进一步体会数形结合的思想. 二、基础知识回顾 1、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ||| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0. (1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 2 、双曲线的标准方程和几何性质三、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .四、自主热身、归纳总结1、 双曲线x 23-y 22=1的焦距为( )A. 5B. 5C. 2 5D. 1 【答案】 C【解析】 由题意得c 2=3+2=5,所以c =5,所以双曲线的焦距为2 5. 2、以椭圆x 24+y 23=1的焦点为顶点,顶点为焦点的双曲线方程为( )A. x 2-y 23=1B. x 23-y 2=1 C. x 2-y 22=1 D. x 24-y 23=1 【答案】 A【解析】 设双曲线的方程为x 2a 2-y 2b 2=1(a>0,b>0).由题意得双曲线的顶点为(±1,0),焦点为(±2,0),所以a =1,c =2,所以b 2=c 2-a 2=3,所以双曲线的标准方程为x 2-y 23=1. 3、已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A . x 28-y 210=1B . x 24-y 25=1C . x 25-y 24=1D . x 24-y 23=1【答案】B【解析】双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,在椭圆中:a 2=12,b 2=3,∴c 2=9,c=3,故双曲线C 的焦点坐标为(±3,0),∴双曲线中的方程组:b a =52,c =3,c 2=a 2+b 2,解得a 2=4,b 2=5,则双曲线C 的方程为x 24-y 25=1.故选B .4、设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5B .2C. 3D.2 【答案】C【解析】不妨设一条渐近线的方程为y =bax ,则F 2到y =b a x 的距离d =|bc |a 2+b 2=b .在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-6a22ac=-cos ∠POF 2=-ac,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3.5、(多选)已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( ) A .C 的方程为x 23-y 2=1B .C 的离心率为3C .曲线y =e x -2-1经过C 的一个焦点 D .直线x -2y -1=0与C 有两个公共点 【答案】AC【解析】设双曲线C 的方程为x 2a 2-y 2b 2=1,根据条件可知b a =33,所以方程可化为x 23b 2-y 2b 2=1,将点(3,2)代入得b 2=1,所以a 2=3,所以双曲线C 的方程为x 23-y 2=1,故A 对;离心率e =ca=a 2+b 2a 2= 3+13=233,故B 错;双曲线C 的焦点为(2,0),(-2,0),将x =2代入得y =e 0-1=0,所以C 对;联立⎩⎪⎨⎪⎧x 23-y 2=1,x -2y -1=0整理得y 2-22y +2=0,则Δ=8-8=0,故只有一个公共点,故D 错.故选A 、C.6、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为________. 【答案】x 28-y 28=1【解析】由离心率为2,可知a =b ,c =2a ,所以F (-2a ,0),由题意知k PF =4-00--2a =42a=1,所以2a =4,解得a =22, 所以双曲线的方程为x 28-y 28=1.7、(2020·广东揭阳一模)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点且与x 轴垂直的直线与双曲线的四个交点组成一个正方形,则该双曲线的离心率为________. 【答案】5+12【解析】将x =±c 代入双曲线的方程得y 2=b 4a 2⇒y =±b 2a ,则2c =2b 2a ,即有ac =b 2=c 2-a 2,由e =ca,可得e 2-e -1=0,解得e =5+12或e =1-52(舍). 五、例题选讲 考点一、双曲线的定义例1 (1)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以B 为直角顶点的等腰直角三角形,则e 2=____. (2)已知点P 为双曲线x 216-y 29=1右支上一点,点F 1,F 2分别为双曲线的左、右焦点,M 为△PF 1F 2的内心(角平分线交于一点),若S △PMF 1=S △PMF 2+8,则△MF 1F 2的面积为____.【答案】(1)5-2 2 (2)10【解析】 (1)如图所示,∵AF 1-AF 2=2a ,BF 1-BF 2=2a ,BF 1=AF 2+BF 2,∴AF 2=2a ,AF 1=4a.∴BF 1=22a ,∴BF 2=22a -2a.∵F 1F 22=BF 21+BF 22,∴(2c)2=(22a)2+(22a -2a)2,∴e 2=5-2 2.(2)设内切圆的半径为R ,a =4,b =3,c =5,∵S △PMF 1=S △PMF 2+8,∴12PF 1·R =12PF 2·R +8,∴12(PF 1-PF 2)R =8,即aR =8,∴R =2,∴S △MF 1F 2=12·2c·R =10.变式1、(华东师范大学附中2019届模拟)(1)设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3||PF 1=4||PF 2,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .48(2)设双曲线x 24-y 22=1的左、右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为__________. 【答案】(1)C (2)10【解析】(1)双曲线的实轴长为2,焦距为|F 1F 2|=10.根据题意和双曲线的定义知2=|PF 1|-|PF 2|=43|PF 2|-|PF 2|=13|PF 2|,所以|PF 2|=6,|PF 1|=8,所以|PF 1|2+|PF 2|2=|F 1F 2|2,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×6×8=24. (2)由双曲线的标准方程x 24-y 22=1得a =2,由双曲线的定义可得|AF 2|-|AF 1|=4,|BF 2|-|BF 1|=4,所以|AF 2|-|AF 1|+|BF 2|-|BF 1|=8.因为|AF 1|+|BF 1|=|AB |,当直线l 过点F 1,且垂直于x 轴时,|AB |最小,所以(|AF 2|+|BF 2|)min =|AB |min +8=2b 2a +8=10.变式2、已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A(0,66),当△APF 周长最小时,该三角形的面积为____. 【答案】126【解析】 设左焦点为F 1,PF -PF 1=2a =2,∴PF =2+PF 1,△APF 的周长为AF +AP +PF =AF +AP +2+PF 1,△APF 周长最小即为AP +PF 1最小,当A ,P ,F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =S △AF 1F -S △F 1PF =12 6.方法总结:(1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立为|PF 1|·|PF 2|的关系.(3)在运用双曲线的定义解题时,应特别注意定义中的条件“差的绝对值”,弄清楚是指整条双曲线还是双曲线的一支.考点二、双曲线的标准方程例2 (1)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左焦点为F ,离心率为 2.若经过F 和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为____.(2)与双曲线x 29-y 216=1有共同的渐近线,且经过点(-3,23)的双曲线的标准方程为___.【答案】(1) x 28-y 28=1 (2)x 294-y 24=1【解析】 (1)由题意得a =b ,4-00-(-c )=1,∴c =4,∴a =b =22,∴所求双曲线的方程为x 28-y 28=1.(2)(方法1)由题意可知所求双曲线的焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1,由题意,得⎩⎨⎧b a =43,(-3)2a 2-(23)2b 2=1,解得a 2=94,b 2=4. ∴双曲线的方程为4x 29-y 24=1.(方法2)设所求双曲线方程x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14,∴双曲线方程为4x 29-y 24=1.变式1、 根据下列条件,求双曲线的标准方程.(1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7).【解析】(1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知2b =12,e =c a =54,所以b=6,c =10,a =8.所以双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)因为双曲线经过点M (0,12),所以M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12.又2c =26,所以c =13,所以b 2=c 2-a 2=25.所以双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0),所以⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125.所以双曲线的标准方程为y 225-x 275=1. 变式2、(1)焦点在x 轴上,焦距为10,且与双曲线y 24-x 2=1有相同渐近线的双曲线的标准方程是________________.(2)过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为________________.【答案】(1)x 25-y 220=1 (2)x 24-y 212=1【解析】:(1)设所求双曲线的标准方程为y 24-x 2=-λ(λ>0),即x 2λ-y 24λ=1,则有4λ+λ=25,解得λ=5,所以所求双曲线的标准方程为x 25-y 220=1.(2)因为渐近线y =ba x 与直线x =a 交于点 A (a ,b ),c =4且4-a2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1.方法总结:求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. 考点三、 双曲线的性质例3、(2020·福建厦门一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F ,点A ,B 是C 的一条渐近线上关于原点对称的两点,以AB 为直径的圆过F 且交C 的左支于M ,N 两点,若|MN |=2,△ABF 的面积为8,则C 的渐近线方程为( )A .y =±3xB .y =±33xC .y =±2xD .y =±12x【答案】B【解析】设双曲线的另一个焦点为F ′,由双曲线的对称性,可得四边形AFBF ′是矩形,∴S △ABF =S △ABF ′,即bc =8, 由⎩⎪⎨⎪⎧x 2+y 2=c 2,x 2a 2-y 2b 2=1可得y =±b 2c ,则|MN |=2b 2c =2,即b 2=c ,∴b =2,c =4, ∴a =c 2-b 2=2 3, ∴C 的渐近线方程为y =±33x , 故选B.变式1、已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦点为F 1,F 2,且双曲线C 上的点P 满足PF 1→·PF 2→=0,|PF 1→|=3,|PF 2→|=4,则双曲线C 的离心率为________. 【答案】 5【解析】 由双曲线的定义可得2a =|PF 2→|-|PF 1→|=1,所以a =12.因为PF 1→·PF 2→=0,所以PF 1→⊥PF 2→,所以(2c)2=|PF 1→|2+|PF 2→|2=25,解得c =52,所以双曲线C 的离心率为e =c a =5.变式2、 已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则双曲线的离心率e 的最大值为________. 【答案】 53【解析】 设∠F 1PF 2=θ,由⎩⎪⎨⎪⎧PF 1-PF 2=2a ,PF 1=4PF 2,得⎩⎨⎧PF 1=83a ,PF 2=23a.由余弦定理得cos θ=17a 2-9c 28a 2=178-98e 2.因为θ∈(0,π],所以cos θ∈[-1,1),即-1≤178-98e 2<1.又e>1,所以1<e≤53,所以离心率e 的最大值为53.变式3、 已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a>0,b>0)的两个焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率是________. 【答案】3+1【解析】 因为MF 1的中点P 在双曲线上,所以PF 2-PF 1=2a.因为△MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a ,所以e =c a =23-1=3+1.方法总结:双曲线中一些几何量的求解方法(1)求双曲线的离心率(或范围):依据题设条件,将问题转化为关于a ,c 的等式(或不等式),解方程(或不等式)即可求得.(2)求双曲线的渐近线方程:依据题设条件,求双曲线中a ,b 的值或a 与b 的比值,进而得出双曲线的渐近线方程.(3)求双曲线的方程:依据题设条件求出a ,b 的值或依据双曲线的定义求双曲线的方程. (4)求双曲线的焦点(焦距)、实(虚)轴的长:依题设条件及a ,b ,c 之间的关系求解.考点四、直线与双曲线的位置关系例4、一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于点R ,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.【解析】因为e =3,所以b 2=2a 2,所以双曲线方程可化为2x 2-y 2=2a 2.设直线l 的方程为y =x +m ,由⎩⎪⎨⎪⎧y =x +m ,2x 2-y 2=2a 2得x 2-2mx -m 2-2a 2=0,所以Δ=4m 2+4(m 2+2a 2)>0,所以直线l 一定与双曲线相交.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2m ,x 1x 2=-m 2-2a 2.因为PR →=3RQ →,x R =x 1+3x 24=0,所以x 1=-3x 2,所以x 2=-m ,-3x 22=-m 2-2a 2,消去x 2,得m 2=a 2.又OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(x 1+m )·(x 2+m )=2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3,所以m =±1,a 2=1,b 2=2.直线l 的方程为y =x ±1,双曲线的方程为x 2-y 22=1.变式、若双曲线E :x 2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若||AB =63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.【解析】(1)由⎩⎪⎨⎪⎧c a =2,a 2=c 2-1得⎩⎪⎨⎪⎧a 2=1,c 2=2.故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.① 因为直线与双曲线右支交于A ,B 两点,所以⎩⎪⎨⎪⎧x 1+x 2>0,x 1·x 2>0,Δ>0,即⎩⎪⎨⎪⎧ k >1,Δ=2k2-41-k 2×-2>0,即⎩⎨⎧k >1,-2<k <2,所以1<k <2,即k 的取值范围是(1,2).(2)由①得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1,所以|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=2(1+k 2)(2-k 2)(k 2-1)2=63,整理得28k 4-55k 2+25=0,所以k 2=57或k 2=54,又1<k <2,所以k =52,所以x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8.设C (x 3,y 3),由OC →=m (OA →+OB →)得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ),因为点C 是双曲线上一点,所以80m 2-64m 2=1,得m =±14,故k =52,m =±14.方法总结:解有关直线与双曲线的位置关系的方法(1)解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程,利用根与系数的关系,整体代入.(2)与中点有关的问题常用点差法.(3)根据直线的斜率与渐近线的斜率的关系来判断直线与双曲线的位置关系.五、优化提升与真题演练1、(2020年高考天津)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A .22144x y -= B .2214y x -= C .2214x y -= D .221x y -= 【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .2、(2020年高考全国Ⅲ卷理数).设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,离P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A . 1 B . 2C . 4D . 8【答案】A 【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .3、(2020年高考全国Ⅲ卷理数)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩, 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩, 故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△, 双曲线2222:1(0,0)x y C a b a b-=>>,∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .4、(2018·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1 【答案】C【解析】因为直线AB 经过双曲线的右焦点且垂直于x 轴,所以不妨取A (c ,b 2a ),B ⎝⎛⎭⎫c ,-b 2a ,取双曲线的一条渐近线为直线bx -ay =0,由点到直线的距离公式可得d 1=|bc -b 2|a 2+b 2=bc -b 2c ,d 2=|bc +b 2|a 2+b 2=bc +b 2c ,因为d 1+d 2=6,所以bc -b 2c +bc +b 2c =6,所以2b =6,得b =3.因为双曲线的离心率为2,所以ca =2,所以a 2+b 2a 2=4,即a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1,故选C. 5、(2019年全国Ⅱ卷)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .6、(2018·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (c,0)到一条渐近线的距离为32c ,则其离心率的值是__________. 【答案】2【解析】一条渐近线方程为bx +ay =0,由题知bc a 2+b 2=32c ,所以b c =32,即c 2-a 2c 2=34,即⎝⎛⎭⎫a c 2=14,所以e 2=4,所以e =2.。

相关文档
最新文档