新人教A版高三数学大一轮复习 8.1空间几何体的结构三视图和直观图教案
高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.
高考数学一轮复习 第八章 立体几何8.1空间几何体的结构及其三视图与直观图教学案 理 新人教A版

第八章立体几何8.1 空间几何体的结构及其三视图与直观图考纲要求1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.1.多面体的结构特征(1)棱柱:一般地,有两个面互相____,其余各面都是________,并且每相邻两个四边形的公共边都互相____.(2)棱锥:一般地,有一个面是______,其余各面都是有一个________的三角形.(3)棱台:用一个____________________的平面去截棱锥,底面与截面之间的部分叫做棱台,棱台的各侧棱延长后________.2.旋转体的结构特征(1)圆柱:以矩形的一边所在直线为______,其余三边旋转形成的面所围成的旋转体叫做圆柱;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做__________________.(2)圆锥:以__________________所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.(3)圆台:用平行于圆锥底面的平面去截圆锥,__________________的部分叫做圆台,圆台的__________延长后交于一点.(4)球:以____________所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.3.简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成.有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.4.空间几何体的三视图光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧视图;光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.5.空间几何体的直观图空间几何体的直观图常用________________来画,基本步骤:(1)画几何体的底面:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴相交于点O′,且使∠x′O′y′=__________,已知图形中平行于x轴或y轴的线段在直观图中分别平行于x′轴或y′轴.已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为__________.(2)画几何体的高:在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段在直观图中仍平行于z′轴且长度____.1.如图所示几何体,是由哪个平面图形旋转得到的( ).2.如图是一个正方体的展开图,将其折叠起来,变成正方体后的图形是( ).3.一个几何体的三视图如图所示,则这个几何体的表面积为( ).A.72 B.66 C.60 D.304.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ).5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).一、空间几何体的结构特征【例1】下列结论正确的是( ).A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线方法提炼真正把握空间几何体的结构特征,需要准确理解几何体的定义,若对概念进行辨析,一方面是严格按照定义判断,另一方面还要学会通过举反例来说明一个命题是错误的.请做演练巩固提升1二、几何体的三视图【例2】已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( ).方法提炼三视图的画法要坚持以下原则:(1)高平齐,即几何体的高与正视图和侧视图的高相等;(2)宽相等,即几何体的宽与侧视图和俯视图的宽相等;(3)长对正,即几何体的正视图与俯视图的长度相等;(4)看不见的轮廓线或棱要用虚线表示.请做演练巩固提升2三、几何体的直观图【例3】已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( ).A.34a2 B.38a2 C.68a2 D.616a2方法提炼(1)对于几何体的直观图,一方面要掌握斜二测画法规则,注意线线平行关系的不变性及长度的变化特征;另一方面,若能了解原图形面积S与其直观图面积S′之间的关系S′=24S,还可以简化有关问题的计算.(2)把水平放置的直观图还原成原来的图形,基本过程就是逆用斜二测画法,使平行于x′轴的线段长度不变,平行于y′轴的线段长度变成原来的2倍.请做演练巩固提升5对实线与虚线的画法规则不明确而致误【典例】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( ).解析:由正视图和俯视图可以推测几何体为半圆锥和三棱锥的组合体(如图所示),且顶点在底面的射影恰是底面半圆的圆心,可知侧视图为等腰三角形,且轮廓线为实线,故选D.答案:D答题指导:1.在解答本题时常出现以下错误:(1)根据正视图和俯视图确定原几何体的形状时出现错误,误把半圆锥看成半圆柱,不能准确判断出几何体的形状而误选A.(2)对实线与虚线的画法规则不明确而误选C.2.解决三视图与几何体间的转化问题时,还有以下几点在备考时要高度关注:(1)画三视图时对个别的视图表达不准确,不能正确地画出所要求的视图;(2)对三视图中实虚线的含义不明确或画三视图时不能用虚线表示看不到的轮廓线.在复习时要明确三个视图各自的含义,还原空间几何体实际形状时一般是以正视图和俯视图为主,结合侧视图进行综合考查.1.(2012福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ).A.球B.三棱锥C.正方体D.圆柱2.(2012湖南高考)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( ).3.在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( ).A.20 B.15 C.12 D.104.下图中的三个直角三角形是一个体积为20 cm3的几何体的三视图,则h=__________cm.5.(2012长沙模拟)如图,一平面图形的直观图是一个等腰梯形OABC,且该梯形的面积为2,则原图形的面积为__________.参考答案基础梳理自测知识梳理1.(1)平行四边形平行(2)多边形公共顶点(3)平行于棱锥底面交于一点2.(1)旋转轴圆柱侧面的母线(2)直角三角形的一条直角边(3)底面与截面之间各母线(4)半圆的直径5.斜二测画法(1)45°(或135°)原来的一半(2)相等基础自测1.A2.B 解析:在这个正方体的展开图中与有圆面相邻的三个面中都有一条直线,当变成正方体后,这三条直线应该互相平行.3.A 解析:根据题目所给的三视图可知该几何体为一个侧棱与底面垂直的三棱柱,且底面是一直角三角形,两直角边长度分别为3,4,斜边长为5,三棱柱的高为5,所以表面积为3×4+3×5+4×5+5×5=72.4.A 5.B考点探究突破【例1】D 解析:A错误.如图,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如下图,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥.C 错误.若六棱锥的所有棱都相等,则底面多边形是正六边形.但由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.【例2】 B 解析:由正视图和俯视图画出如图所示的直观图,在三棱锥P ABC 中,PA ⊥底面ABC ,故其侧视图是一直角三角形,其一条直角边为PA ,另一条直角边长为B 到AC 的距离 3.【例3】 D 解析:先画出正三角形ABC ,然后再画出它的水平放置的直观图,如图所示,由斜二测画法规则知B ′C ′=a ,O ′A ′=34a .过A ′作A ′M ⊥x ′轴,垂足为M ,则A ′M =O ′A ′·sin 45°=34a ×22=68a . ∴S △A ′B ′C ′=12B ′C ′·A ′M =12a ×68a =616a 2.演练巩固提升1.D 解析:∵圆柱的三视图中有两个矩形和一个圆, ∴这个几何体不可以是圆柱.2.C 解析:若为C 选项,则主视图为:故不可能是C 选项. 3.D 解析:从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.4.4 解析:由20=13×12×5×6×h ,得h =4(cm).5.4 解析:直观图的面积为12(BC +OA )·h =2,而原图形的高为直观图的22倍,∴原图形面积为12(BC +OA )·22h =4.。
人教a版高考数学(理)一轮课件:8.1空间几何体的结构、三视图和直观图

3.简单组合体 简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一 种是由简单几何体截去或挖去一部分而成,有多面体与多面体、 多面体与旋 转体、旋转体与旋转体的组合体.
4. 三视图 几何体的三视图包括正视图、侧视图、俯视图 , 分别是从几何体的 正前方、正左方、正上方观察几何体画出的轮廓线.
考纲解读
空间几何体的结构 和三视图部分 重点考 查柱、锥、台、球 的定义和以三 视图为 载体考查柱、锥、 台、球的表面 积和体 积, 难度 不大. 空间几 何体的 性质是 基础, 以它们为载体考查 线线、线面、 面面间 的 关 系 是 重点 . 三 视图 的 还 原在 各 地 高 考 试 题 中 频繁 出 现 , 已 经 成 为高 考 的 热 点 问 题, 题型 多以 选择 题和 填空 题为 主 , 有时也会作为解答题的背景出现.
三视图的长度特征: “ 长对正, 宽相等, 高平齐” , 即正视图和侧 视图一样高, 正视图和俯视图一样长, 侧视图和俯视图一样宽. 若相邻两物 体的表面相交, 表面的交线是它们的分界线, 在三视图中, 要注意实、 虚线的 画法 .
5. 空间几何体的直观图 空间几何体的直观图常用斜二测画法来画, 其规则是: (1) 原图形中 x轴、 y轴、 z轴两两垂直, 直观图中, x' 轴、 y' 轴的夹角为 45° , z' 轴与 x' 轴和 y' 轴所在平面垂直. (2) 原图形中平行于坐标轴的线段, 在直观图中仍分别平行于坐标轴. 平 行于 x轴和 z轴的线段在直观图中保持原长度不变, 平行于 y轴的线段长度 在直观图中变为原来的一半. 6. 中心投影与平行投影 (1) 平行投影的投影线互相平行, 而中心投影的投影线相交于一点. (2) 从投影的角度看, 三视图和用斜二测画法画出的直观图都是在平行 投影下画出来的图形.
新人教A版版高考数学一轮复习第八章立体几何空间几何体的结构三视图和直观图教案文

一、知识梳理1.空间几何体的结构特征2.直观图(1)画法:常用斜二测画法.(2)规则:1原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.2原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法1基本要求:长对正,高平齐,宽相等.2画法规则:正侧一样高,正俯一样长,侧俯一样宽;看到的线画实线,看不到的线画虚线.[注意] (1)画三视图时,能看见的线用实线表示,不能看见的线用虚线表示.(2)同一物体,若放置的位置不同,则所得的三视图可能不同.错误!错误!错误!错误!错误!错误!错误!错误!错误!上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.2.斜二测画法中的“三变”与“三不变”“三变”错误!“三不变”错误!K二、习题改编1.(必修2P10B组T1改编)如图,长方体ABCDA′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征知,剩下的几何体为五棱柱.2.(必修2P8A组T1(1)改编)在如图所示的几何体中,是棱柱的为.(填写所有正确的序号)答案:35一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.()(6)菱形的直观图仍是菱形.()答案:(1)×(2)×(3)×(4)×(5)×(6)×二、易错纠偏错误!(1)对空间几何体的结构特征认识不到位;(2)不能由三视图确定原几何体的结构特征;(3)斜二测画法的规则不清致误.1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A.由五个面围成的多面体可以是四棱锥,所以A选项错误.B,C,D说法均正确.2.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选B.根据选项A,B,C,D中的直观图,画出其三视图,只有B项正确.3.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2cm,则在平面直角坐标系xOy 中,四边形ABCO为,面积为cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4cm,宽为2cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8空间几何体的结构特征(师生共研)(1)下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台1以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;2以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;3圆柱、圆锥、圆台的底面都是圆面.其中正确命题的个数为()A.0 B.1C.2D.3【解析】(1)底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,D错.(2)命题1错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题2错,因为这条腰必须是垂直于两底的腰;命题3对.【答案】(1)B (2)B错误!空间几何体概念辨析问题的常用方法1.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为()A.10 B.10错误!C.10错误!D.5错误!解析:选B.设圆锥的底面半径为r,高为h,因为半圆的弧长等于圆锥的底面周长,半圆的半径等于圆锥的母线,所以2πr=20π,所以r=10,所以h=错误!=10错误!.2.若四面体的三对相对棱分别相等,则称之为等腰四面体,若四面体的一个顶点出发的三条棱两两垂直,则称之为直角四面体,以长方体ABCDA1B1C1D1的顶点为四面体的顶点,可以得到等腰四面体、直角四面体的个数分别为()A.2,8 B.4,12C.2,12D.12,8解析:选A.因为矩形的对角线相等,所以长方体的六个面的对角线构成2个等腰四面体.因为长方体的每个顶点出发的三条棱都是两两垂直的,所以长方体中有8个直角四面体.空间几何体的三视图(多维探究)角度一由空间几何体的直观图识别三视图(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()【解析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.【答案】A错误!已知几何体,识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线,对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.角度二由空间几何体的三视图还原直观图(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为()A.2错误!B.2错误!C.3D.2【解析】由三视图可知,该几何体为如图1所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图2所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为错误!=错误!=2错误!.故选B.【答案】B错误!由三视图确定几何体的步骤1.(2020·福州市第一学期抽测)如图,为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是()解析:选B.由题意,根据切削后的几何体及其正视图,可得相应的侧视图的切口为椭圆,故选B.2.(2020·唐山市五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()解析:选A.由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.空间几何体的直观图(师生共研)(1)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.错误!a2B.错误!a2C.错误!a2D.错误!a2(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形【解析】(1)如图12所示的实际图形和直观图,由2可知,A′B′=AB=a,O′C′=错误!OC=错误!a,在图2中作C′D′⊥A′B′于点D′,则C′D′=错误! O′C′=错误!a,所以S△A′B′C′=错误!A′B′·C′D′=错误!×a×错误!a=错误!a2.故选D.(2)如图,在原图形OABC中,应有OD=2O′D′=2×2错误!=4错误!(cm),CD=C′D′=2cm.所以OC=错误!=错误!=6(cm),所以OA=OC,故四边形OABC是菱形,故选C.【答案】(1)D (2)C错误!平面图形与其直观图的关系(1)在斜二测画法中,要确定关键点及关键线段.平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=错误!S原图形.如图,正方形OABC的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是cm.解析:由题意知正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,所以OB=错误! cm,对应原图形平行四边形的高为2错误!cm,所以原图形中,OA=BC=1cm,AB=OC=错误!=3cm,故原图形的周长为2×(1+3)=8 cm.答案:8[基础题组练]1.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析:选A.由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.2.下列说法正确的有()1两个面平行且相似,其余各面都是梯形的多面体是棱台;2经过球面上不同的两点只能作一个大圆;3各侧面都是正方形的四棱柱一定是正方体;4圆锥的轴截面是等腰三角形.A.1个B.2个C.3个D.4个解析:选A.1中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以1不正确;2中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以2不正确;3中底面不一定是正方形,所以3不正确;很明显4是正确的.3.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A.13B.14C.24D.1234解析:选A.由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故13正确.4.如图所示,在三棱台A′B′C′ABC中,沿A′BC截去三棱锥A′ABC,则剩余的部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体解析:选B.如图所示,在三棱台A′B′C′ABC中,沿A′BC截去三棱锥A′ABC,剩余部分是四棱锥A′BCC′B′.5.有一个长为5cm,宽为4cm的矩形,则其直观图的面积为.解析:由于该矩形的面积S=5×4=20(cm2),所以其直观图的面积S′=错误!S=5错误!(cm2).答案:5错误!cm26.一个圆台上、下底面的半径分别为3cm和8 cm,若两底面圆心的连线长为12cm,则这个圆台的母线长为cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12cm,BC=8—3=5(cm).所以AB=错误!=13(cm).答案:137.正四棱锥的底面边长为2,侧棱长均为错误!,其正视图和侧视图是全等的等腰三角形,则正视图的周长为.解析:由题意知,正视图就是如图所示的截面PEF,其中E,F分别是AD,BC的中点,连接AO,易得AO=错误!,又PA=错误!,于是解得PO=1,所以PE=错误!,故其正视图的周长为2+2错误!.答案:2+2错误!8.如图1,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA的长.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=错误!=错误!=6错误!(cm).由正视图可知AD=6 cm,且AD⊥PD,所以在Rt△APD中,PA=错误!=错误!=6错误!(cm).[综合题组练]1.(2020·陕西西安陕师大附中等八校3月联考)已知正三棱柱ABCA1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径长为()A.错误!B.25C.2错误!D.31解析:选B.将正三棱柱ABCA1B1C1沿侧棱AA1展开两次,如图所示:在展开图中,AA1的最短距离是大矩形对角线的长度,也即为三棱柱的侧面上绕两圈所走路程的最小值.由已知求得正三棱锥底面三角形的边长为错误!=4.所以矩形的长等于4×6=24,宽等于7.由勾股定理求得d=错误!=25.故选B.2.(2020·吉林第三次调研测试)某几何体的三视图如图所示,且该几何体的体积为2,则正视图的面积为()A.2B.1C.错误!D.2错误!解析:选A.由题中三视图可知该几何体为四棱锥PABCD,其中底面四边形ABCD为直角梯形,AD∥BC,AB⊥AD,AB=2,BC=1,AD=2,PA⊥底面ABCD.所以错误!×错误!×2x=2,解得x=2.所以正视图的面积S=错误!×2×2=2.故选A.3.(一题多解)(2020·河南非凡联盟4月联考)某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为.解析:法一:由题图易知,该几何体为一个四棱锥(高为2错误!,底面是长为4,宽为3的矩形)与一个半圆柱(底面圆半径为2,高为3)的组合体,所以其俯视图的外侧边沿线组成一个长为4,宽为3的矩形,其面积为12,由斜二测知识可知四边形O′A′B′C′的面积为4×错误!sin 45°=3错误!.法二:由斜二测画法可先还原出俯视图的外轮廓是长为4,宽为3的矩形,其面积为4×3=12,结合直观图面积是原图形面积的错误!,即可得结果.答案:3错误!4.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是.解析:作出直观图如图所示,通过计算可知AF、DC最长,且DC=AF=错误!=3错误!.答案:3错误!。
高中高一数学空间几何体的三视图和直观图教案设计

高中高一数学空间几何体的三视图和直观图教案设计一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图, 是建立空间概念的基础和训练学生几何直观水平的有效手段。
另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。
同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的协助。
所以在人们的日常生活中有着重要意义。
二、教学目标(1) 知识与技能:能画出简单空间图形( 长方体,球,圆柱,圆锥,棱柱等的简易组合) 的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。
(2) 过程与方法:通过直观感知,操作确认,提升学生的空间想象水平、几何直观水平,培养学生的应用意识。
(3) 情感、态度与价值观:让感受数学就在身边,提升学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。
三、设计思路本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。
直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。
通过大量的多媒体直观,实物直观使学生获得了对三视图的感性理解,通过学生的观察思考,动手实践,操作练习,实现认知从感性理解上升为理性理解。
培养学生的空间想象水平,几何直观水平为学习立体几何打下基础。
教学的重点、难点(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。
(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。
四、学生现实分析本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。
高一数学空间几何体的三视图和直观图教案

高一数学空间几何体的三视图和直观图教案一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这局部知识是立体几何的基础之一,一方面它是对上一节空间几何体构造特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效伎俩。
另外,三视图局部也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的外表积或体积设置在选择或填空中。
同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。
所以在人们的日常生活中有着重要意义。
二、教学目的(1) 知识与技能:能画出简略空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步相熟简略几何体的构造特征。
(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应意图识。
(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生互相交流、互相合作的精神。
三、设计思路本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。
直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。
通过大量的多媒体直观,实物直观使学生取得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识回升为理性认识。
培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。
教学的重点、难点(一)重点:画出空间几何体及简略组合体的三视图,领会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。
(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。
四、学生现实剖析本节首先简略介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。
高中数学教案之空间几何体的三视图与直观图

.
( 2)判断简单组合体的三视图是由哪几个基本几何体生成的,注意它们的生成方式,特别是它们的 交线位置 .
( 3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都
用实线画出,不可见轮廓线,用虚线画出 . ( 4)要检验画出的三视图是否符合 “长对正、 高平齐、 宽相等 ”的基本特征, 即正、 俯视图长对正; 正、
A. ④③②
B.②①③
C.①②③
D.③②④
分析: 由于甲的俯视图是圆,则该几何体是旋转体,又因正视图和侧视图均是矩形,则甲是圆柱;由
于乙的俯视图是三角形,则该几何体是多面体,又因正视图和侧视图均是三角形,则该多面体的各个面都
是三角形, 则乙是三棱锥; 由于丙的俯视图是圆, 则该几何体是旋转体, 又因正视图和侧视图均是三角形,
“正视
图 ”,自左向右投影所得的投影图称为 “侧视图 ”,自上向下投影所得的投影图称为 “俯视图 ”用.这三种视图
即可刻画空间物体的几何结构,这种图称之为
“三视图 ”.
教科书从复习初中学过的正方体、 长方体 …… 的三视图出发, 要求学生自己画出球、 长方体的三视图;
接着, 通过 “思考 ”提出了 “由三视图想象几何体 ”的学习任务 .进行几何体与其三视图之间的相互转化是高中
图9 .对于简单空间几何体的组合体, 一定要认真观察, 先认识它
图 10 答案: 三视图如图 11 所示 .
图 11
思路 2 例 1 (2007 安徽淮南高三第一次模拟,文 16)如图 12 甲所示,在正方体 ABCD — A 1B1C1D 1 中, E、 F 分别是 AA 1、C1D1 的中点, G 是正方形 BCC1B1 的中心,则四边形 AGFE 在该正方体的各个面上的投影可 能是图 12 乙中的 ____________.
届高三数学大一轮复习 空间几何体、三视图和直观图学案 理 新人教A版

第八章立体几何学案40 空间几何体、三视图和直观图导学目标: 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,并且会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图.自主梳理1.多面体的结构特征(1)棱柱的上下底面________,侧棱都________且____________,上底面和下底面是________的多边形.(2)棱锥的底面是任意多边形,侧面是有一个________的三角形.(3)棱台可由__________________的平面截棱锥得到,其上下底面的两个多边形________.2.旋转体的结构特征(1)圆柱可以由矩形绕其____________旋转得到.(2)圆锥可以由直角三角形绕其__________________旋转得到.(3)圆台可以由直角梯形绕__________________或等腰梯形绕上下底中点的连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(4)球可以由半圆或圆绕其________旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括________、____________、________.4.空间几何体的直观图画空间几何体的直观图常用________画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=________.(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于__________的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度________,平行于y轴的线段,长度变为___________________.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________.5.中心投影与平行投影(1)平行投影的投影线互相平行,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在平行投影下画出来的图形.自我检测1.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④2.(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )3.(2011·金华月考)将正三棱柱截去三个角(如图1所示),A ,B ,C 分别是△GHI 三边的中点,得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )4.(2010·广东)如图,△ABC 为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC 且3AA′=32BB′=CC′=AB ,则多面体ABC -A′B′C′的正视图(也称主视图)是( )5.(2011·山东)如图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( )A .3B .2C .1D .0探究点一 空间几何体的结构例1 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点.其中正确命题的序号是________. 变式迁移1 下列结论正确的是( ) A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线 探究点二 空间几何体的三视图例2 (2009·福建)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )变式迁移2 (2011·课标全国)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )探究点三 直观图及斜二测画法 例3用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )变式迁移3 一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于( )A .24a 2B .22a 2C .22a 2D .223a 2(满分:75分)一、选择题(每小题5分,共25分) 1.一个棱柱是正四棱柱的条件是( ) A .底面是正方形,有两个侧面是矩形 B .底面是正方形,有两个侧面垂直于底面C .底面是菱形,具有一个顶点处的三条棱两两垂直D .每个侧面都是全等矩形的四棱柱2.(2011·汕头月考)已知水平放置的△ABC 的直观图△A′B′C′(斜二测画法)是边长为2a 的正三角形,则原△ABC 的面积为( )A .2a 2B .32a 2C .62a 2 D .6a 2 3.有一个正三棱柱,其三视图如图所示:则其体积等于( )A .3 cm 3B .1 cm 3C .332cm 3 D .4 cm 34.(2011·青岛模拟)如下图,一个简单空间几何体的三视图其正视图与侧视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是( )A .36 B .423 C .433 D .835.(2011·福州质检)某简单几何体的一条对角线长为a ,在该几何体的正视图、侧视图与俯视图中,这条对角线的投影都是长为2的线段,则a 等于( )A . 2B . 3C .1D .2 二、填空题(每小题4分,共12分)6.(2010·湖南)图中的三个直角三角形是一个体积为20 cm 3的几何体的三视图,则h =________cm .7.已知正三角形ABC 的边长为a ,则△ABC 的水平放置直观图△A′B′C′的面积为________.8.(2011·宜昌月考)棱长为a 的正四面体ABCD 的四个顶点均在一个球面上,则此球的半径R =________.三、解答题(共38分)9.(12分)画出下列几何体的三视图.10.(12分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积.11.(14分)(2011·石家庄月考)已知正三棱锥V-ABC的正视图和俯视图如图所示.(1)画出该三棱锥的侧视图和直观图.(2)求出侧视图的面积.学案40 空间几何体、三视图和直观图自主梳理1.(1)平行平行长度相等全等(2)公共顶点(3)平行于棱锥底面相似 2.(1)一边所在直线(2)一条直角边所在直线(3)垂直于底边的腰所在直线(4)直径 3.正视图侧视图俯视图 4.斜二测(1)45°(或135°)(2)x′轴、y′轴(3)不变原来的一半(4)不变自我检测1.D [在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.]2.D [A ,B 的正视图不符合要求,C 的俯视图显然不符合要求,答案选D .] 3.A [∵原几何体是正三棱柱,且AE 在平面EG 中, ∴在侧视图中,AE 应为竖直的.]4.D [由AA′∥BB′∥CC′及CC′⊥平面ABC ,知BB′⊥平面ABC.又CC′=32BB′,且△ABC 为正三角形,故正视图应为D 中的图形.]5.A [底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图可以是全等的矩形,因此①正确;若长方体的高和宽相等,则存在满足题意的两个相等的矩形,因此②正确;当圆柱侧放时(即侧视图为圆时),它的正视图和俯视图可以是全等的矩形,因此③正确.]课堂活动区例1 解题导引 解决这种判断题的关键是:①准确理解棱柱、棱锥、棱台的概念;②正确运用平行、垂直的判定及性质定理进行判断,整体把握立体几何知识.③④⑤⑥ 解析①错误,因为棱柱的底面不一定是正多边形,故侧面不一定都全等;②错误,必须用平行于底面的平面去截棱锥,才能得到棱台;③正确,因为三个侧面构成的三个平面的二面角都是直二面角;④正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;⑤正确,如图所示,正方体AC 1中的四棱锥C 1—ABC ,四个面都是直角三角形;⑥正确,由棱台的概念可知.因此,正确命题的序号是③④⑤⑥.变式迁移1 D [A 错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B 错误.如下图,若△ABC 不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥.C 错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D 正确.]例2 解题导引 三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.解决此类问题的关键是弄清三视图“长、宽、高”的关系.C [当俯视图为A 中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为12,高为1的圆柱,体积为π4;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为12;当俯视图为D中扇形时,几何体为圆柱的14,且体积为π4.]变式迁移2 D [由几何体的正视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形,故应选D .]例3 解题导引 本题是已知直观图,探求原平面图形,考查逆向思维能力.要熟悉运用斜二测画法画水平放置的直观图的基本规则,注意直观图中的线段、角与原图中的对应线段、角的关系.A [按照斜二测画法的作图规则,对四个选项逐一验证,可知只有选项A 符合题意.] 变式迁移3B [根据斜二测画法画平面图形的直观图的规则可知,在x 轴上(或与x 轴平行)的线段,其长度保持不变;在y 轴上(或与y 轴平行)的线段,其长度变为原来的一半,且∠x′O′y′=45°(或135°),所以,若设原平面图形的面积为S ,则其直观图的面积为S′=12·22·S=24S.可以得出一个平面图形的面积S 与它的直观图的面积S′之间的关系是S′=24S ,本题中直观图的面积为a 2,所以原平面四边形的面积S =a 224=22a 2.]课后练习区1.C2.D [斜二测画法中原图面积与直观图面积之比为1∶24,则易知24S =34(2a)2,∴S=6a 2.]3.D [由给出的三视图可以得知该正三棱柱的高等于正视图和侧视图的高为 3 cm ,若设该正三棱柱的底面边长为a cm ,则有32a =2,所以a =433,故该正三棱柱的体积为V=12·32·⎝ ⎛⎭⎪⎫4332·3=4 (cm 3).] 4.C [由三视图知该几何体为一正四棱锥,记为S —ABCD ,如图,其中AB =2,△SCD 中CD 上的高为2,即SE =2,设S 在底面上的射影为O ,在Rt △SOE 中,SO =SE 2-OE 2,∴SO=22-12=3.∴V=13S ABCD ×SO=13×4×3=433.] 5.B [可以把该几何体形象为一长方体AC 1,设AC 1=a ,则由题意知A 1C 1=AB 1=BC 1=2,设长方体的长、宽、高分别为x 、y 、z ,则x 2+y 2=2,y 2+z 2=2,z 2+x 2=2,三式相加得2(x 2+y 2+z 2)=2a 2=6.∴a= 3.] 6.4解析 由三视图可知该几何体是一个三棱锥,其底面是一个直角边长分别是5和6的直角三角形,几何体的高为h ,则该几何体的体积V =13·12·5·6·h=20.∴h=4.7.616a 2解析 如图A′B′=AB =a ,O′C′=12OC =34a ,过点C′作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a ,所以S △A‘B ’‘′=12A′B′·C′D′=616a 2. 8.64a 解析如图所示,设正四面体ABCD 内接于球O ,由D 点向底面ABC 作垂线,垂足为H ,连接AH ,OA ,则可求得AH =33a ,DH =a 2-⎝⎛⎭⎪⎫33a 2=6a 3, 在Rt △AOH 中,⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫63a -R 2=R 2,解得R =64a. 9.解 图(1)中几何体的三视图如图①、②、③,图(2)中几何体的三视图如图④、⑤、⑥.(6分)(12分)10.解 (1)由该几何体的正视图及俯视图可知几何体是正六棱锥.(4分) (2)侧视图(如图)(6分)其中AB =AC ,AD⊥BC,且BC 长是俯视图正六边形对边间的距离,即BC =3a ,AD 是正棱锥的高,AD =3a ,所以侧视图的面积为S =12×3a×3a =32a 2.(12分)11.解 (1)如图.(7分)(2)根据三视图间的关系可得BC =23, 侧视图中VA 为42-23×32×232=12=23,1 2×23×23=6.(14分)∴S△VBC=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.1空间几何体的结构、三视图和直观图2014高考会这样考1.几何体作为线面关系的载体,其结构特征是必考内容;2.考查三视图、直观图及其应用.复习备考要这样做1.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型;2.熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.1.多面体的结构特征(1)棱柱的上下底面平行,侧棱都平行且长度相等,上底面和下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面的两个多边形相似.2.旋转体的结构特征(1)圆柱可以由矩形绕其一边所在直线旋转得到.(2)圆锥可以由直角三角形绕其一条直角边所在直线旋转得到.(3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(4)球可以由半圆或圆绕其直径旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图画空间几何体的直观图常用斜二测画法,基本步骤:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°).(2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于x′轴、y′轴.(3)已知图形中平行于x轴的线段,在直观图中长度保持不变,平行于y轴的线段,长度变为原来的一半.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.[难点正本疑点清源]1.正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.2.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.3.三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.答案①②④解析①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.2.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.答案①②③⑤解析①存在可以得正视图为三角形的情况;②四棱锥,若底面是矩形,有一侧棱垂直于底面可以得正视图为三角形;③三棱柱,把侧面水平放置,正对着底面看,得正视图为三角形;④四棱柱,不论从哪个方向看都得不出三角形;⑤圆锥的底面水平放置,正视图是三角形;⑥圆柱从不同方向看是矩形或圆,不可能是三角形.3.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体答案 C解析当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.4.(2012·湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...是( )答案 C解析根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.5. 如图,已知三棱锥的底面是直角三角形,直角边边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是 ( )答案 B解析通过观察图形,三棱锥的正视图应为高为4,底面边长为3的直角三角形.题型一空间几何体的结构特征例1设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.思维启迪:利用有关几何体的概念判断所给命题的真假.答案①④解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的.探究提高解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( ) A.0 B.1 C.2 D.3答案 B解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②错,因这腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.题型二几何体的三视图例2 如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是 ( )思维启迪:对于三视图的有关问题,一定要抓住“投影”这个关键词,把握几何体的形状.答案 C解析 若该几何体的俯视图是选项A ,则该几何体的体积为1,不满足题意;若该几何体的俯视图是选项B ,则该几何体的体积为π4,不满足题意;若该几何体的俯视图是选项C ,则该几何体的体积为12,满足题意;若该几何体的俯视图是选项D ,则该几何体的体积为π4,不满足题意.故选C. 探究提高 对于几何体的三视图,要注意以下几点:①三视图的排放位置.正视图、侧视图分别放在左、右两边,俯视图放在正视图的下边.②注意实虚线的区别.③画三视图的规则:长对正,宽平齐,高相等.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )答案 C解析由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.题型三空间几何体的直观图例3已知△ABC 的直观图A ′B ′C ′是边长为a的正三角形,求原△ABC 的面积.思维启迪:按照直观图的画法,建立适当的坐标系将三角形A ′B ′C ′还原,并利用平面几何的知识求出相应的线段、角,求解时要注意线段和角的变化规律. 解 建立如图所示的坐标系xOy ′,△A ′B ′C ′的顶点C ′在y ′轴上,A ′B ′边在x 轴上,把y ′轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A 、B 点即为A ′、B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中,由正弦定理得OC ′sin∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a , 所以S △ABC =12×a ×6a =62a 2.探究提高 对于直观图,除了了解斜二测画法的规则外,还要了解原图形面积S 与其直观图面积S ′之间的关系S ′=24S ,并能进行相关问题的计算.正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________. 答案616a 2 解析 正三角形AOB 的面积为34a 2,其直观图的面积为原图形面积的24倍,故它的直观图的面积等于24·34a 2=616a 2.三视图识图不准确致误典例:(4分)一个空间几何体的三视图,如图所示,则这个空间几何体的表面积是________.易错分析 不能把三视图反映出的空间几何体的形状、大小准确的还原出来. 审题视角 由三视图还原成直观图或几何体,要注意几何体的不同放置;结合三视图的规则综合考虑,正确得到原几何体.解析 这是一个由轴截面割开的半个圆柱与一个球的组合体,其表面积是圆柱的上下两个底面半圆、圆柱的侧面积的一半、圆柱的轴截面和球的表面积之和,故这个表面积是2×12×π×12+12×2π×1×2+2×2+4π×⎝ ⎛⎭⎪⎫122=4π+4. 答案 4π+4温馨提醒 在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.方法与技巧1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.失误与防范1.台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.注意空间几何体的不同放置对三视图的影响.3.能够由空间几何体的三视图得到它的直观图;也能够由空间几何体的直观图得到它的三视图,提升空间想象能力.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是 ( ) A.0 B.1 C.2 D.3答案 A解析反例:①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.2.(2012·福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A.球B.三棱锥C.正方体D.圆柱答案 D解析考虑选项中几何体的三视图的形状、大小,分析可得.球、正方体的三视图形状都相同、大小均相等,首先排除选项A和C.对于如图所示三棱锥O-ABC,当OA、OB、OC两两垂直且OA=OB=OC时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何设置,其三视图的形状都不会完全相同,故答案选D.3.(2011·课标全国)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )答案 D解析由几何体的正视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形,故应选D.4.如图是一个物体的三视图,则此三视图所描述物体的直观图是( )答案 D解析由俯视图可知是B和D中的一个,由正视图和侧视图可知B错.二、填空题(每小题5分,共15分)5.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案6 2解析由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,所以原三角形的面积为62.6. 如图所示,E、F分别为正方体ABCD—A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面DCC1D1上的投影是________.(填序号)答案②解析四边形在面DCC1D1上的投影为②,B在面DCC1D1上的投影为C,F、E在面DCC1D1上的投影应在边CC1与DD1上,而不在四边形的内部,故①③④错误.7.图中的三个直角三角形是一个体积为20 cm3的几何体的三视图,则h=________cm.答案 4 解析 如图是三视图对应的直观图,这是一个三棱锥,其中SA ⊥平面ABC , BA ⊥AC . 由于V =13S △ABC ·h =13×12×5×6×h =5h ,∴5h =20,∴h =4. 三、解答题(共22分)8. (10分)一个几何体的三视图及其相关数据如图所示,求这个几何体的表面积.解 这个几何体是一个圆台被轴截面割出来的一半.根据图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故这个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3. 9. (12分)已知一个正三棱台的两底面边长分别为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,正三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333, 在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,所以棱台的高为4 3 cm.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2011·山东)右图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( ) A .3B .2C .1D .0答案 A解析 底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图可以是全等的矩形,因此①正确;若长方体的高和宽相等,则存在满足题意的两个相等的矩形,因此②正确;当圆柱侧放时(即侧视图为圆时),它的正视图和俯视图可以是全等的矩形,因此③正确.2. 一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为( )答案 C解析依题意可知该几何体的直观图如下图所示,故其俯视图应为C.3.在棱长为1的正方体ABCD—A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:①四边形BFD1E有可能为梯形;②四边形BFD1E有可能为菱形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④四边形BFD1E有可能垂直于平面BB1D1D;⑤四边形BFD1E面积的最小值为62.其中正确的是( ) A.①②③④ B.②③④⑤C.①③④⑤ D.①②④⑤答案 B解析四边形BFD1E为平行四边形,①显然不成立,当E、F分别为AA1、CC1的中点时,②④成立,四边形BFD1E在底面的投影恒为正方形ABCD.当E、F分别为AA1、CC1的中点时,四边形BFD1E的面积最小,最小值为62.二、填空题(每小题5分,共15分)4. 在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在xOy坐标系中,四边形ABCO为________,面积为________ cm2.答案 矩形 8解析 由斜二测画法的特点,知该平面图形的直观图的原图,即在xOy 坐标系中,四边形ABCO 是一个长为4 cm ,宽为2 cm 的矩形,所以四边形ABCO 的面积为8 cm 2.5. 用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是________.答案 32r 解析 由题意可知卷成的圆锥的母线长为r ,设卷成的圆锥的底面半径为r ′,则2πr ′=πr ,所以r ′=12r , 所以圆锥的高h =r 2-⎝ ⎛⎭⎪⎫12r 2=32r . 6. 如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的各个面上的投影可能是________(填出所有可能的序号).答案 ①②③解析 空间四边形D ′OEF 在正方体的面DCC ′D ′上的投影是①;在面BCC ′B ′上的投影是②;在面ABCD 上的投影是③,故填①②③.三、解答题7. (13分)已知正三棱锥V —ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解 (1)直观图如图所示:(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23, ∴S △VBC =12×23×23=6.。