水水容积式换热器
容积式换热器规格整理

单位 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台
Page 1 of 2
容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器
材料名称 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器 容积式换热器
型号/规格 IBS800 碳钢衬铜 10bar IBS1000 碳钢衬铜 10bar IBS1500 碳钢衬铜 10bar IBS2000 碳钢衬铜 10bar IBS3000 碳钢衬铜 10bar IBS4000 碳钢衬铜 10bar IBS5000 碳钢衬铜 10bar IBS6000 碳钢衬铜 10bar IBS8000 碳钢衬铜 10bar IBS10000 碳钢衬铜 10bar IBS800 碳钢衬铜 16bar IBS1000 碳钢衬铜 16bar IBS1500 碳钢衬铜 16bar IBS2000 碳钢衬铜 16bar IBS3000 碳钢衬铜 16bar IBS4000 碳钢衬铜 16bar IBS5000 碳钢衬铜 16bar IBS6000 碳钢衬铜 16bar IBS8000 碳钢衬铜 16bar IBS10000 碳钢衬铜 16bar IBS800 不锈钢304 10bar IBS1000 不锈钢304 10bar IBS1500 不锈钢304 10bar IBS2000 不锈钢304 10bar IBS3000 不锈钢304 10bar IBS4000 不锈钢304 10bar IBS5000 不锈钢304 10bar IBS6000 不锈钢304 10bar IBS8000 不锈钢304 10bar IBS10000 不锈钢304 10bar IBS800 不锈钢304 16bar IBS1000 不锈钢304 16bar IBS1500 不锈钢304 16bar IBS2000 不锈钢304 16bar IBS3000 不锈钢304 16bar IBS4000 不锈钢304 16bar IBS5000 不锈钢304 16bar IBS6000 不锈钢304 16bar IBS8000 不锈钢304 16bar IBS10000 不锈钢304 16bar IBS800 不锈钢316L 10bar IBS1000 不锈钢316L 10bar IBS1500 不锈钢316L 10bar IBS2000 不锈钢316L 10bar IBS3000 不锈钢316L 10bar IBS4000 不锈钢316L 10bar IBS5000 不锈钢316L 10bar IBS6000 不锈钢316L 10bar IBS8000 不锈钢316L 10bar IBS10000 不锈钢316L 10bar IBS800 不锈钢316L 16bar
毕业设计论文:容积式水加热器

安全工程课程设计说明书课题:容积式水加热器学院:质量与安全工程学院专业:安全工程班级:学号:姓名:时间: 年月目录前言1.选材与选型1.1选材分析 (4)1.2选型依据 (4)2.工艺计算2.1热量衡算 (5)2.2传热面积 (5)2.3筒体长度、管子长度及管子数 (6)2.4确定管子排列方式 (6)2.5筒体、封头壁厚 (6)2.6确定封头上接管及法兰尺寸 (6)2.7进出水孔的尺寸及法兰定位 (7)2.8管箱、封头壁厚 (7)2.9管箱筒节计算 (7)2.10隔板计算 (7)2.11管板计算 (8)3.补强计算3.1人孔补强计算 (10)3.2进出水口开孔补强计算 (11)3.3排污口开孔补强计算 (12)3.4封头上接管开孔补强计算 (13)3.5蒸汽进口开孔补强计算 (13)3.6冷凝水出口开孔补强计算 (14)4.焊接结构4.1筒体对接焊缝………………………………………………………………………………. 4.2接管与筒体连接焊缝……………………………………………………………………….4.3封头与筒体连接焊缝………………………………………………………………………4.4法兰与接管焊缝……………………………………………………………………………..5.容器制造与试验5.1制造过程中检验………………………………………………………………………5.2检验要求…………………………………………………………………………………..5.3压力试验………………………………………………………………………………….6.符号表…………………………………………………………………………………………7.参考书目………………………………………………………………………………………前言此次设计的任务为一容积式水加热器,主要利用蒸汽来对水进行加热。
改加热器主要原理即换热器的传热,此设计选择管壳式换热器,在工业上的应用有着悠久的历史,目前技术已经比较成熟,且已被作为一种传统标准的换热器设备而广泛使用。
容积式换热器原理

容积式换热器原理解析容积式换热器 (Volumetric Heat Exchanger)是一种常见的热交换器,其工作原理是利用两种流体之间的热传递来实现能量转移。
本文将详细解释容积式换热器的基本原理,并提供相关实例和应用。
1. 基本概念容积式换热器主要由两个流体流道组成,它们分别是热源流体 (Hot Fluid) 和冷却流体 (Cold Fluid)。
这两个流体通过换热器分别流入,经过热传递后分别流出,完成能量的交换。
容积式换热器通常由一组平行的管道或管束组成,这些管道或管束被固定在一个壳体内。
热源流体和冷却流体在管内和壳体外依次流动,通过壁面的传热来实现能量的转移。
2. 工作原理容积式换热器的工作原理基于两种流体之间的传热和热量传递。
热源流体和冷却流体在换热器中分别经过管道和壳体,实现热量的传递和平衡。
具体工作原理可分为以下几个步骤:2.1 热负荷传递首先,热源流体和冷却流体进入换热器,它们分别在管内和壳体外流动。
热源流体通过管道流入换热器的进口,经过管内的壁面传热,将热量传递给壳体外的冷却流体。
冷却流体通过壳体外的流道进入换热器,通过壁面吸收热量,实现热负荷的接收。
2.2 热量传导在换热器中,热量的传导主要通过壁面实现。
管道和壳体之间的壁面扮演着传热的媒介,通过导热的方式将热量从热源流体传递给冷却流体。
壁面通常由导热性能较好的金属或合金制成,如铜、铁、不锈钢等。
这些材料能够有效地传导热量,将其从一个流体传递到另一个流体中。
2.3 流体循环热源流体和冷却流体在换热器内的流动是由外部设备驱动的,通常通过泵或风扇来实现。
热源流体进入换热器后,被外部设备驱动流动,经过管内的壁面传热后,将热量传递给冷却流体。
热源流体在传热过程中逐渐降温,流出换热器。
冷却流体进入换热器后,通过外部设备驱动流动,沿着壳体外的流道经过壁面吸收热量。
冷却流体在传热过程中逐渐升温,流出换热器。
2.4 热平衡与效率容积式换热器的目标是实现热平衡,即使热源流体和冷却流体达到温度均衡,在两个流体之间传递的热量达到平衡状态。
容积式换热器操作规程

容积式换热器操作规程一、换热器的工作原理1、来自锅炉的一次饱和蒸汽通过主热交换器盘管将热量传给二次水,使二次水温度升高至55℃,二次水被加热后进入洗浴水储水箱,一次蒸汽冷凝后经冷凝水装置打到洗浴水储水箱。
2、换热器蒸汽入口处安装了电动调节阀,用以调节蒸汽流量,保证二次水出口温度达到整定工作温度。
3、二次水进口处安装有安全阀,确保设备在安全工况下运行,电动调节阀通过二次水出口温度发出的信号调节流量,达到自动控制的目的。
二、运行前检查1、检查蒸汽管路阀门开关灵活,电动调节阀已通电并设置完好。
2、检查确认疏水系统阀门开关灵活,冷凝水装置投用并完好。
3、检查二次水系统阀门开关灵活。
4、检查清理管道内杂物,防止堵塞。
三、启动1、启动时,先打开二次水进,出水阀,打开排气阀,向热交换器注满水。
2、打开蒸汽入口总阀节阀和冷凝水出口阀门。
四、运行1、随时按热水箱储水量调节二次水供水量,保证水箱储水量在中高水位。
2、运行换热器每四小时排污一次,排污时间4分钟以上。
3、换热汽运行时二次水出水温度最高不超过55℃,最低不低于45℃。
4、换热器必须在铭牌规定的参数以下运行,不得超压超温使用。
五、关机1、换热器关机时,先关闭蒸汽进口阀。
2、5分钟后,分别关闭二次水进口阀,二次水出口阀和冷凝水出口阀门。
六、维护保养1、定期检查换热器运行情况,当换热器发生泄漏时,应分析原因,如是阀门,法兰泄漏,应更换密封垫或阀门。
2、按规定定期检查校正仪器仪表。
3、停用或管路维修期间放净热交换器内部存水。
七、紧急情况处理1、突然停电时手动调节蒸汽进口阀门,保证换热器二次水出水温度在45℃-55℃之间。
2、二次供水停水时,如电动蒸汽阀失灵,关闭蒸汽总阀。
3、一次蒸汽停汽时,5分钟后关闭二次进水阀门。
容积式换热器内部结构

容积式换热器内部结构容积式换热器是一种常用于工业领域的热交换设备,主要用于在传递热量的过程中,将两种流体完全分离,以确保安全、高效的热能转移。
它由壳体、管束、端盖、密封、支撑与定位等组成。
首先,我们来看一下容积式换热器的壳体结构。
通常,换热器的壳体由一块大型的金属薄板制成,具有良好的强度和密封性能。
壳体内部呈现出一个封闭的空间,用于容纳热交换过程中的流体。
其次,管束是容积式换热器的核心部件。
管束是由许多平行布置的管子组成,这些管子分为两种类型:热媒管和冷却液管。
热媒管用于传递热能,通常由优质金属材料制成,以保证其良好的传热性能。
而冷却液管则用于传递冷却介质,通常由耐腐蚀的材料制成。
在管束中,热媒管和冷却液管之间是完全分离的,从而确保两种流体不会混合。
这种设计使得容积式换热器可以处理各种流体,包括腐蚀性和易燃易爆性的介质。
而容积式换热器的端盖则用于封闭壳体两端,确保流体不会泄漏。
端盖通常由厚重的金属板制成,具有高强度和良好的密封性能。
此外,为了确保换热器的稳定运行,密封是不可忽视的。
在容积式换热器中,常用的密封结构包括橡胶密封圈、填料密封和焊接密封等。
这些密封材料能够耐受高温和高压,有效阻止流体泄漏。
最后,换热器的支撑与定位结构非常重要。
通过合理的支撑设计,换热器能够平稳地安装在设备上,并承受外部压力和重力。
同时,定位结构确保换热器与其他设备的配合精确,防止在运行过程中发生错位或晃动。
综上所述,容积式换热器内部结构经过精心设计,包括壳体、管束、端盖、密封、支撑与定位等。
这些结构的合理配合能够确保换热器良好的热能转移效果,并确保设备的安全稳定运行。
在实际应用中,我们应该注重换热器的维护和保养,定期检查密封性能、支撑结构和管束等,以确保其正常运行,并提高能源利用效率。
容积式热交换器安装

容积式热交换器安装
安装流程图如图
须按图纸所示安装设热交换器,并预留足够的维修操作空间。
有关安装程序须遵照厂家提供的建议。
安装容积式换热器的基础必须满足以使换热器不发生下沉,或使管道把过大的变形传到传热器的接管上。
基础一般分为两种:一种为砖砌的鞍形基础,换热器上没有鞍式支座而直接放在鞍形基础上,换热器与基础不加固定,可以随着热膨胀的需要自由移动。
另一种为混凝土基础,换热器通过鞍式支座由地脚螺栓将其与基础牢固的连接起来。
在安装容积式换热器之前应严格的进行基础质量的检查和验收工作,主要项目如下:基础表面概况;基础标高,平面位置,形状和主要尺寸以及预留孔是否符合实际要求;地脚螺栓的位置是否正确,螺纹情况是否良好,螺帽和垫圈是否齐全;放置垫铁的基础表面是否平整等。
基础验收完毕后,在安装容积式换热器之前在基础上放垫铁,安放垫铁处的基础表面必须铲平,使两者能很好的接触。
垫铁厚度可以调整,使换热器能达到设计的水平高度。
垫铁放置后可增加换热器在基础上的稳定性,并将其重量通过垫铁均匀地传递到基础上去。
垫铁可分为平垫铁、斜垫铁和开口垫铁。
其中,斜垫铁必须成对使用。
地脚螺栓两侧均应有垫铁,垫铁的安装不应妨碍换热器的热膨胀。
容积式换热器适用于一般工业及民用建筑的热水供应系统,热媒为蒸气或高温软化热水,它有换热量大、热煤温降大、换热效果好、散热损失小、节能、冷水区小、容积利用率高、水头损失低,供水安全稳定,方便清垢,维修方便等优点。
容积式换热器使用说明

容积式换热器使用说明1.安装位置选择:容积式换热器应安装在通风良好、无腐蚀性气体和振动等干扰的场所。
通常应根据设计要求选用垂直或水平放置方式。
2.液体选择:根据工艺要求和流体性质选择适当的液体,如水、蒸汽、油、乳化液等。
在选择液体时,需考虑介质的物理性质、化学性质以及温度范围等因素。
3.容器选用:应根据工艺要求和换热效果选择适当的容器材料。
一般可选用不锈钢、碳钢、铝合金等耐腐蚀材料。
对于高温高压条件下的应用,还需选用耐高温高压的特殊材料。
4.安全措施:使用容积式换热器前,应保证设备的可靠性和安全性。
可以采取以下措施:控制流量,避免液体过热;设置报警装置,监测换热器的工作状态;定期检查设备,保持设备的正常运行;在操作过程中严禁接触高温部件以及避免操作员与换热器的不当接触。
5.维护保养:定期清洗换热器的内部和外部表面,以保持换热效果。
可采用化学清洗和机械清洗两种方式。
机械清洗一般包括高压水清洗、刮板清洗、刷洗等。
在使用过程中,还需注意抽真空脱水、保养润滑等维护工作,以延长设备的使用寿命。
6.控制操作:操作容积式换热器时,需要控制并维持液体的温度、流速和压力等参数。
一般通过调整进出口阀门的开度、流量计的读数以及监控仪表的指示来完成系统的控制和调节。
7.故障排除:当容积式换热器出现故障时,需要及时进行排查和处理。
常见故障包括温度异常、压力波动、泄漏等。
根据故障的不同情况,可以采取切断电源、清洗设备、更换部件等方法进行修复。
8.合理设计:在进行容积式换热器的设计时,要考虑到热量传递效果、防腐蚀性能、安全要求和维护保养方便等因素。
同时,要根据具体工艺要求和流体特性,选择合适的换热器型号和规格。
总之,容积式换热器作为一种常用的换热设备,在工业生产中发挥着重要作用。
按照以上使用说明,能够合理操作和维护容积式换热器,确保其正常运行和有效使用。
容积式换热器的传热系数

容积式换热器的传热系数容积式换热器是一种常见的换热设备,广泛应用于供热、制冷和工业生产等领域。
传热系数是容积式换热器的一项重要性能参数,它表示换热器在单位时间内通过单位传热面积传递的热量,用于评估换热器的传热性能。
容积式换热器的传热系数受到多种因素的影响,包括换热器材料、结构、操作条件和流体特性等。
根据不同的因素,传热系数可以在一定范围内变化。
一般来说,容积式换热器的传热系数在100-200 W/(m2·K)之间,具体数值取决于具体的换热器设计和操作条件。
其中,材料的选择对传热系数的影响较大。
不同材料的导热性能和热膨胀系数不同,这些因素都会影响传热系数。
例如,不锈钢和铜等高导热系数的材料通常具有较高的传热系数,而碳钢和铝合金等材料的传热系数较低。
此外,换热器的结构和操作条件也会影响传热系数。
一般来说,换热器的传热面积越大,传热系数越高。
同时,操作温度和流体流速也会影响传热系数。
在较高的操作温度下,材料的导热性能提高,传热系数也会相应增加。
流体流速越快,对流传热系数越高,但同时也会增加流体阻力和能量消耗。
为了提高容积式换热器的传热系数,可以采取一些措施。
首先,选择高导热系数的材料可以显著提高传热性能。
其次,优化换热器的结构和设计可以提高传热面积和流体湍流程度,从而提高传热系数。
此外,提高流体流速和操作温度也可以提高传热系数,但需要注意增加的流体阻力和能量消耗。
除了提高传热系数外,还需要考虑容积式换热器的其他性能参数,如换热效率、压力损失和成本等。
在设计和选择容积式换热器时,需要综合考虑这些因素,以达到最佳的性能和经济效益。
总之,容积式换热器的传热系数受到多种因素的影响,包括材料、结构、操作条件和流体特性等。
为了提高传热性能,可以采取选择高导热系数的材料、优化结构和设计、提高流体流速和操作温度等措施。
同时,需要综合考虑其他性能参数,以实现最佳的性能和经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水水容积式换热器
——换热设备推广中心
水水容积式换热器不仅拥有换热器的优点,同时弥补了换热器容积小的缺点,可以续存部分的热水,适用于符合波动较大或短时间需要大量用水的情况.
容积式换热器按照导热管的不同主要可以分为:螺纹管容积式换热器.涡流热膜容积式换热器和浮动盘管容积式换热器。
山东普利龙压力容器有限公司具有生产换热器的多年经验。
水水容积式换热器按照外形的不同主要有:立式水水容积式换热器和卧式水水容积式换热器。
水水容积式换热器按照导热管的不同又可以分为:浮动盘管容积式换热器和螺纹管容积式换热器。
一般都由导管.法兰.筒体和管板组成。
在换热器家族中,浮动盘管容积式换热器以其独有的换热元件,使其具有许多其它形式换热器所不具备的优点,因而备受用户青睐。
山东普利龙压力容器有限公司在十多年的生产制造过程中,认真总结自身经验,收集市场反馈信息,不断优化改进,使其结构益趋合理,性能更加优越。
根据我公司研发进程及市场需求,现已推出第六代产品。
浮动盘管容积式换热器的性能特点:
、传热系数高:汽水换热时,K,2100,32001
千卡,平方米小时。
度(2400,3720瓦,平方米
度);水水换热时,K,1210,2100千卡,平方米。
小时。
度(1410,2460瓦,平方米。
度)。
2、贮水量大,基本无死水区,容积利用率高,水头损失小,供水安全稳定。
3、不需预留抽管束空间,占地面积小。
4、由于换热盘管在壳体内可浮动和自由伸缩,促使热媒和被加热水扰动,提高了传热效率,使换热更充分,一级换热即可满足使用要求。
汽水换热时,凝结水温度可降到50?以下,充分节约能源。
5、可连续自动检测出水温度,并指令控制阀调节进入盘管内的热媒流量,实现精确温控。
即使在负荷波动情况下,出水温度可保持在设定值的?2?范围内(本功能非设备固有,须用户选购温控阀)。
6、具有自动除垢的功能,运转过程中无冲击噪声,便于维修管理,使用寿命长。
LWR螺纹管容积式换热器采用高效传热管—螺纹管作为换热元件,传热系数高,比光管换热器高1—3倍,流动阻力小,消耗动力少。
由于山东普利龙压力容器有限公司在换热器内部
结构上做了重大改进,使换热器的各项性能指标均
有显著提高。
螺纹管容积式换热器的主要性能特点:
1、换热速度快,耐高温(400?),耐高
压(2.5MPa)。
2、高效节能,汽水换热时,换热器传热系数为:2500—3500W,m2.?,水水换热时,换热器传热系数为:1500—2500W,m2.?。
3、贮水量大,基本无冷水区,容积利用率高,水头损失小,供水安全稳定。
4、设计灵活,规格齐全,实用针对性强,节约资金。
5、可连续自动检测出水温度,并指令控制阀调节进入盘管内的热媒流量,实现精确温控。
即使在负荷波动情况下,出水温度可保持在设定值的?2?范围内。
6、维护费用低,易操作,清垢周期长,清洗方便。
水水容积式换热器在日常生产生活当中应用越来越广泛。
其技术要求也越来越高,如有需要具有多年研发制造功能的山东普利龙压力容器有限公司将为你提供各种型号的参考。