(完整版)平行线的性质与判定经典题型汇总
(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的判定与性质的综合应用 专题练习

平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。
解:因为DE∥BC,所以∠ADE=∠XXX。
又因为DE∥BC,所以DB∥EF。
由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。
证明:因为∠1=∠2,所以XXX。
又因为∠A=∠3,所以AC∥BD。
由平行线性质可知,AC∥DE。
3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。
证明:因为∠XXX∠ADC,所以∠XXX∠ADC。
又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。
由∠1=∠3可得,∠2=∠ADC。
由平行线性质可知,AB∥DC。
二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。
证明:因为AB∥CD,所以∠A+∠D=180º。
又因为DE⊥AE,所以∠ADE=90º。
由∠A=37º可得,∠ADE=53º。
由三角形内角和定理可得,∠D=80º。
5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。
证明:因为AB∥CD,所以∠1+∠α+∠2=180º。
由∠1=100º,∠2=120º可得,∠α= -40º。
由于∠α是角度,所以∠α=320º。
6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。
证明:因为XXX,所以∠BAD=∠ACD。
又因为AE平分∠BAD,所以∠XXX∠DAF。
由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。
又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。
中考平行线的判定与性质真题汇总

、解答填空题(共 34小题)(除非特别说明,请填准确值) 1、 如图,已知 AB//CD AE 平分/ BADDF 平分/ ADC 那么 AE 与DF 的位置关系是A E3、 如图,四边形 ABCD 中, Z A=/C=90 , BE 平分/ ABC DF 平分/ ADC ■则BE 与DF 的何位置关系•试说明理由.如图,E 、F 分别在AB CD 上, Z 仁Z D, Z2 与ZC 互余,ECLAF. 那么AB 与CD 的位置关系是5、 如图,已知Z BED Z B+Z D,试判断 AB 与CD 的位置关系6、 已知:如图Z 1=Z 2,Z E=Z F ,试说明 AB 与CD的位置关系是3CC D7、如图,ABLBC / 1+/2=90°,/ 2=/3,_则8、如图AB//DE / A=/D,则AE与DC的位置关系是9、如图,/ 1=30°,/ B=60 , ABLAC AD与BC的位置关系是如图,直线AB CD与直线EF相交于E、F,已知:/ 1=105°,/ 2=75,那么BE与DF的位置关系为10、AB与CD的位置关系是如图,AB// DC / B=55,/ 2=40°,/ 3=85°(1)/ D=度;(2) / 仁度;(3)得到DA/CB 请说明理由.女口图,若/ CAB /CED /CDE 贝U ABCD.F已知△ ABC 中,/ B=70° , CD 平分/ ACB /2=/3,则/ 仁 度.(1)/ ADC=度;(2)说明 DF//AB16、如图所示,已知/ ADE /B,/仁/2, GFLAB 那么 CD 与 AB 的位置关系为13、 12、 14、15、 DF 为/ ADC 的平分线.17、 如图,/ 1=100°,/ 2=100°,/ 3=120° 那么/4= 度.18、 附加题:已知,如图,CDLAB G H AB / B=/ADE 那么/I£2.附加题(1 )若 x > y ,则 x+2y+2.(2)完成下列推理(在题中的横线上填空)•如图, 已知:直线l 3分别丨1, 12交于A ,点,/仁£2 求证:I 1//I 2证明:1=/2,£1=/3•••/ 2=/20、 已知如图所示,/ 1=/2,£ 3=/E,/ 4=/5,试判断 AD 与BC 的位置关系,并证明你的结论.21、已知,/ 1=Z2,Z 3=70°,则/4=22、已知:如图,/ C=/3,Z 2=80°,/ 1+Z3=140°,Z A=/D,则/B=度.C 尸D23、如图,CD是/ACB的平分线,/ EDC=25,/ DCE=25,/ B=70 度•则/BDC= 度.24、如图所示,A, D, E, F四点共线,/ 1=/2,/ 3=/4,/ A=/5,则BE与CF的位置关系为已知:如图所示,/ ABD 和/BDC 的平分线交于 E , BE 交CD 于点F ,Z 1+22=90°(1) AB 与CD 的位置关系为(2)22与23的数量关系为2 2+23=度.27、 如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线\ftb■ U 28、 如图,已知 CDLAD DALAB 2仁22._则 DF 与AE 平行吗?25、 26、ADLBC 于D,点E 、A C 在同一直线上,/ DAC h EFA 延长 EF 交 BC 于 G,_KU EG 与 BC 的位2\E如图,在△ ABC中,CDLAE,垂足为D,点E在BC上,EF X AE,垂足为F.(1) CD与EF的位置关系为(2)如果/ 仁Z2,且/3=65°,那么/ ACB=度.如图,△ ABC中,CDLAB于D,FGLAB于G交BC于F,E为AC上一点,且/ 1=22. _则DE与BC的位置关系为29、30、已知:如图,四边形ABCD中, ADLDC BCLAE AE平分/ BAD CF平分/ DCB AE交CD于E,CF交AB于F,AE与CF31、.为什么?BE与AC的位置关系是F/32、233、已知:如图所示,/ 1=Z C, / 2=/4, FGLBC 于G点,(1 )/2Z3,试判断并说明理由;(2)AD与BC是否互相垂直?试判断并说明理由.34、(完形填空)已知:如下图所示,/ 1=/2,求证:/ 3+24=180°.证明:丁2 5=2 2.()又2仁22.(已知)5=21 ()/•AB// CD()/•2 3+24=180°().。
平行线的判定性质题型

平行线的判定性质题型平行线的判定性质是几何学中的一个重要概念,它涉及到直线间的位置关系。
在平面几何中,如果两条直线在同一平面内且永远不相交,那么这两条直线就被称为平行线。
平行线的性质和判定方法对于解决几何问题至关重要。
以下是一些常见的平行线判定性质题型:1. 同位角相等:如果两条直线被第三条直线所截,且同一侧的内角相等,那么这两条直线平行。
2. 内错角相等:当两条直线被第三条直线所截,且一个直线上的内角与另一直线上的内角在截线两侧且相等,那么这两条直线平行。
3. 同旁内角互补:如果两条直线被第三条直线所截,且同一侧的两个内角之和等于180度,那么这两条直线平行。
4. 平行线等分线段:如果一条直线与另外两条平行线相交,那么它将这两条平行线间的线段等分为相等的两部分。
5. 平行四边形的性质:在一个平行四边形中,对边是平行的,并且对角线互相平分。
6. 三角形中位线定理:在一个三角形中,连接顶点和对边中点的线段(中位线)与第三边平行。
7. 梯形的中位线:在梯形中,连接两底中点的线段(中位线)平行于两底,并且长度是两底之差的一半。
8. 平行投影:在平行投影中,平行线在投影后的图像中仍然保持平行。
9. 平行线间的距离:在两条平行线之间的任何位置,它们之间的距离都是相等的。
10. 平行线与角度:如果两条平行线与第三条直线相交,那么所形成的同位角相等,内错角相等,同旁内角互补。
这些判定性质题型是解决几何问题的基础,通过掌握这些性质,可以更有效地解决涉及平行线的几何题目。
在实际应用中,这些性质可以帮助我们判断两条直线是否平行,以及利用平行线的性质来简化问题和求解。
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
七年级数学下册平行线的性质【十大题型】(举一反三)(人教版)

专题5.2 平行线的性质【十大题型】【人教版】【题型1 平行线的判定与性质的运用(计算与证明)】 (1)【题型2 平行线的判定与性质(书写过程)】 (5)【题型3 平行线与三角尺(直角顶点在平行线上)】 (9)【题型4 平行线与三角尺(直角顶点不在平行线上)】 (11)【题型5 平行线的判定与性质综合(角度之间的数量关系)】 (16)【题型6 平行线的判定与性质综合(求定值)】 (21)【题型7 平行线的判定与性质综合(规律问题)】 (31)【题型8 平行线的性质(折叠问题)】 (36)【题型9 平行线的应用(转角问题)】 (41)【题型10 平行线的判定与性质综合(旋转)】 (46)【知识点平行线的性质】【例1】(2022·西藏·林芝市广东实验中学七年级期中)如图,点D,E在AC上,点F,G分别在BC,AB上,且DG∥BC,∠1=∠2.(1)求证:DB∥EF;(2)若EF∠AC,∠1=50°,求∠ADG的度数.【答案】(1)见解析(2)∠ADG=40°【分析】(1)利用两直线平行,内错角相等,再根据同位角相等,两直线平行即可得证;(2)先求出∠C,再根据两直线平行,同位角相等,即可得解.(1)证明:∠DG∥BC,∠∠1=∠DBC.又∠∠1=∠2,∠∠2=∠DBC,∠DB∥EF.(2)∠EF∠AC,∠∠CEF=90°.∠∠2=∠1=50°,∠∠C=90°-50°=40°.∠DG∥BC,∠∠ADG=∠C=40°.【点睛】本题考查平行线的判定和性质.熟练掌握平行线的性质和判定是解题的关键.【变式1-1】(2022·湖北·五峰土家族自治县中小学教研培训中心七年级期末)已知:如图,AE⊥BC,FG⊥BC,∠CEA=∠FGB,∠D=∠ABC+50°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)证明见解析(2)∠C=30°【分析】(1)先证明AE∥GF,可得∠EAB=∠FGB,再证明∠CEA=∠EAB,从而可得答案;(2)由AB∥CD,可得∠D+∠CBD+∠ABC=180°,再把∠D=∠ABC+50°,∠CBD=70°代入进行计算即可.(1)证明:∵AE⊥BC,FG⊥BC,∠AE∥GF,∴∠EAB=∠FGB,∵∠CEA=∠FGB,∴∠CEA=∠EAB,∠AB∥CD;(2)解:由(1)得,AB∥CD,∴∠D+∠CBD+∠ABC=180°,∵∠D=∠ABC+50°,∠CBD=70°,∠∠ABC+70°+∠ABC+50°=180°∴∠ABC=30°,∴∠C=∠ABC=30°.【点睛】本题考查的是平行线的判定与性质,方程思想的应用,掌握“平行线的判定与性质”是解本题的关键.【变式1-2】(2022·重庆·巴川初级中学校七年级期中)如图,∠ABC中,∠BAC的角平分线交BC于D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,且∠BDA+∠CEG=180°.(1)求证:AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.【答案】(1)见详解(2)∠F=∠H,说明见详解【分析】(1)根据∠BDA+∠CEG=180°,∠DEF+∠CEG=180°,可得∠BDA=∠DEF,根据同位角相等,两直线平行可判定AD∥EF;(2)根据∠EDH=∠C,可得DH∥AC,继而得到∠H=∠EGC,由对顶角∠AGF=∠EGC,可得∠H=∠AGF,由(1)AD∥EF可得∠DAG=∠AGF,∠BAD=∠F,再因为AD是∠BAC的角平分线,有∠DAG=∠BAD,即可证明∠F=∠H.(1)证明:∠∠BDA+∠CEG=180°,∠DEF+∠CEG=180°,∠∠BDA=∠DEF,∠AD∥EF.(2)解:∠F=∠H,理由如下:∠∠EDH=∠C,∠DH∥AC,∠∠H=∠EGC,∠∠AGF=∠EGC,∠∠H=∠AGF,∠AD∥EF,∠∠DAG=∠AGF,∠BAD=∠F,又∠AD是∠BAC的角平分线,∠∠DAG=∠BAD,∠∠F=∠H.【点睛】本题考查了平行线的判定与性质,角平分线的定义,熟练掌握并应用平行线的判定与性质是解答本题的关键.【变式1-3】(2022·湖北·武汉市新洲区阳逻街第一初级中学三模)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.(1)求证:EF∥AD;(2)求证:∠BAC+∠AGD=180°.【答案】(1)见解析(2)见解析【分析】(1)根据垂直得出∠EFB=∠ADB=90°,根据平行线的判定得出EF∥AD;(2)根据平行线的性质得出∠1=∠BAD,由∠1=∠2得出∠2=∠BAD,根据平行线的判定得出DG∥BA,再根据平行线的性质即可得解.【详解】(1)证明:∠AD⊥BC,EF⊥BC,∠∠EFB=90°,∠ADB=90°(垂直的定义),∠∠EFB=∠ADB(等量代换),∠EF∥AD(同位角相等,两直线平行);(2)证明:∠EF∥AD,∠∠1=∠BAD(两直线平行,同位角相等),又∵∠1=∠2(已知),∠∠2=∠BAD(等量代换),∠DG∥BA(内错角相等,两直线平行),∠∠BAC+∠AGD=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.【题型2 平行线的判定与性质(书写过程)】【例2】(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图,∠1=∠2,∠A=∠D.求证:∠B=∠C.(请把下面证明过程补充完整)证明:∵1=∠2(已知)又∵∠1=∠3(____________)∴∠2=∠3(____________)∴AE∥FD(_____________)∴∠A=∠_____(______________)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∠_____∥CD(__________________)∴∠B=∠C(____________)【答案】对顶角相等;等量代换;内错角相等,两直线平行;BFD;两直线平行,内错角相等;AB;内错角相等,两直线平行;两直线平行,内错角相等.【分析】先利用对顶角的性质证明∠2=∠3,再证明AE∥FD,可证明∠A=∠BFD,可得∠D=∠BFD,再证明AB∥CD,从而可得答案.【详解】证明:∵1=∠2(已知)又∵∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴AE∥FD(内错角相等,两直线平行)∴∠A=∠BFD(两直线平行,内错角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∠AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等)【点睛】本题考查的是对顶角的性质,平行线的判定与性质,熟练的利用平行线的判定与性质进行证明是解本题的关键.【变式2-1】(2022·黑龙江·哈尔滨市萧红中学校七年级阶段练习)阅读并完成下面的证明过程:已知:如图,AB∥EF,∠1=∠2,BE、CE分别平分∠ABC和∠BCD,求证:BE⊥CE.证明:∠BE、CE分别平分∠ABC和∠BCD.∠ABC∠∠ABE=∠EBC=12∠2=________=1∠BCD(角平分线定义)2又∠∠1=∠2,∠∠1=∠ECD()∠EF∥CD()又∠AB∥EF(已知)∠________________()∠∠ABC+∠BCD=180°()(∠ABC+∠BCD)=90°,∠∠ABE+∠2=12又∠AB∥EF,∠∠ABE=∠BEF()∠∠BEF+∠1=90°,∠∠BEC=90°,∠BE⊥CE()【答案】∠ECD;等量代换;内错角相等,两直线平行;AB∥CD;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;两直线平行,内错角相等;垂直定义.【分析】根据平行线的性质、平行线的判定以及垂直的定义进行分析即可解答.【详解】证明:∠BE、CE分别平分∠ABC和∠BCD.∠ABC∠∠ABE=∠EBC=12∠BCD(角平分线定义)∠2=∠ECD=12又∠∠1=∠2,∠∠1=∠ECD(等量代换)∠EF∥CD(内错角相等,两直线平行)又∠AB∥EF(已知)∠AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)∠∠ABC+∠BCD=180°(两直线平行,同旁内角互补)(∠ABC+∠BCD)=90°,∠∠ABE+∠2=12又∠AB∥EF,∠∠ABE=∠BEF(两直线平行,内错角相等)∠∠BEF+∠1=90°,∠∠BEC=90°,∠BE⊥CE(垂直定义).故答案为:∠ECD;等量代换;内错角相等,两直线平行;AB∥CD;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识点,灵活运用平行线的判定与性质是解答本题的关键.【变式2-2】(2022·湖南·株洲景炎学校七年级期中)完成下面证明过程并写出推理根据:已知:如图所示,∠BAP与∠APD互补,∠1=∠2.求证:∠E=∠F.证明:∠∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,∠____________∥_____________(_____________________),∠∠BAP=∠APC(_____________________).又∠∠1=∠2,∠∠BAP-∠1=∠APC-∠2(等式的性质),即∠3=∠4,∠____________∥_____________(_____________________),∠∠E=∠F(_____________________).【答案】AB;CD;同旁内角互补,两直线平行;两直线平行,内错角相等;AE;FP;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质,结合图形完成填空即可求解.【详解】∠∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,∠AB∥CD(同旁内角互补,两直线平行),∠∠BAP=∠APC(两直线平行,内错角相等).又∠∠1=∠2,∠∠BAP-∠1=∠APC-∠2(等式的性质),即∠3=∠4,∠AE∥FP(内错角相等,两直线平行),∠∠E=∠F(两直线平行,内错角相等)故答案为:AB;CD;同旁内角互补,两直线平行;两直线平行,内错角相等;AE;FP;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质与判定进行证明,掌握平行线的性质与判定是解题的关键.【变式2-3】(2022·重庆·巴川初级中学校七年级期中)推理填空:完成下面的证明过程.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:.DE∠BC证明:∠∠1+∠2=180°()∠2=∠3(_______________________________)∠∠1+∠3=180°∠______∥______(_____________________________)∠∠B=______(________________________________)∠∠B=∠DEF(已知)∠∠DEF=_______ (_______________________)∠DE∠BC()【答案】已知;对顶角相等;AB;EF;同旁内角互补,两直线平行;∠EFC;两直线平行,同位角相等;∠EFC;等量代换;内错角相等,两直线平行【分析】由于∠1+∠2=180°,∠2=∠3,则∠1+∠3=180°,根据同旁内角互补,两直线平行得到AB∥EF,则利用平行线的性质得∠B=∠CFE,由于∠B=∠DEF,所以∠DEF=∠CFE,于是根据平行线的判定得到DE∥BC.【详解】证明:∠∠1+∠2=180°(已知)∠2=∠3(对顶角相等)∠∠1+∠3=180°∠AB∥EF(同旁内角互补,两直线平行)∠∠B=∠EFC(两直线平行,同位角相等)∠∠B=∠DEF(已知)∠∠DEF=∠EFC(等量代换)∠DE∥BC(内错角相等,两直线平行)【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.掌握平行线的判定与性质是解题的关键.【题型3 平行线与三角尺(直角顶点在平行线上)】【例3】(2022·辽宁·阜新实验中学七年级期末)如图,含有30°角的直角三角板的两个顶点E、F放在一个长方形的对边上,点E为直角顶点,∠EFG=30°,延长EG交CD于点P,如果∠3=65°,那么∠2的度数是()A.100°B.105°C.115°D.120°【答案】C【分析】根据直角三角形两锐角互余得到∠1=25°,根据平角的定义得到∠AEF=90°-∠1=65°,根据平行线的性质即可得到结论.【详解】解:∠∠D=90°,∠3=65°,∠∠1=25°,∠∠FEG=90°,∠∠AEF=90°-∠1=65°,∠AD∥BC,∠∠2=180°-∠AEF=115°,故选:C.【点睛】本题考查了直角三角形两锐角互余和平行线的性质,关键是得出∠AEF与∠2互补.【变式3-1】(2022·浙江·金华市第四中学九年级阶段练习)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠2;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4【答案】D【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【详解】解:∠纸条的两边平行,∠(1)∠1=∠2(两直线平行,同位角相等);(2)∠3=∠4(两直线平行,内错角相等);(4)∠4+∠5=180°(两直线平行,同旁内角互补)均正确;又∠直角三角板与纸条下线相交的角为90°,∠(3)∠2+∠4=90°,正确.故选:D.【点睛】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.【变式3-2】(2022·山东青岛·七年级期中)将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A,B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n ()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°【答案】D【分析】根据平行线的判定定理求解即可.【详解】解:由平行线的判定可知,当∠2=∠ABC+∠1时,m∥n,即∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式3-3】(2022·河南南阳·二模)小明把一副三角板按如图所示方式摆放,直角边CD与直角边AB相交于点F,斜边DE∥BC,∠B=30°,∠E=45°,则∠CFB的度数是()A.95°B.115°C.105°D.125°【例4】(2022·全国·八年级专题练习)如图,a∥b,一块含45°的直角三角板的一个顶点落在直线b上,若∠1=58°54′,则∠2的度数为()A.103°6′B.104°6′C.103°54′D.104°54′【答案】C【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∠直角三角板含一个45°的锐角,∠该三角板为等腰三角形,∠∠4=45°,∠∠1=58°54′,又∠在三角形中有∠1+∠4+∠5=180°,∠∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∠∠3+∠5=180°,∠∠3=180°-∠5=180°-76°6′=103°54′,∠a∥b,∠∠2=∠3,∠∠2=103°54′,故选:C.【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.【变式4-1】(2022·山西晋中·七年级期末)用一块含60°角的直角三角板和一把直尺按图中所示的方式放置,其中直尺的直角顶点与三角板的60°角顶点重合,直尺两边分别与三角板的两条直角边相交,若∠1=50°,则∠2的度数为()A.25°B.22.5°C.20°D.15°【答案】C【分析】如图,根据题意得到∠C=90°,AB∠DE,∠CDF=60°.先根据三角形内角和求出∠ABC=40°,再根据平行的性质求出∠CDE=40°,即可求出∠2=20°.【详解】解:如图,由题意得∠C=90°,AB∠DE,∠CDF=60°.∠∠C=90°,∠1=50°,∠∠ABC=180°-∠C-∠1=40°,∠AB∠DE,∠∠CDE=∠CBA=40°,∠∠CDF=60°∠∠2=∠CDF-∠CDE=20°.故选:C【点睛】本题考查了三角形的内角和定理,平行线的性质,熟知两个定理并理解题意得到已知条件是解题的关键.【变式4-2】(2022·福建·莆田市城厢区南门学校七年级阶段练习)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=75°;④∠AEG=∠PMN.其中正确的是_______.【答案】①②③④【分析】①由题意得∠G=∠MPN=∠MPG=90°,利用内错角相等,两直线平行即可判定GE∥MP;②由题意得∠EFG=30°,利用邻补角即可求出∠EFN的度数;③过点F作FH⊥AB,可得FH∥CD,从而得到∠HFN=∠MNP=45°,可求得∠EFN=105°,再利用平行线的性质即可求出∠BEF;④利用角的计算可求出∠AEG=45°,从而可判断.【详解】解:①∵∠G=∠MPN=∠MPG=90°,∴GE∥MP,故①正确;②∵∠EFG=30°,∴∠EFN=180°−30°=150°,故②正确;③过点F作EH∥AB,如图,∵AB∥CD,∴FH∥CD,∴∠HFN=∠MNP=45°,∴∠EFN=150°−45°=105°,∵FH∥AB,∴∠BEF=180°−105°=75°;故③正确;④∵∠GEF=60°,∠BEF=75°,∴∠AEG=180°−60°−75°=45°,∴∠AEG=∠PMN=45°,故④正确.故答案为:①②③④.【点睛】本题考查平行线的性质与判定,解题的关键是熟记平行线的判定条件与性质并灵活运用.【变式4-3】(2022·山东淄博·期末)如图所示,将一直角三角板放在AB,CD两条平行线之间:(1)图甲中,容易求得∠1+∠2=90°,请直接写出图乙中∠1,∠2的数量关系;(2)请问图丙中∠1,∠2的数量关系是什么?并加以说明;(3)请直接写出图丁中∠1,∠2的数量关系.【答案】(1)∠1+∠2=270°(2)∠2-∠1=90°;见解析(3)∠1=∠2+90°【分析】(1)过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD.根据两直线平行,同旁内角互补,即可得∠1,∠2的关系.(2)过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD.根据两直线平行,内错角相等,平角互补,即可得∠1,∠2的关系.(3)过点O作AB的平行线MN,得AB∥MN∥CD,据两直线平行,内错角相等,即可得∠1,∠2的关系.(1)如图,过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD∠∠1+∠3=180°,∠2+∠4=180°又∠∠3+∠4=90°∠∠1+∠3+∠2+∠4=180°+180°∠∠1+∠2=360°−90°=270°∠∠1+∠2=270°.(2)如图,过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD∠∠1=∠3,∠2+∠4=180°又∠∠3+∠4=90°∠∠1+180°−∠2=90°∠∠2−∠1=90°.(3)如图,过点O作AB的平行线MN,得AB∥MN∥CD∠∠MOC=∠2∠∠1=90°+∠MOC∠∠1=90°+∠2.【点睛】本题考查平行线的性质,解题的关键是掌握两直线平行,内错角相等,同旁内角互补;平角互补.【题型5 平行线的判定与性质综合(角度之间的数量关系)】【例5】(2022·黑龙江鹤岗·七年级期末)如图①,AB∥CD,M为平面内一点,若BM∠MC,则易证∠ABM与∠DCM互余.(1)如图②,AB∥CD.点M在射线EA上运动,猜想点M在点A和D之间时,∠BMC与∠ABM、∠DCM之间的数量关系,并证明.(2)在(1)的条件下,当点M在射线EA的其它位置上时(不与点E,A,D重合)请直接写出∠BMC与∠ABM、∠DCM之间的数量关系.又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠ABM+∠DCM=∠BMF+∠CMF=∠BMC;(2)解:当点M在E、A两点之间时,如图3,∠BMC=∠DCM-∠ABM;过M作MF∥AB,交EC于F,则∠ABM=∠BMF,又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠BMC=∠CMF-∠BMF=∠DCM-∠ABM;当点M在AD的延长线上时,如图4,∠BMC=∠ABM-∠DCM.过M作MF∥AB,交EC于F,则∠ABM=∠BMF,又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠BMC=∠BMF-∠CMF=∠ABM-∠DCM.【点睛】本题考查了平行线的判定和性质,关键是构建平行线,利用平行线的性质进行解答.解题时注意分类思想的运用.【变式5-1】(2022·辽宁·兴城市第二初级中学七年级阶段练习)已知,点A,点B分别在线段MN,PQ上,且∠ACB-∠MAC=∠CBP.(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI的两边分别与直线CH,AG交于点F和点E,如图2,试判断∠CFB、∠BEG之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=80°,求∠CFB 的度数.(直接写出答案)【答案】(1)见解析(2)∠CFB−∠BEG=90°,证明见解析(3)∠CFB=130°【分析】(1)过C作CE∥MN,根据平行线的判定和性质即可得到结论;(2)过B作BR∥AG,根据平行线的性质得到∠BEG=∠EBR,∠RBF+∠CFB=180°,等量代换即可得到结论;(3)过E作ES∥MN,根据平行线的性质得到∠NAE=∠AES,∠QBE=∠BES,根据角平分线的定义得到∠NAE=∠EAC,∠CBD=∠DBP,根据四边形的内角和即可得到结论.(1)解:如图,过C作CE∥MN,∠∠1=∠MAC,∠∠2=∠ACB-∠1,∠∠2=∠ACB-∠MAC,∠∠ACB-∠MAC=∠CBP,∠∠2=∠CBP,∠CE∥PQ,∠MN∥PQ;(2)如图,过B作BR∥AG,∠AG∥CH,∠BR∥HF,∠∠BEG=∠EBR,∠RBF+∠CFB=180°,∠∠EBF=90°,∠∠BEG=∠EBR=90°-∠RBF,∠∠BEG=90°-∠RBF=90°-(180°-∠CFB),∠∠CFB-∠BEG=90°;(3)如图,过E作ES∥MN,∠MN∥PQ,∠ES∥PQ,∠∠NAE=∠AES,∠QBE=∠BES,∠BD和AE分别平分∠CBP和∠CAN,∠∠NAE=∠EAC,∠CBD=∠DBP,∠∠CAE=∠AES,∠∠EBD=90°,∠∠EBQ+∠PBD=∠EBC+∠CBD=90°,∠∠QBE=∠EBC,∠∠EBC=∠BES,(360°−∠ACB),∠∠AEB=∠AES+∠BES=∠CAE+∠EBC=12∠∠ACB=80°,∠∠AEB=140°,∠∠BEG=40°,∠∠CFB-∠BEG=90°,∠∠CFB=130°.【点睛】本题考查了平行线的判定和性质,余角的性质,四边形的内角和,正确的作出辅助线是解题的关键.【变式5-2】(2022·湖北·宜昌市第九中学七年级期中)如图,∠1=∠2,∠D=∠CMG.(1)求证:AD∥NG;(2)若∠A+∠DHG=180°,试探索:∠ANB,∠NBG,∠1的数量关系;(3)在(2)的条件下,若∠ANB:∠BNG=2:1,∠1=100°,∠NBG=130°,求∠A的度数.【答案】(1)见解析(2)∠NBG+∠1−∠ANB=180°(3)∠A=105°【分析】(1)由∠1=∠2,∠1=∠GFC,得到∠2=∠CFG,于是得到CM∥DE,根据平行线的性质得到∠D=∠ACM,等量代换得到∠CMG=∠ACM,于是得到结论.(2)过B作BP∥AN交NG于P,由于AD∥NG,于是得到∠D=∠DHG,等量代换得到∠A+∠D=180°,得到AN∥DH,根据平行线的判定得到BP∥CM,由平行线的性质得到∠PBG+∠1=180°,等量代换即可得到结论;(3)由∠1+∠PBG=180°,∠1=100°,得到∠PBG=80°,由于∠NBG=130°,于是得到∠ANB=∠NBP=50°,根据已知条件得到∠ANB:∠BNG=2:1,即可得到结论.(1)证明:∠∠1=∠2,∠1=∠GFC,∠∠2=∠CFG,∠CM∥DE,∠∠D=∠ACM,∠∠D=∠CMG,∠∠CMG=∠ACM,∠AD∥NG;(2)解:∠NBG−∠ANB+∠1=180°;理由如下:过B作BP∥AN交NG于P,∠∠ANB=∠NBP,∠AD∥NG,∠∠D=∠DHG,∠∠A+∠DHG=180°,∠∠A+∠D=180°,∠AN∥DH,又∠CM∠DH,∠BP∥CM,∠∠PBG+∠1=180°,∠∠PBG=∠NBG−∠NBP=∠NBG−∠ANB,∠∠NBG−∠ANB+∠1=180°;(3)解:∠∠1+∠PBG=180°,∠1=100°,∠∠PBG=80°,∠∠NBG=130°,∠∠ANB=∠NBP=50°,∠∠ANB:∠BNG=2:1,∠∠BNP=25°,∠∠ANG=75°,∠∠A=105°.【点睛】本题考查了平行线的判定和性质,对顶角的性质,正确的作出辅助线是解题的关键.【变式5-3】(2022·湖北·潜江市高石碑镇第一初级中学七年级期中)如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF∠AE,求∠P的度数;(2)若点F 是直线AE 上一动点(点F 与点A 不重合),请写出∠P 与∠AFB 之间的数量关系并证明. 【答案】(1)45°(2)当F 点在A 点上方时,∠BPE =12∠AFB ,当F 点在A 点下方时,∠BPE =90°﹣12∠AFB【分析】(1)过点P 作PQ ∥AB ,过点F 作FH ∥AB ,由平行线的性质得∠ABP +∠CEP =∠BPE ,∠ABF +∠CEF =∠BFE ,再由垂直定义和角平分线定义求得结果;(2)分三种情况:点F 在EA 的延长线上时,点F 在线段AE 上时,点F 在AE 的延长线上时,分别进行探究便可.(1)解:过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∠AB ∥CD ,∠AB ∥CD ∥PQ ∥FH ,∠∠ABP =∠BPQ ,∠CEP =∠EPQ ,∠ABF =∠BFH ,∠CEF =∠EFH ,∠∠ABP +∠CEP =∠BPQ +∠EPQ =∠BPE ,∠ABF +∠CEF =∠BFH +∠EFH =∠BFE ,∠BF ∠AE ,∠∠ABF +∠CEF =∠BFE =90°,∠BP 平分∠ABF ,EP 平分∠AEC ,∠∠ABP +∠CEP =12(∠ABF +∠CEF )=45°, ∠∠BPE =45°;(2)①当点F 在EA 的延长线上时,∠BPE =12∠AFB ,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,过点P作PQ∥AB,过点F作FH∥AB,过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∠AB ∥CD ,∠AB ∥CD ∥PQ ∥FH ,∠∠ABP =∠BPQ ,∠CEP =∠EPQ ,180°﹣∠ABF =∠BFH ,∠AEC =∠EFH ,∠∠CEP +∠ABP =∠EPQ +∠BPQ =∠BPE ,∠BFH ﹣∠EFH =180°﹣∠ABF ﹣∠AEC =∠AFB , ∠BP 平分∠ABF ,EP 平分∠AEC ,∠∠CEP +∠ABP =12(∠AEC +∠ABF )=12(180°﹣∠AFB ), ∠∠BPE =90°﹣12∠AFB ;综上,当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB . 【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.【题型6 平行线的判定与性质综合(求定值)】【例6】(2022·湖南·株洲二中七年级期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m 射到平面镜a 上,被a 反射后的光线为n ,则入射光线m 、反射光线n 与平面镜a 所夹的锐角∠1=∠2.(1)如图2,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)请你猜想:当射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行时,两平面镜a 、b 间的夹角∠3的大小是否为定值?若是定值,请求出∠3,若不是定值,请说明理由.(3)如图3,两面镜子的夹角为α°(0<α<90),进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系,并说明理由.【答案】(1)100;90;(2)90°(3)2α+β=180°【分析】(1)根据平面镜反射光线的规律得∠1=∠4=50°,再利用平角的定义得∠5=80°,然后利用平行线的性质计算出∠2=100°,则∠6=40°,再利用三角形内角和定理计算∠3;(2)当∠3=90°时,根据三角形内角和定理得∠4+∠6=90°,则2∠4+2∠6=180°,利用平角的定义得到∠2+∠5=180°,然后根据平行线的判定得到m∥n;(3)由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,再根据∠2+∠3=180°-∠α,即可得出∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α.(1)解:如图:∠∠1=∠4=50°,∠∠5=180°-2×50°=80°,∠m∥n∠∠2+∠5=180°,∠∠2=100°,(180°-∠2)=40°,∠∠6=12∠∠3=180°-∠4-∠6=90°;故答案为:100,90;(2)当∠3=90°时,m∥n理由如下:∠∠3=90°,∠∠4+∠6=90°,∠2∠4+2∠6=180°,∠∠2+∠5=180°,∠m∥n;(3)解:如图3,由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,∠∠2+∠3=180°-∠α,∠∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α,∠α与β的数量关系为:2α+β=180°,故答案为:2α+β=180°.【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,解题时注意:同旁内角互补,两直线平行;两直线平行,同旁内角互补.【变式6-1】(2022·河北保定·七年级阶段练习)如图,直线AB∠CD,点M,N分别在直线AB,CD 上,H为直线CD下方一点.(1)如图1,MH和NH相交于点H,求证:∠MHN=∠AMH−∠CNH.(温馨提示:可过点H 作AB的平行线)(2)延长HN至点G,∠BMH的平分线ME和∠GND的平分线NE相交于点E,HM与CD相交于点F.①如图2,若∠BME=50°,∠END=30°,求∠MHN的度数;②如图2,当点F在点N左侧时,若∠BME的度数为x°,∠END的度数为y°,且x+y的值是一个定值,请问∠MHN的度数是否会随x的变化而发生改变?若不变,求出∠MHN的度数;若变化,请说明理由.③如图3,当点N在点F左侧时,②中其他条件不变,请问∠MHN的度数是否会随x的变化而发生改变?若不变,直接写出....∠MHN的度数;若变化,请说明理由.【答案】(1)见解析(2)①20°;②不变,180°−2(x°+y°);③不变,2(x°+y°)−180°【分析】(1)过点H作HQ∥AB.可得HQ∥CD,从而得到∠AMH=∠MHQ,∠CNH=∠NHQ,即可求证;(2)①根据∠BME=50°,∠END=30°,可得∠BMH=100°,∠GND=60°,从而得到∠AMH=180°−∠BMH=80°,∠CNH=60°.再由∠MHN=∠AMH−∠CNH,即可求解;②根据题意可得∠AMH=180°−2x°,∠CNH=2y°,再由∠MHN=∠AMH−∠CNH,即可求解;③过点H作OH∠AB,根据平行线的性质,可证得∠MHN=∠OHM−∠OHN=∠BMH−∠DNH.从而得到∠MHN=2x°+2y°−180°=2(x°+y°)−180°,即可求解.(1)证明:如图,过点H作HQ∥AB.∠HQ∥AB且AB∥CD,∠HQ∥CD,∠∠AMH=∠MHQ,∠CNH=∠NHQ,∠∠MHN=∠MHQ−∠NHQ=∠AMH−∠CNH;(2)解:①ME平分∠BMH,∠BME=50°,∠∠BMH=100°,∠NE平分∠DNG,∠DNE=30°,∠∠GND=60°,∠∠AMH=180°−∠BMH=80°,∠CNH=60°.由(1)可知:∠MHN=∠AMH−∠CNH=80°−60°=20°.∠∠MHN=20°;②∠ME平分∠BMH,∠BME=x°,∠∠BMH=2x°,∠NE平分∠DNG,∠DNE=y°,∠∠GND=2y°,∠∠AMH=180°−2x°,∠CNH=2y°,∠∠MHN=180°−2x°−2y°=180°−2(x°+y°).∠x+y为一个定值,∠∠MHN不会随x的变化而发生改变,度数为180°−2(x°+y°);③不变,∠MHN的度数为2(x°+y°)−180°.理由如下:如图,过点H作OH∥AB,∠∠BMH=∠OHM,∠AB∥CD,∠OH∥CD,∠∠DNH=∠OHN,∠∠MHN=∠OHM−∠OHN=∠BMH−∠DNH.∠ME平分∠BMH,∠BME=x°,∠∠BMH=2x°∠NE平分∠DNG,∠DNE=y°,∠∠GND=2y°,∠∠DNH=180°−2y°,∠∠MHN=2x°−(180°−2y°),∠∠MHN=2x°+2y°−180°=2(x°+y°)−180°.∠x+y为一个定值,∠∠MHN不会随x的变化而改变.【点睛】本题主要考查了平行线的性质和判定,有关角平分线的计算,熟练掌握平行线的性质和判定,利用类比思想解答是解题的关键.【变式6-2】(2022·福建龙岩·七年级期末)如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM∠BC于点B,AE平分∠BAD交BC于点E,连接DE,∠1+∠2=90°.(1)求证:AE∠ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【答案】(1)见解析(1)证明:如图1,过点E作EG∥BM,则∠1=∠3,∠BM∥CN,∠EG∥CN,∠∠4=∠2,∠∠3+∠4=∠1+∠2=90°,∠∠AED=90°,∠AE∠ED.(2)证明:∠ AE平分∠BAD,∠∠BAD=2∠1,∠BM∥CN,∠∠BAD+∠CDA=180°,∠2∠1+∠CDA,(3)∠F为定值.证明:如图2,过点F作FH∥BM,设∠AFH=α,∠DFH=β,∠BM∥CN,∠FH∥CN,∠∠α+∠β=∠6+∠7,∠∠EAM和∠EDN的平分线交于点F,∠∠α+∠β=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)=180°−45°=135°,∠∠F=∠α+∠β=135°,∠∠F为定值,∠F=135°,故答案为:∠F=135°.【点睛】本题主要考查垂线、角平分线的性质,解题的关键是掌握垂垂线的概念和角平分线与∠CFM互补(1)如图1,试判断直线AB与直线CD的位置关系,并说明理由.(2)如图2,∠BEF与∠EFD的平分线交于点P,EP的延长线与CD交于点G,H是MN上一点,且GH⊥EG,求证:PF∥GH.(3)如图3,在(2)的条件下,连接PH,K是GH上一点,使∠PHK=∠HPK,作PQ平分∠EPK,求证:∠HPQ的大小是定值.【答案】(1)平行;理由见解析(2)见解析(3)见解析【分析】(1)根据同旁内角互补,两条直线平行,即可判断直线AB与直线CD平行;(2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF=90°,进而证明PF∥GH;(3)根据角平分线定义,及角的和差计算即可求得∠HPQ的度数.(1)解:结论:AB∥CD;理由如下:∠∠MEB与∠CFM互补,∠MEB=∠AEF,∠∠AEF与∠CFM互补,∠AB∥CD.(2)∠EG平分∠BEF,∠∠PEF=1∠BEF,2又∠FP平分∠EFD,∠∠EFP=1∠EFD,2由(1)知AB∥CD,∠∠BEF+∠EFD=180°,∠∠PEF+∠EFP=90°,∠∠EPF=90°,【例7】(2022·辽宁·鞍山市第十四中学七年级阶段练习)如图,已知AB//CD,若按图中规律继续划分下去,则∠1+∠2+⋯+∠n等于()A.n•1800B.2n•1800C.(n−1)•1800D.(n−1)2•1800【答案】C【分析】根据第1个图形∠1+∠2=180°,第2个图形∠1+∠2+∠3=2×180°,第,3个图形∠1+∠2+∠3+∠4=3×180°…,进而得出答案.【详解】(1)∠AB∠CD,∠∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∠AB∠CD,∠AB∠EF,CD∠EF,∠∠1+∠AEF=180°,∠FEC+∠3=180°,∠∠1+∠2+∠3=360°;(3)过点E、F作EM、FN平行于AB,∠AB∠CD,∠AB∠EM∠FN∠CD,∠∠1+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠4=180°;∠∠1+∠2+3+∠4=540°;(4)中,根据上述规律,显然作(n-1)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n-1).故选:C.【点睛】此题主要考查了平行线的性质,正确得出图中变化规律是解题关键.【变式7-1】(2022·湖南·邵阳市第六中学八年级阶段练习)如图,已知直线AE,BF被直线AB所截,且AE//BF,AC1,BC1分别平分∠EAB,∠FBA;AC2,BC2分别平分∠BAC1和∠ABC1;AC3,BC3分别平分∠BAC2,∠ABC2…依次规律,得点C n,则∠C n的度数为()A.90−902n B.180−902n−1C.902n−1D.1802nAB∠CD.试求:(1)图(1)中∠A+∠C的度数,并说明理由.(2)图(2)中∠A+∠APC+∠C的度数,并说明理由.(3)图(3)中∠A+∠AEF+∠EFC+∠C的度数,并简要说明理由.(4)按上述规律,∠A+……+∠C(共有n个角相加)的和为【答案】(1)180°,理由见解析;(2)360°,理由见解析;(3)540°,理由见解析;(4)180°(n-1)【分析】(1)据两直线平行,同旁内角互补可得∠A+∠C=180°;(2)沿P作一条平行A B、CD的平行线PM,由两直线平行,同旁内角互补可得∠A+∠APM=180°,∠MPC+∠C=180°,故∠A+∠APC+∠C=360°;(3)根据第二题,同理可得∠A+∠AEF+∠EFC+∠C=540°;(4)由以上规律,有两个角时,和为180°;有三个角时和为360°;有四个角时和为540°…故可得有n个角时,和为180°(n-1).【详解】解:(1)∠AB∠CD,∠∠A+∠C=180°(两直线平行,同旁内角互补);(2)过点P作一条直线PM平行于AB,∠AB∠CD,∠AB∠PM,∠CD∠PM∠AB,∠∠A+∠APM=180°,∠MPC+∠C=180°,∠∠A+∠APC+∠C=360°;(3)分别过点E、F作EM、FN平行于AB,∠AB∠CD,∠AB∠EM∠FN∠CD,∠∠A+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠C=180°;∠∠A+∠AEF+∠EFC+∠C=540°;(4)由以上规律,有两个角时,和为180°;有三个角时和为360°;有四个角时和为540°…故可得有n个角时,和为180°(n-1).【点睛】本题主要考查两直线平行,同旁内角互补的性质,并考查学生通过计算总结规律的能力,是一道好题.【变式7-3】(2022·浙江·七年级阶段练习)阅读并探究下列问题.(1)如图①,将长方形纸片剪两刀,其中AB∥CD,则∠2与∠1、∠3有何关系?请进行证明.(2)如图②,将长方形纸片剪四刀,其中AB∥CD,则∠1、∠2、∠3、∠4、∠5的关系为.(3)如图③,将长方形纸片剪2016刀,其中AB∥CD,则共剪出个角.若将剪出的角(∠A、∠C除外)分别用∠E1、∠E2、∠E3…表示,则被剪出的这些角的关系为.(4)如图④,直线AB∥CD,∠EF A=∠HMN=x°,∠FGH=3x°,∠CNP=y°|2x+y−102|+√x+y−72=0由上述结论求∠GHM的度数.【答案】(1)∠1+∠3=∠2,证明见解析;(2)∠1+∠3+∠5=∠2+∠4;(3)2017,∠A+∠C+∠E2+∠E4+…+∠E2014=∠E1+∠E3+…+∠E2015.(4)48°.【分析】(1)过E点作EF∠AB,则EF∠CD,根据两直线平行,内错角相等得到∠AEF=∠1,∠CEF=∠3,即有∠2=∠1+∠3;(2)分别过E、G、F分别作EM∠AB,GN∠AB,FP∠AB,根据两直线平行,内错角相等,同(1)一样易得到∠2+∠4=∠1+∠3+∠5;(3)综合(1)(2)易得开口向左的角的度数的和等于开口向右的角的度数的和.(4)利用(3)的结论得到∠BFG+∠GHM+∠MND=∠FGH+∠HMN,易计算出∠GHM.。
平行线的性质与判定(典型例题)

E
B
C
例4.如图,∠A+∠C=1800,∠D=∠E,则AB与EF平行 吗?为什么?
A
B
C
E
D F
解:∵∠A+∠C=1800( 已知 ) ∴AB//CD(同旁内角互补, 两直线平行) 又∵∠D=∠E( 已知 ) ∴EF//CD( 内错角相等,两直线平行) ∴AB//EF( 两直线都与第三条直线平行, 那么这两条直线也平行)
C D F B 2 E 3 A G
1
D 4.如图,若m∥n,∠1 = 105°,则∠2 =( A.55° B.60° C.65° D.75°
)
1 2
m n
5.如图,直线AB、CD相交于点O,OE⊥AB,O为 垂足,如果∠EOD = 38°,则∠AOC = 52°,∠COB = 128 。 °
A O C
E D B
6.如图所示,下列推理正确的是(C ) A.∵∠1=∠4,∴BC∥AD B.∵∠2=∠3,∴AB∥CD C.∵AD∥BC,∴∠BCD+∠ADC=180° D.∵∠1+∠2+∠C=180°,∴BC∥AD B A 1 2 4 3 D
1 B C
例7.如图,若AB⊥BC,BC⊥CD,∠1=∠2 求证:BE//CF A
1 证明: ∵AB⊥BC,BC⊥CD( 已知) ∴∠ABC=∠BCD =900(垂直的定义 ) 2 ∵∠1=∠2( 已知 ) E C ∴∠ABC-∠1=∠BCD-∠2(等式的性质) 即∠EBC=∠BCF ∴ BE// CF (内错角相等,两直线平行) B F
例2、如图有一块梯形的玻璃,已知量得 ∠A=115°,∠D=100°,请你想一想, 梯形的另外两个角各是多少度。
解:∵AD∥BC (已知) ∴ A + B=180°
(完整)七年级上册平行线经典题型及答案解析(经典)

1、如图,∠1=∠2,∠3=110°,求∠4.2、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=37°,求∠D 的度数.3、如图,AB ,CD 是两根钉在木板上的平行木条,将一根橡皮筋固定在A ,C 两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A ,∠AEC ,∠C 之间具有怎样的关系并说明理由。
(提示:先画出示意图,再说明理由)提示:这是一道结论开放的探究性问题,由于E 点位置的不确定性,可引起对E 点不同位置的分类讨论。
本题可分为AB ,CD 之间或之外。
结论:①∠AEC =∠A +∠C ②∠AEC +∠A +∠C =360°③∠AEC =∠C -∠A④∠AEC =∠A -∠C ⑤∠AEC =∠A -∠C ⑥∠AEC =∠C -∠A .4、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A 、80B 、50C 、30D 、205、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A 、43°B 、47°C 、30°D 、60°6、如图,点A 、B 分别在直线CM 、DN 上,CM ∥DN .(1)如图1,连结AB ,则∠CAB +∠ABD = ;(2)如图2,点错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
.求证:错误!未找到引用源。
=360°;(3)如图3,点错误!未找到引用源。
、错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
.试求错误!未找到引用源。
的度数;(4)若按以上规律,猜想并直接写出错误!未找到引用源。
…错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,在△ABC中,∠B=ACB ,CD平分∠ACB 交AB于D点,AE∥DC,交BC的延长线于点E,已知∠E=36°,则∠B多少度.
2.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.
3.如图所示,已知直线AB,CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,
那么MQ∥NP.为什么?4.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,
若∠EFB=65°,则∠AED′等于
5.如图,∠1=∠2,∠C=∠D,那么∠A=∠F,为什么?
6.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.
A
B C E D
7.已知AB ∥CD ,分别探讨下列四个图形中∠APC 和∠PAB 、∠PCD 的关系.(只要求直接写出),并请你从所得关系中任意选出一个说明理由。
8.如图, 已知:∠1=∠2,∠3=∠4,∠5=∠6. 求证: AD ∥BC.
9.如图,已知CD ⊥AB 于D ,EF ⊥AB 于F , ∠DGC=105°,∠BCG=75°,求∠1+∠2的度数.
10.如图,AD ⊥BC 于点D ,EF ⊥BC 于点F ,EF 交AB 于点G ,交CA 的延长线于点E ,且∠1=∠2.AD 平分∠BAC 吗?说说你的理由.
11.如图,若AB ∥CD ,∠1=∠2,求∠E 和∠F ,的关系?
12.如图,DB ∥FG ∥EC ,∠ABD =60°,∠ACE =36°,AP 平分∠BAC .求∠PAG 的度数.
A B C D E F 2 3 1
4
5 6 B C A D E F G
2 1 1
2 A
B C D F G E 1 2 A B C
D E
F
13.如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.
14.已知:如图,AC∥DE,DC∥EF,CD平分
∠BCD.求证:EF平分∠BED.
15.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.16.如图,AB//CD,∠E=∠C,AD平分∠BAE,DA 平分∠CDF,求证:AE∥DF。
17.如图,已知AB∥DE∥CF,若∠ABC=70°,
∠CDE=130°,求∠BCD的度数.
18.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.。