数学建模(规划方法1)
数学建模算法大全线性规划

第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选适当的决策变量,是我们建立有效模型的关键之一。
1.2 线性规划的Matlab 标准形式线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。
数学建模0-1规划及LINGO程序模板

数模练习一某手机运营商准备在一个目前尚未覆盖的区域开展业务,计划投资5000万元来建设中继站。
该区域由15个社区组成,有7个位置可以建设中继站,每个中继站只能覆盖有限个社区。
图1.1.1是该区域的示意图,每个社区简化为一个多边形,每个可以建设中继站的位置已用黑点标出。
由于地理位置等各种条件的不同,每个位置建设中继站的费用也不同,且覆盖范围也不同。
表1.1.2中列出了每个位置建设中继站的费用以及能够覆盖的社区,表1.1.3列出了每个社区的人口数。
表1.1.2 每个位置建设中继站的费用及所能覆盖的社区位置 1 2 3 4 5 6 7 费用(百万元)9 6.5 20 14.51913 10.5 覆盖社区1,2,42,3,54,7,8,15,6,8,98,9,127,10,11,12,1512,13,14,15表1.1.3 每个社区的人口数量社区 1 2 3 4 5 6 7 8910 11 12 13 14 15人口(千人)2413694812 10 11614936问题一:在不超过5000万建设费用的情况下,在何处建设中继站,能够覆盖尽可能多的人口;问题二:考虑到中继站出现故障维修的时候可能会出现所覆盖的社区信号中断等问题,为此对通讯资费进行了调整,规定,仅有一个中继站信号覆盖的小区通讯资费按正常资费的70%收取,有两个或两个以上中继站信号覆盖的小区的通讯资费按正常收取,针对于5000万元的预算,应该如何建设中继站,才能够使得资费的收入达到最大。
问题分析: 问题一,图1.1.11234567891011121314151234567决策变量:为整数)(处建设中继站,位置处不建设中继站,位置i i i i X i ,7110≤≤⎩⎨⎧= 目标函数:},max{··},,max{·},max{·},max{},max{·.},max{··},max{},max{761571471376512611631054954867464253423212311X X y X y X y X X X y X y X X y X X y X X y X y X y X X y X y X y X X y X X y MAX +++++++⋅++++++⋅+⋅=约束条件:5071≤⋅∑=i i i f X用LINGO 软件编程求解,程序如下:sets :positi o n/1..7/:x,f; societ y /1..15/:r;endset s data :r=2 4 13 6 9 4 8 12 10 11 6 14 9 3 6; f=9 6.5 20 14.5 19 13 10.5; enddat amax =r(1)*@smax (x(1),x(3))+r(2)*@smax (x(1),x(2))+r(3)*x(2)+r(4)*x(3)+r(5)*@smax (x(2),x(4))+r(6)*x(4)+r(7)*x(6)+r(8)*@smax (x(4),x(5))+r(9)*@smax (x(4),x(5))+r (10)*@smax (x(3),x(6))+r(11)*x(6)+r(12)*@smax (x(5),x(6),x(7))+ r(13)*x(7)+r(14)*x(7)+r(15)*@smax (x(6),x(7)); @for (positi o n(i):@bin (x));@sum (positi o n(i):x(i)*f(i))<=50; !@max 和@smax 是不同的。
数学建模-数学规划

(4)图上作业与表上作业法
前一种是50年代由我国数学工作者提出的,后者是1950年 Dantzing提出的; 这二种方法主要是为解决运输问题(特殊的线性规划)而设计的。 据统计在用线性规划解决的实际问题中,70%以上属于运输问题类 型。
3. 线性规划问题的软件解法
求解线性规划的常用方法是1947年G.B.Dantzig提出的单 纯形法。
min f 5x1 5x2 8x3 2x4 6x5 3x6 s.t x1 x2 x3 x4 x5 x6 140
0.45x1 0.45x2 1.05x3 0.40x4 0.50x5 0.50x6 6 10x1 28x2 59x3 25x4 22x5 75x6 25 415x1 9065x2 2550x3 75x4 15x5 235x6 17500 8x1 3x2 53x3 27x4 5x5 8x6 245 0.30x1 0.35x2 0.60x3 0.15x4 0.25x5 0.80x6 5
n
max f (x1, x2,..., xn ) c j x j
n
j 1
s.t.gi (x1,..., xn ) aij x j bi ,i 1,..., m
j 1
x j 0, j 1,..., n
• 约束条件的意义是:每种原料生产n种产品所需要的资源总量不能超 过该种资源的库存量;每种产品的生产计划数不能为负。
约束条件: (1)铁的需求量至少6个单位数:
0.45x1 0.45x2 1.05x3 0.40x4 0.50x5 0.50x6 6
(2)磷的需求量至少25个单位数:
10x1 28x2 59x3 25x4 22x5 75x6 25
(3)维生素A的需求量至少17500个单位:
数学建模-数学规划模型

将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
数学建模之规划问题

一、线性规划1.简介1.1适用情况用现有资源来安排生产,以取得最大经济效益的问题。
如: (1)资源的合理利用(2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题(7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件(1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。
1.3线性规划模型的构成决策变量、目标函数、约束条件。
2、一般线性规划问题数学标准形式:目标函数:1max ==∑ njjj z cx约束条件:1,1,2,...,,..0,1,2,...,.=⎧==⎪⎨⎪≥=⎩∑nij j i j ja xb i m s t x j nmatlab 标准形式:3、可以转化为线性规划的问题例:求解下列数学规划问题解:作変量変换1||||,,1,2,3,4,22+-===i i i ii x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,⎡⎤==⎢⎥⎣⎦L L Tu y u u v v v ,则可把模型转化为线性规划模型其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2⎡⎤=---⎢⎥⎣⎦Tb 111111131 - - ⎡⎤⎢⎥= - -⎢⎥⎢⎥ -1 -1 3⎣⎦A 。
利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。
程序如下:略二、整数规划1.简介数学规划中的变量(部分或全部)限制为整数时称为整数规划。
目前流行求解整数规划的方法一般适用于整数线性规划。
1.1整数规划特点1)原线性规划有最优解,当自变量限制为整数后,出现的情况有①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
③有可行解(存在最优解),但最优解值变差。
数学建模线性规划论文1

数学建模线性规划论文1线性规划(Linear Programming, LP)是一种用于寻求最优解的数学模型,其可以广泛应用于决策支持系统、资源配置、生产计划、货运调度、供应链管理等领域。
本文通过研究一家食品加工企业的原料采购问题,探讨了如何利用线性规划模型优化资源配置,提高企业利润的方法。
在本研究中,通过构建数学模型,确定相关变量以及约束条件,最终得出最优决策方案。
第一章:绪论此章节给出研究的背景和意义,介绍线性规划思想以及研究思路和方法。
第二章:相关理论知识此章节主要介绍最优化理论和线性规划的数学方法,阐述如何基于线性规划模型进行决策分析。
第三章:研究问题的分析此章节详细分析了一家食品加工企业的原料采购问题,包括业务背景、必要假设、变量定义和约束条件,为后续模型构建和求解提供了理论基础。
第四章:模型的构建和求解此章节针对第三章中得出的问题模型,进行数学建模,确定决策变量和目标函数,建立优化线性规划模型。
同时,结合Gauss-Jordan消元法和单纯形法对模型进行求解,计算出模型最优解。
第五章:模型的检验和应用此章节通过对模型的检验、灵敏度分析和场景模拟,检验和验证模型的有效性,并通过实际案例进行应用。
第六章:结论与展望此章节总结本文的研究成果,得出结论和展望未来的研究方向。
总结:本文针对食品加工企业原料采购问题,以线性规划为理论基础,建立了相应的模型,利用线性规划的求解方法,求得了最优的采购方案。
同时,对模型进行灵敏度分析和场景模拟,检验和验证了模型的有效性。
该研究在实际生产中具有重要的应用价值,为企业优化资源配置提供了有力支持。
未来的研究可以进一步拓展线性规划模型的应用范围,并优化模型算法和求解方法,提高模型的精度和效率。
数学建模课程规划方案模板

一、课程概述1. 课程名称:数学建模2. 课程性质:专业选修课,面向理工科学生开设3. 课程目标:培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。
4. 课程内容:数学建模的基本理论、方法与应用,包括线性规划、非线性规划、整数规划、图论网络优化、概率与智能优化算法等。
5. 学时安排:32学时,其中理论课24学时,实践课8学时。
二、课程教学计划1. 第一阶段(1-4周):基础知识与理论(1)数学建模基本概念、方法与应用(2)线性规划的基本理论、模型与求解方法(3)非线性规划的基本理论、模型与求解方法(4)整数规划的基本理论、模型与求解方法2. 第二阶段(5-8周):图论网络优化与概率优化(1)图论基本概念与网络优化模型(2)概率优化基本理论、模型与求解方法(3)智能优化算法的基本原理与应用3. 第三阶段(9-12周):实践与案例分析(1)学生分组,完成实际数学建模项目(2)指导教师点评与指导(3)优秀项目展示与交流4. 第四阶段(13-16周):课程总结与考试(1)课程总结,回顾所学内容(2)布置课后作业,巩固所学知识(3)进行课程考试,检验学习成果三、教学方法与手段1. 讲授法:系统讲解数学建模的基本理论、方法与应用。
2. 案例分析法:通过实际案例,让学生了解数学建模在实际问题中的应用。
3. 实践法:引导学生分组完成实际数学建模项目,提高学生的实际操作能力。
4. 讨论法:鼓励学生积极参与课堂讨论,培养学生的创新思维和团队协作能力。
5. 多媒体教学:利用PPT、视频等多媒体手段,丰富教学内容,提高教学效果。
四、考核方式1. 平时成绩(30%):包括课堂表现、作业完成情况等。
2. 实践成绩(40%):包括实际数学建模项目完成情况、指导教师点评等。
3. 期末考试(30%):书面考试,检验学生对课程知识的掌握程度。
五、教学资源1. 教材:《数学建模与数学实验》、《数学模型》等。
2. 在线资源:中国大学MOOC、网易云课堂等在线课程。
数学建模方法

数学建模方法引言数学建模是一种应用数学工具解决实际问题的方法。
它通过建立数学模型来描述和分析现实世界中的各种现象,从而为决策提供科学依据。
本文将介绍几种常见的数学建模方法,帮助初学者了解如何运用数学知识解决实际问题。
确定问题与收集数据在进行数学建模之前,首先需要明确要解决的问题,并收集相关的数据。
这一步骤是建模过程中至关重要的一环,因为数据的质量和完整性直接影响到模型的准确性和可靠性。
问题定义清晰地界定问题的范围和目标是成功建模的第一步。
这包括理解问题的背景、目的以及期望通过建模达到的效果。
数据收集根据问题的需求,收集必要的数据。
这些数据可能来自于实验测量、历史记录、统计报告等。
在收集数据时,要注意数据的有效性和代表性。
建立模型建立数学模型是将现实问题转化为数学问题的过程。
根据问题的性质,可以选择不同的建模方法。
确定变量和参数在模型中,需要区分哪些是变量,哪些是参数。
变量通常是我们想要预测或解释的量,而参数则是模型中的固定值,用于描述系统的特性。
选择数学工具根据问题的特点选择合适的数学工具。
例如,对于连续变化的问题可以使用微分方程;对于优化问题可以使用线性规划或非线性规划等。
求解模型模型建立后,下一步是通过数学方法求解模型,得到问题的解答。
解析解法如果模型简单,可以尝试找到解析解,即用公式直接表示的解。
数值解法对于复杂的模型,通常需要使用数值方法求解,如有限差分法、有限元法等。
模型验证与改进求解完成后,需要对模型进行验证,确保其准确性和适用性。
模型验证通过与实际数据对比,检验模型的预测能力。
如果模型的预测结果与实际数据吻合良好,说明模型是有效的。
模型改进如果模型的预测结果与实际数据有较大偏差,需要对模型进行调整和改进,以提高其准确性。
结论数学建模是一个迭代的过程,涉及到问题定义、数据收集、模型建立、求解以及验证和改进等多个步骤。
通过不断优化模型,我们可以更好地理解和解决实际问题。
希望本文能为初学者提供一个数学建模的基本框架和方法指导。