北师大版初中数学八年级上册课第四章教案

合集下载

数学八年级上册《函数》教案

数学八年级上册《函数》教案

基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。

学的活动1观看洋葱数学有关函数的数学史。

活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。

举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。

北师大版八年级数学上册第四章一次函数4

北师大版八年级数学上册第四章一次函数4
2.从教材课后习题中选取以下题目进行巩固练习:
(1)第4题:已知一次函数的图像经过点(2,3)和(4,7),求该一次函数的表达式。
(2)第6题:一次函数的图像与坐标轴交于点A(-3,0)和点B(0,2),求该一次函数的表达式。
(3)第8题:已知一次函数的图像与坐标轴交于点(-2,0)和点(0,4),求该一次函数图像上y值大于0时的x取值范围。
3.运用数形结合的方法,培养学生通过图像分析问题、解决问题的能力,提高学生的几何直观和逻辑思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性,使其认识到数学在生活中的重要性。
2.培养学生勇于探索、积极思考的良好学习习惯,使其在面对问题时具有独立思考和解决问题的能力。
二、学情分析
八年级学生在前两年的数学学习中,已经掌握了基本的代数知识和几何知识,具备了一定的数学思维能力和解决问题的能力。在此基础上,学生对一次函数的概念和性质已有初步了解,但对于将一次函数应用于实际问题的解决,仍需进一步引导和培养。此外,学生在小组合作、交流讨论等方面的能力有待提高,需要教师在教学过程中给予关注和指导。因此,本章节教学应结合学生的实际情况,注重启发式教学,引导学生主动探究,提高其数学应用能力和团队合作意识。同时,针对学生在数学学习中可能存在的恐惧心理,教师应关注学生的情感态度,鼓励学生积极参与,培养其自信心和自主学习能力。
1.请同学们运用一次函数的知识,解决以下实际问题:
(1)某商品的原价为x元,商场进行打折促销,打八折后的价格为y元。请列出y关于x的一次函数表达式。
(2)小明计划坐出租车去机场,出租车的起步价为10元,行驶3公里后,每公里收费2元。如果小明要行驶12公里,他需要支付多少车费?

北师大初中八年级数学上册《第四章一次函数》教案

北师大初中八年级数学上册《第四章一次函数》教案

第四章一次函数第一课时函数教学目标:1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

教学重点:掌握、并理解函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

教学过程:一、创设问题情境,导入新课『师』:同学们,你们看下图上面那个像车轮状的物体是什么?当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?分析有道理。

摩天轮上一点的高度h与旋转时间t之间有一定的关系。

请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

大家从图上可以看出,每过6分钟摩天轮就转一圈。

高度h完整地变化一次。

而且从图中大致可以判断给定的时间所对应的高度h。

下面根据图5-1进行填表:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。

下面我们就去研究一些有关变量的问题。

二、新课学习 做一做(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的? 填写下表:『师』:在这个问题中的变量有几个?分别师什么? 『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S 米,一般地有经验公式3002V S ,其中V 表示刹车前汽车的速度(单位:千米/时)①计算当fenbie 为50,60,100时,相应的滑行距离S 是多少?②给定一个V值,你能求出相应的S值吗?议一议在上面我们研究了三个问题。

下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

北师大版八年级数学上册第4章教案(教学设计)

北师大版八年级数学上册第4章教案(教学设计)

第四章一次函数教案第四章一次函数1. 函数一、学生起点分析在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。

二、教学任务分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。

教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。

与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。

本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。

同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。

一次本节课教学目标定位为:1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。

4.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;5.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神对学生来讲本节课的难点在于对函数概念的理解;四、教学过程设计本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业第一环节:创设情境、导入新课内容:展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。

北师大初中数学八上《第四章一次函数》教案

北师大初中数学八上《第四章一次函数》教案

一次函数教学目标:知识与技能了解一次函数的概念,掌握一次函数的图象和性质,能正确画出一次函数的图象,并能根据图象探索函数的性质.过程与方法经历函数、一次函数等概念的抽象过程,体会函数的模型思想,进一步发展符号意识情感、态度与价值观在画一次函数的图象、探索一次函数图象的变化情况,体会数形结合的思想方法与一次函数y=kx+b 中k与b的实际意义。

教学重点:,掌握一次函数的图象和性质教学难点:能正确画出一次函数的图象,并能根据图象探索函数的性质教学方法:归纳总结,数形结合教学过程:一、回顾与小结1、变量:数值发生变化的量.常量:数值始终不变的量.2、函数定义:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.3、函数的图象:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

4、描点法画图象的步骤:列表、描点、连线。

5、函数的三种表示方法:1)解析法,2)列表法,3)图象法.6、自变量的取值范围(1)分母不为0,(2)开偶次方的被开方数大于等于0,(3)使实际问题有意义。

7、练一练1、求下列函数中自变量x的取值范围(1)y= x(x+3);(2)y=1 2 x二、一次函数的概念1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

当b_____时,函数y=____(k____)叫做正比例函数。

★注意点:(1)、解析式中自变量x的次数是___次,⑵、比例系数_____。

2、、正比例函数y=kx(k≠0)的图象是过点(_____)的_________。

3、一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的__________。

3、.下列函数关系式中,那些是一次函数?哪些是正比例函数?(1)y= - x - 4 (2)y=x2(3)y=2πx (4)y=1/x(5)y=x/2 (6) y=5x-3一次函数有:正比例函数是:4、画函数图象的步骤1.列表 2.描点 3.连线例:画出y=3x+3的图象解:列表得:X 0 -1 Y3描点,连线如图 5.一次函数的性质 函数解析式 自变量的取值范围 图 像性质正比例函数y=kx (k ≠0)全体 实数k >0 k <0当k >0时,y 随x 的增大而增大;当k <0时, y 随x 的增大而减少.一次函数y=kx+b (k ≠0) 全体 实数k >0 k <0b >0b =0b <0b >0b =0b <0一次函数y=kx+b 的图象是一条直线,其中k 决定直线增减性,b 决定直线与y 轴的交点位置. k 和b 决定了直线所在的象限.正比例函数是特殊的一次函数。

数学第四章菱形教案(北师大版八年级上)

数学第四章菱形教案(北师大版八年级上)

第四章四边形性质探索3.菱形一、学生起点分析学生在学习菱形之前,已具有简单图形旋转的知识和平行四边形的知识,学生完全能借助等腰三角形的旋转直观的理解菱形及菱形的判定和性质。

二、教学任务分析教科书基于学生上述认识的根底上,提出了本课的具体学习任务:知识目标1.理解菱形的定义。

2. 经历探索菱形的性质和判别条件的过程,进一步了解和体会说理的根本方法.1.在操作活动过程中,加深师生的情感.培养学生的观察能力,并提高学生的学习兴趣.2.在学习过程中,体会数学美。

三、教学过程设计本节课分成五个环节:第一环节:创设情境,引入菱形的概念;第二环节:讲授新课,包括菱形的性质和判定;第三环节:通过练习,应用和稳固知识;第四环节:小结;第五环节:布置作业。

第一环节设情境问题,引入课题观察一组图片:越王勾践剑、一个衣帽架以及其他学生熟悉的实物图片。

这些图片中有你熟悉的图形吗〔邻边相等的平行四边形.顺势给出菱形的定义,进而主题〕我们把这样的平行四边形叫做菱形.这节课我们就来探讨一下菱形.第二环节新课主要环节〔1〕根据图片中所反映出的图形的特点,请学生尝试给菱形下定义。

〔一组邻边相等的平行四边形叫做菱形.〕〔3〕从对称的角度对菱形进行再认识〔包含菱形的画法和判定〕。

目的:1.培养学生的观察能力。

让学生观察图形,从直观上把握图形的性质和特点,从而给出菱形的定义。

2.因为菱形是特殊的平行四边形,所以在平行四边形性质的根底上,通过问题,具体的讨论菱形所具有的特殊性质。

3.对于〔2〕、〔3〕大体过程如下:画一个菱形,然后答复以下问题如图,在菱形ABCD中,AB=AD,对角线AC,BD相交于点O(1)图中有哪些线段是相等的哪些角是相等的(2)图中有哪些等腰三角形、直角三角形(3)两条对角线AC,BD有什么特定的位置关系〔同学们讨论分析答复〕因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质:1.菱形的四条边都相等.2.菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。

本节课为第2课时。

其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。

使学生体会到数学学习过程中“数形结合”思想的重要性。

在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。

(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。

(2)初步体会方程与函数的关系,体会数形结合思想。

情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。

(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

难点:体会函数与方程的关系,发展“数形结合”的思想”。

三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。

在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。

但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。

四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。

北师大版八年级数学上册第四章《一次函数》教案

北师大版八年级数学上册第四章《一次函数》教案

第四章一次函数1 函数1.认识变量、常量,并学会用含一个变量的代数式表示另一个变量.逐步感知变量之间的关系.2.了解函数的三种表达方式.3.经历观察、分析、思考等数学活动,发展合情推理,有条理、清晰地阐述自己的观点.4.让学生积极参与数学活动,对数学产生好奇心和求知欲,形成实事求是的态度以及独立思考的习惯.【教学重点】认识变量、常量,用式子表示变量间的关系.【教学难点】用含有一个变量的式子表示另一个变量.一、创设情境,导入新课教材第75页内容.【教学说明】用学习身边熟悉的娱乐活动引入,提出问题引发思考,激发了学生强烈的求知欲望.二、思考探究,获取新知函数的概念.做一做并思考:教材第76页“做一做”.【教学说明】学生通过观察、思考、探究的形式,体会当一个变量变化,另一个量也随之发生变化的过程,为下面理解函数的概念做了充分准备.【归纳结论】在上面的案例中,都有两个变量,给定其中某一个变量的值,相应地就确定了另一个变量的值.一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.函数的表示方法一般有:列表法、关系式法和图象法.讨论:上述问题中,自变量能取哪些值?【教学说明】不同的学生可能答案不一样.但是这是一个实际问题,自变量要符合本题的实际意义,不能认为是任意实数.【归纳结论】对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值.三、运用新知,深化理解1.现将500本笔记本捐助给贫困学生,每人5本,写出余下的笔记本数y(本)和学生数x(名)之间的关系式为,自变量x的取值范围是.2.某型号的汽车在路面上的制动距离s=v2/256,其中变量是()A.s,vB.s,v2C.sD.v3.写出下列问题中满足的关系式,并指出各个关系式中哪些是常量,哪些是变量?(1)用总长为6m的篱笆围成长方形场地,求长方形的面积S与另一边长x 之间的关系式;(2)用总长为l的篱笆围成长方形场地,长方形的面积为60m2,求l与x之间的关系式.【教学说明】让学生独立做,加强对函数及有关概念的理解,教师通过学生反馈的信息了解他们掌握知识的情况,及时处理学生中的疑难问题并加强训练.【答案】1.y=500-5x,0≤x≤100且x为整数;2.A3.(1)S=x(3-x)=3x-x2,其中3是常量,x、S是变量;(2)l=2(60/x+x),其中60、2是常量,l、x是变量.四、师生互动,课堂小结1.师生共同回顾函数、变量、常量、函数值等概念.2.通过本节课的学习,谈谈你有什么收获?还有哪些不足?请与同学交流.【教学说明】教师引导学生回顾本课有关知识点,学生大胆发言,对知识进行归纳整理,有助于消化理解.1.布置作业:习题4.1第1、2题.2.完成练习册中本课时相应练习.函数是学生接触的最新鲜的事物,不容易理解.在教学的过程中,要通过案例不断让学生去体会函数的意义,便于今后的实际运用.2 一次函数与正比例函数1.掌握一次函数与正比例函数的一般形式并学会判断.2.知道一次函数与正比例函数之间的关系,能利用一次函数和正比例函数解决实际问题.3.通过实例让学生经历思考,分析问题中量与量之间的关系,提高学生的归纳概括能力和辨别能力.4.利用学生独立思考、合作探究的学习形式培养学生科学的思维方法和良好的学习习惯.【教学重点】一次函数与正比例函数的概念【教学难点】利用一次函数与正比例函数的关系式解决实际问题.一、创设情境,导入新课教材第79页“做一做”上方的内容.【教学说明】从跟物理学有关的问题入手,体现了各学科之间是相互联系相互渗透的.同时也让学生认识到数学与现实生活是密不可分的,人们的需要产生了数学,调动他们学习数学的积极性.二、思考探索,获取新知1.一次函数和正比例函数的概念.做一做并思考:教材第79页“做一做”.【教学说明】由这些简单的实例让学生分析问题中各个量之间的关系,从现实生活中抽象出数学模型,找到建立数学关系的方法,也为导出一次函数与正比例函数的概念做好铺垫.你能利用我们刚学的知识解决下面的问题吗?请看:教材第79~80页例1【教学说明】通过对具体实例的分析,既消化了学生对一次函数和正比例函数的理解,又能为今后运用他们解决稍复杂的实际问题打下基础,同时也加强了它们之间的联系和区别.2.一次函数的实际应用.教材第80页例2.【教学说明】教师可以引导学生完成,让学生学习已知自变量的值求对应的函数值和已知函数值求自变量的值的方法.体现了一次函数与一元一次方程的密切联系,为后面的学习奠定了基础.三、运用新知,深化理解1.下列函数中,是一次函数但不是正比例函数的是()2.函数y=(2m-1)x n+3+(m-5)是一次函数的条件是()A.m≠12且n≠-3B.n=-2C.m≠12且n=-2D.m≠12且m≠5,n=-23.若每上6个台阶就升高1m,则上升高度h(m)与上的台阶数m之间的函数关系式为.h是m的函数.4.滑车以每分1.5米的速度匀速从轨道的一端滑向另一端,已知轨道的长为50米.(1)求滑车滑行轨道剩下的路程S(米)和滑行时间t(分)之间的关系式.(2)如果滑行时间为12分钟,求剩下的路程.(3)若剩下的路程为20米,那么它滑行的时间为多少分钟?【教学说明】让学生独立完成,加深对一次函数和正比例函数的理解,同时也对所学的知识也是个检验,教师及时纠正并有针对性地加强训练.【答案】1.C. 2.C. 3.h=m/6(m),一次(或正比例).4.解:(1)S=50-1.5t;(2)32(米);(3)20(分).四、师生互动,课堂小结1.师生共同回顾一次函数与正比例函数的一般形式.2.本节课学了哪些内容?你认为最重要的是什么?还有什么疑问?请与大家交流.【教学说明】让学生参与小结并允许学生发表各自的见解,增加了学生的积极性和主动性,培养他们对所学知识的回顾思考的习惯;同时也强调了本节课的重点,巩固了学习内容.1.布置作业:习题4.2第1、2、3题2.完成练习册中本课时相应练习..通过学生反馈的情况来看,绝大部分学生掌握得较好,但对于正比例函数是特殊的一次函数这种情况容易忽略.同时还有极少部分同学运用一次函数的一般形式解决实际问题不是相当熟练.在今后的教学中要花一定的时间不断完善提高.3 一次函数的图象第1课时正比例函数的图象和性质1.会利用描点法或两点法画出正比例函数的图象.2.掌握正比例函数的性质.3.通过对应描点来研究正比例函数的图象,经历知识的归纳、探究过程和利用正比例函数的图象归纳函数性质,体验数形结合的方法.4.通过画函数的图象,并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美.【教学重点】正比例函数的图象和性质.【教学难点】由正比例函数的图象归纳得出正比例函数的性质及对性质的理解.一、创设情境,导入新课把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象(graph).前面第1节就是摩天轮上一点的高度h(m)与旋转时间t(min)之间函数关系的图象.正比例函数y=kx的图象是怎样的呢?它具有哪些性质呢?下面,我们一起去研究吧!【教学说明】给出函数图象的定义,学生一目了然,结合实例便于学生理解它的含义,为下面学习画函数图象指明了方向.二、思考探究,获取新知1.正比例函数图象的画法:思考:(1)你准备来用什么方法画出正比例函数y=2x的图象?(2)画出函数图象的一般步骤有哪些?【教学说明】让学生经历列表、描点、连线等画函数图象的具体过程,既可以加深对图象意义的认识,了解图像上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及对用描点法画函数图象的一般步骤进行归纳做了准备.【归纳结论】画函数图象的一般步骤:列表、描点、连线.做一做:(1)画出正比例函数y=-3x的图象.(2)在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证他们是否都满足关系式y=-3x.讨论:①满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x 的图象上吗?②正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?③正比例函数y=kx的图象有何特点?你是怎样理解的?【教学说明】加强学生用描点法画正比例函数图象的方法,体会函数图象上的点都满足函数关系式,并通过观察得出正比例函数图象的特点.【归纳结论】正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只需要再确定一个点,过这点和原点画直线就可以了.2.正比例函数图象的性质做一做:在同一直角坐标系内画出正比例函数y=x,y=3x,y=-12x和y=-4x的图象.思考:上述四个函数中,随着x值的增大,y的值分别如何变化?【教学说明】利用正比例函数的图象学生很直观地归纳出正比例函数的增减性.注意不要受算术中正比例概念的影响,片面地认为正比例函数总是随着自变量的增加而增加,它的增或减是由k的正或负决定的.【归纳结论】在正比例函数y=kx中,当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.讨论:(1)正比例函数y=x和y=3x中,随着x值的增大,y的值都增加了,其中哪一个增加得更快?你能解释其中的道理吗?(2)类似地,正比例函数y=-12x 和y=-4x 中,随着x 值的增大,y 的值都减小了,其中哪一个减小得更快?你是如何判断的?【教学说明】通过图象让学生进一步体会正比例函数增减的快慢是由|k |决定的,加深了对正比例函数图象性质的理解.三、运用新知,深化理解1.若函数y=232()m m x -- 是正比例函数,则m= .2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 .3.已知点P (1,m )在正比例函数y=4x 的图象上,那么点P 的坐标是( ).A.(1,4)B.(-1,-4)C (1,-4)D.(-1,4)4.已知正比例函数y=kx (k ≠0)的图象经过第二、四象限,则( )A.y 随x 的增大而增大B.y 随x 的增大而减小C.当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.D.无论x 如何变化,y 不变.5.小刚以2千米/时的速度匀速从甲地行走到乙地,甲乙两地的距离为12千米.(1)求小刚行走的路程s (千米)与时间t (小时)之间的关系式以及自变量t 的取值范围.(2)画出图象.(3)根据图象说明当t 增大时,s 增大还是减小?【教学说明】教师让学生自主完成,加强对正比例函数图象和性质的理解和反馈学生对知识的掌握情况,便于及时矫正强化.【答案】1.-2;2.m >12;3.A ;4.B5.解:(1)s与t的关系式为s=2t,自变量t的取值范围是0≤t≤6.(2)是以O(0,0)和(6,12)为端点的一条线段.(3)由图象可知当t增大时,s也增大.四、师生互动,课堂小结1.师生共同回顾正比例函数图象的画法以及它的性质.2.本节课你掌握了哪些知识?还有哪些疑问?请与大家交流.【教学说明】引导学生回顾本课所学知识,对知识进行归纳整理,找出不足便于教师及时调整,做到当堂消化.1.教材习题4.3第1、2、3、4题.2.完成练习册中本课时相应练习..本节课通过实际操作了解正比例函数图象的画法及利用图象说明其性质,并掌握图象特征与关系式的联系规律,经过思考讨论知道了正比例函数不同表现形式的转化方法和图象的简单画法,为后面学习一次函数奠定了基础.第2课时一次函数的图象和性质1.理解直线y=kx+b与直线y=kx之间的位置关系.2.会利用两个合适的点画出一次函数的图象.3.掌握一次函数的性质.4.通过一次函数图象和性质的研究,体会数形结合法在问题解决中的作用,并能运用性质、图象及数形结合法解决相关函数问题.5.在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重点】一次函数的图象和性质.【教学难点】由一次函数的图象归纳得出一次函数的性质及对性质的理解.一、创设情境,导入新课我们知道正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?它们之间有什么位置关系?下面一起研究一次函数y=kx+b的图象.【教学说明】利用所学知识“最近发展区”——正比例函数的图象及性质,为类比、探究一次函数的图象及其性质作好铺垫.二、思考探究,获取新知1.一次函数的图象.(1)你能用描点法画出一次函数y=-2x+1的图象吗?(2)通过上面画一次函数的图象想一想一次函数y=kx+b的图象有什么特点,对此你是怎样理解的?【教学说明】在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出一次函数的图象,可以说是得心应手,减轻了学生心理上的压力.【归纳结论】一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.2.一次函数的性质.做一做:在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.讨论:(1)上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?(2)直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x 变为直线y=-x+3吗?一般地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b 的图象上直接看出b的数值吗?【教学说明】进一步巩固一次函数图象的画法,并为探究一次函数的性质做准备.让学生利用图象观察体验y=kx与y=kx+b两者之间的位置关系,从而得出函数y=kx+b的图象实际上是对直线y=kx上的所有点进行平移的结果,同时还让学生明白b的值就是图象与y轴交点的纵坐标.【归纳结论】一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.三、运用新知,深化理解1.已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x值的增大而增大,则m的值为.2.一次函数y=3x-4的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限3.下列一次函数中,y随x值的增大而减小的是().A.y=2x-1B.y=3-4xx+2D.y=(5-2)x4.一次函数y=(3a-1)x+5图象上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2,则a的取值范围是().A.a>0B.a<0C.a>1 3D.a<1 35.如图,将直线OA向上平移2个单位,得到一个一次函数的图象,求这个一次函数的表达式.【教学说明】让学生独立完成,加强对所学知识的理解,及时反馈教学效果,查漏补缺.对有困难的学生给予鼓励和帮助,并进行强化.【答案】1.2 2.B 3.B 4.D5.解:设直线OA的关系式为y=kx,把(-2,4)代入得k=-2,所以y=-2x,将直线OA向上平移2个单位之后一次函数的表达式为:y=-2x+2.四、师生互动,课堂小结1.师生共同回顾一次函数图象的性质和它与正比例函数图象之间的关系.2.本节课你掌握了哪些知识?觉得哪些是大家需要注意的?与同学们分享.【教学说明】教师引导学生回顾本课知识点,加强理解各知识点之间的联系,不断进行归纳总结.让学生大胆交流,力求让每一个人在数学上得到一定的发展.1.布置作业:习题4.4第1、2、3、4题.2.完成练习册中本课时相应练习..本节课学习了用两点法画一次函数图象,进而利用数形结合的探究讨论的方法寻求出一次函数图象的特征与关系式的相互联系,使我们对一次函数知识的理解与掌握更透彻,也体会到数学思想在数学研究中的重要性.4 一次函数的应用第1课时确定一次函数的表达式1.了解两个条件确定一次函数,一个条件确定正比例函数.2.能由两个条件求出一次函数的表达式,并解决有关实际问题.3.经历用两个已知条件确定一次函数表达式的应用过程,提高学生研究数学问题的技能,体验数形结合,逐步学习利用这一思想分析解决问题.4.具体感知数形结合的思想在一次函数中的应用价值.【教学重点】根据所给信息确定一次函数的表达式.【教学难点】灵活运用一次函数的有关知识解决相关问题.一、创设情境,导入新课我们前面学习了有关一次函数的一些知识,掌握了其关系式的特点及图象特征,并学会了已知关系式画出其图象的方法以及分析图象特征与关系式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征或实际问题,能否确实关系式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?【教学说明】利用一次函数图象的特征和关系式的相互转化,加强学生对知识的理解.通过提问,引发同学分析思考、寻求解决问题的办法,激起学生探求知识的欲望.二、思考探究,获取新知确定一次函数的表达式.教材第89页“想一想”上面的内容.思考:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?【教学说明】通过思考分析解决由图象到关系式转化的方法过程,总结归纳一次函数关系式与图象之间的转化规律,增强数形结合的思想在函数中重要性的理解.采用上面类似的方法,你能解决日常生活中的实际问题吗?请看例题:例见教材第89页例1【教学说明】一次函数的应用实质就是确定一次函数的关系式,这就需要充分挖掘题中所给的已知条件,分析量与量之间的关系,从而找到求关系式的方法.然后利用关系式解决有关问题.三、运用新知,深化理解1.一个正比例函数的图象经过点A(3,-2),B(a,3),则a= .2.如图,直线l是一次函数y=kx+b的图象.填空:(1)当x=30时,y= .(2)当y=30时,x= .第2题图第3题图3.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为().A.y=-x+2B.y=x+2C.y=x-2D.y=-x-24.如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.【教学说明】教师让学生独立完成,加深对所学知识的理解和检查学生对一次函数的实际应用的掌握程度,并有针对性地加强辅导.【答案】1. -92;2. 22,42;3.B;4.解:由图象可知b=2,图象又过点(2,-2),则有2k+b=-2,所以b=2,k=-2,这个一次函数的解析为y=-2x+2,当y=0时,解得x=1,l与两坐标轴所围成的三角形的面积为y=12×1×2=1.四、师生互动,课堂小结通过本节课的学习,你已经掌握了哪些知识?还有什么疑难问题需要解决的?与同学交流.【教学说明】学生利用互相交流的方式对知识进行搜集,归纳整理,互相补充,教师及时给予点评.特别是对于解题方法技巧上可以做适当强调,帮助他们加深印象.1.布置作业:习题4.5第1、2、4题.2.完成练习册中本课时相应练习..本节课利用图象或实际背景求一次函数关系式和利用关系式解决相关的实际问题,让学生从中体会求解关系式的方式方法.与此同时,在教学中要把图象和关系式有机结合起来,讨论它们之间的相互转化很有必要,培养学生全面认识事物的观点.第2课时一个一次函数的应用1.能利用一次函数解决简单的实际问题.2.了解一次函数与一元一次方程之间的关系.3.通过生活的实例结合一次函数的图象解决问题,继续体会数形结合的思想所起的重要作用.4.让学生深刻体会到数学知识来源于实际生产、生活的需求,反之,又服务于生产、生活的实际.【教学重点】利用一次函数解决简单的实际问题.【教学难点】根据一次函数图象去分析解决问题.一、创设情境,导入新课教材第91页例2上面的内容【教学说明】从生活中的实际问题出发,采用提问引发思考的方式引入,激发学生探求知识的兴趣.二、思考探究,获取新知简单的一次函数的实际应用教师引导学生完成教材第91页例2.【教学说明】让学生体会利用一次函数的图象解决实际问题的方法.如果从图象上不能很明显得出结论,还需要求出一次函数的表达式在进行求解.做一做:教材第92页“做一做”.【教学说明】巩固加深根据一次函数图象求直线表达式,同时体会当函数值为零时自变量的取值,为下面学习一元一次方程与一次函数的关系打下了基础.讨论:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?【教学说明】充分体会一元一次方程与一次函数之间的转化关系,帮助学生从数形结合的角度进一步认识一次函数与一元一次方程的密切联系.【归纳结论】一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、运用新知,深化理解1.直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a的值是.2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所有的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是().A.12分钟B.15分钟C.25分钟D.27分钟3.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数x,用这批布料生产这两种型号的时装所获得总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?【教学说明】让学生独立完成,加深对新学知识的理解和检验学生掌握情况,便于教师查漏补缺,及时解决学生的疑难问题.【答案】1.4;2.B;3.解:(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.四、师生互动,课堂小结通过本节课的学习,你会利用一次函数图象解决有关问题吗?你有哪些收获?请与大家共同分享.【教学说明】教师引导学生回顾所学知识点,对知识不断归纳整理,特别有时需要利用图象求出关系式再去解决问题更准确.1.布置作业:习题4.6中的第1、2题.2.完成练习册中本课时相应练习..本节课从实际生活背景出发,利用一次函数及图象解决问题,让学生体会一次函数的应用价值和一次函数与一元一次方程的密切关系,体验应用知识的成就感和学习教学更加热爱生活.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中数学八年级上册课第四章教案一:课题:《平行四边形的性质》二:教学目标:1经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质。

2探索并掌握平行四边形的对边相等,对角相等的性质。

3在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。

三:教学知识点:1平行四边形的概念2平行四边形的性质四:教学重点:探索平行四边形的性质教学难点:通过操作升化出结论五:教学方法:探索归纳法六:教材分析这节内容通过拼图引出平行四边形的定义,让学生经历探索、探究研究、讨论的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的很多性质,教师在教学过程中,结合具体的背景适时的提出问题,满足学生多样化的要求,这节内容对以后的菱形、矩形内容的引入埋下伏笔。

七:过程设计:(一)设置问题情境,引入课题。

1、 让学生进行如下操作后,思考以下问题:(幻灯片展示)将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点 将上层的三角形纸片绕点 旋转180度,下层的三角形纸片保持不动,此时:两张纸片是平行四边形吗?是一个怎样的四边形?观察它还有什么特征?(学生思考、操作后,教师用Z+Z 教育平台展示)答:(1)AB=CD ,AD=CB(2)∠1=∠3 ,∠2=∠4,∠B=∠D(3)AD//BC ,AB//CD B C D A 12342、针对学生指出 AD//BC,AD//CD分析究其原因。

让学生分析,分小组讨论。

得出结论:∠1和∠3 是内错角,∠2和∠4是内错角,依据“内错角相等,两直线平行”2、平行四边形的定义,即“两组对边分别平行的四边形是平行四边形”(二)、传授新课1、请学生举出自己身边存在的平行四边形的例子。

例如:汽车的防护链,折叠衣架,篱笆格子(用幻灯打出实物的照片)2、将实物转化为几何图形。

(用Z+Z 教育平台展示)3、介绍平行四边形的书写方式及对角线。

(用Z+Z 教育平台展示)4、学生动手画一个平行四边形,同时用几何语言表示平行四边形的定义。

5、做一做(出示幻灯片)用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD 重合吗?由此,你能得到哪些结论?四边形ABCD 相对的边。

相对的角分别有什么关系?能用别的方法验证你的结论吗?(让学生实际动手操作,可分组讨论结论)6、教师用Z+Z 教育平台展示整个旋转变化过程。

7、学生分析总结出:平行四边形的对边相等 平行四边形的对角相等(三)、课内总结通过大家以上的操作,分析,讨论我们已对平行四边形的这一概念及性质有所了解,下面我们把它用到练习中去。

(四)、达标小测(幻灯片展示)1、如图四边形ABCD 是平行四边形求(1)∠ADC 和∠BCD 的度数。

B CDA 5603025(2)边AB和BC 的长度。

2、自制平行四边形已知一个角,求其他三个角的度数。

(让一名学生到台前利用教育平台自制平行四边形,并按要求做出题目)(五)、课后反思这节课,通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。

§4.1平行四边形的性质(二)教学目标:1. 经历探索平行四边形有关概念和性质的过程,在进行探索的活动过程中发展学生的探究意识。

2. 探索并掌握平行四边形的对角线互相平分的性质,掌握平行线之间的距离处处相等的结论并了解其简单的应用。

3.在探索中培养学生的合作交流习惯。

4.掌握解决平行四边形问题的基本思路是化为三角形问题来处理,渗透转化思想。

教学重点:1.平行四边形的对角线互相平分。

2.掌握平行线之间的距离处处相等教学难点:正确理解两条平行线之间的距离的概念。

教学方法:引导学生发现规律,启发诱导法。

教具准备:投影片、多媒体教学过程设计:一、 设置问题情境,引入课题:上节课我们学习了平行四边形的性质,现在来回忆一下:如图,四边形ABCD 是平行四边形,请同学们说出它的性质。

在平行四边形中,除边和角外,还有对角线,那么对角线有什么性质呢?如图,在□ABCD 中,对角线AC 、BD 相交于点O ,(1)图中哪些三角形是全等的?有哪些线A D AD段是相等的?(2) 能设法验证你的想法吗?二、 讲授新课:从上面讨论中,我们可以发现平行四边形的对角线具有什么性质?试用文字语言叙述一下。

平行四边形的对角线互相平分。

用几何语言表示如下:在□ABCD 中,对角线AC 、BD 相交于点O ,==﹥ OA=OC ,OB=OD下面我们通过例题来熟悉平行四边形的性质:例1:如图,四边形ABCD 是平行四边形,AB=8,AD=10。

AC ⊥AB ,求CD 、BC 及OC 的长。

想一想:在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?A BD a b A B CD夹在两条平行线之间的平行线段相等。

如图,直线a ∥b ,AB ∥CD ,则 AB=CD 下面我们应用平行四边形的性质来解决一题:例2:已知,直线a ∥b ,过直线a 上任意两点A 、B 分别向直线b 作垂线,交直线b 于点C 、D 。

(1)线段AC 、BD 所在的直线有怎样的位置关系?(2)比较线段AC 、BD 的长短。

三、 议一议举例说出生活中的几个实例,反映“平行线之间的距离处处相等”的几何事实。

四、 课堂练习:1、课本第88页的随堂练习2、在□ABCD 中,对角线AC 、BD 相交于点O ,OA 、OB 、AB 的长度分别是3cm ,4cm ,5cm ,求其他各边以及两条对角线的长。

五、 课堂小结: a b A B CD A D这节课学习了平行四边形的另一性质:平行四边形的对角线互相平分。

和平行线之间的距离处处相等。

六、课后作业:课本第88页的习题4.2 1、2、3平行四边形的判别(1)教学目标:经历平行四边形判别条件的探索过程,在有关活动中发展学生的和情推理意识,主动探究的习惯,使学生逐步掌握说理的基本方法。

教学重点:掌握平行四边形判别条件(1),(2)教学难点:应用平行四边形判别条件(1),(2)来解决问题复习提问:1. 什么叫平行四边形?2 .判断三角形全等的方法有几种?分别是什么?导入新课小实验:有一块平行四边形的玻璃片,假如不小心碰碎了一部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查。

对个别差生稍加点拨,最后请学生回答画图方法)学生可能想到的画法有:⑴ 分别过A、C作DC、DA的平行线,两平行线相交于B;⑵延长AD到E,做∠DAB=∠EDC,过C做CB∥AD;⑶ 分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。

(4)连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。

(见课件)上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。

生答后师指出这就是今天所要研究的问题“平行四边形的判定”(板书课题)。

一。

探索平行四边形的判别方法实践:动手操作一1。

每人准备两根牙签(或火柴)(长短不定)AC、BD。

将AC、BD 的中点重叠并固定,(如图1)将A、B、C、D顺次连接,猜想四边形ABCD是平行四边形吗?D学生讨论后,由代表发言总结1)利用三角形全等(见课件) C B2)利用量角器度量四边形的四个内角的度数,推出两组同旁内角互补。

(见课件)平行四边形判定方法一两条对角线互相平分的四边形是平行四边形。

2。

应用练习:1.如图,在□ABCD中,AC,BD相交于点O,点E,F在对角线AC上,且OE=OF. AD(1)OA与OC,OB与OC是相等? E(2)四边形BFDE是平行四边形吗? O FBC2。

如图,在□ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由。

BFGCD实践:动手操作二1。

每人准备四根牙签(或火柴),将两根同样长的木条AB,CD 平行放置,再用木条AD,BC加固,得到的四边形ABCD是平行四边形吗?请说明理由。

学生对照自己的图形讨论。

1)利用三角形全等(见课件)2)利用量角器度量四边形的四个内角的度数,推出两组同旁内角互补,从而得出两组对边平行。

(见课件)平行四边形判定方法二一组对边平行且相等的四边形是平行四边形。

2。

应用练习:1。

如图AC∥ED,点B在 AC上且 AB=ED=BC。

找出图中的平行四边形。

EDA B C2。

在□ABCD中,点E,F分别在AB,CD上,DF=BE。

四边形DEBF是平行四边形吗?说说你的理由。

能力升级1.如图,□ABCD,AE,CF分别C与直线 DB相交于E和 F,且AE∥CF。

BAF则CE∥AF吗?同类变形如图,在□ABCD中,BM垂直CC于M,DN垂直AC于N,四边形BMDN是平行四边形吗? AB五、课堂小结1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

平行四边形的判定方法。

平行四边形的定义;平行四边形判别条件(1),(2)2.这些平行四边形的判定方法中最基本的是哪一条?平行四边形的定义3.平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?平行四边形的判定定理和性质是互逆的关系;同一个证明题中应注意如果不知道是平行四边形时用判定,已经知道是平行四边形时用性质。

作业:第四章练习三菱形的认识教学内容P5~6 /菱形教学目标⑴认识菱形及它的特征。

⑵知道菱形是特殊的平行四边形。

⑶知道菱形是以对角线为对称轴的轴对称图形。

分层目标A、认识菱形及它的特征;知道菱形是特殊的平行四边形又是以对角线为对称轴的轴对称图形。

B、知道菱形及它的特征;理解菱形是特殊的平行四边形又是以对角线为对称轴的轴对称图形。

C、掌握菱形及它的特征;掌握菱形是特殊的平行四边形又是以对角线为对称轴的轴对称图形。

教学重点认识菱形的特征。

教学难点菱形是轴对称图形。

教具准备投影、小黑板教学过程一、导入阶段1、复习平行四边形特征、特性?2、直观演示把平行四边形较长的一组对边,缩短到和较短的一组对边相等时,这样的图形又有了一个新的名字。

3、揭示课题“菱形”二、建立概念阶段(一)自学课本 P5~61、读:2、讲:说说你学到了什么?3、议:(1)剪一个菱形。

(2)认识菱形的特征。

边: 4条对边平行四边相等角: 4个角对角相等对角线互相垂直平分轴对称图形(3)四人小组讨论想: 四个图形之间的关系是怎样的?4、结: 菱形的特征正方形都具有。

而正方形的四个角都是直角,菱形就不具备。

可见正方形是特殊的菱形。

而长方形和菱形对边都相等,对角也相等,但长方形的四个角都是直角,菱形都不具备。

相关文档
最新文档