数列的概念与简单表示法(一)

合集下载

2.1.1 数列的概念与简单表示法(一)

2.1.1 数列的概念与简单表示法(一)
如:数列{n2}的第11项是__1_2_1___
②一些数列的通项公式不是唯一的; 如:数列1,-1,1,-1,…
③不是每一个数列都能写出它的通项公式。 如:1,24,8,3,19
例1、试写出下面数列的一个通项公式,使它的前4项分别 是下列各数:
(1)2,4,6,8; 变题:4,6,8,10
an=2n
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4 天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场 景法
练习:试写出数列1,3,6,10,…的一个递推公式。
例5、已知a1
1, an
1
1 an1
(n
2), 写出这个
数列的前5项.
解:∵a1=1
1
1
a2
1
a1
1 1
2
1
13
a3 1 a 2 1 2 2
a4
1
1 a3
1
2 3
5 3
a5
1
1 a4
1
3 5
8 5
练习:写出下列数列{an}的前5项 (1)a1=5,an=an-1+3 (n≥2); (2)a1=2,an=2an-1 (n≥2);
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。

第五章 第一节 数列的概念与简单表示法1

第五章  第一节  数列的概念与简单表示法1

返回
奇数项为2-1,偶数项为2+1, 2+-1n 所以an=(-1) · n .
n
1 -n n为正奇数, 也可写成an= 3 n为正偶数. n
返回
[冲关锦囊] 1.根据数列的前几项求它的一个通项公式,要注意观察每 一项的特点,可使用添项、还原、分割等办法,转化为 一些常见数列的通项公式来求.
返回
返回
2 3 4 5 1.(教材习题改编)数列1,3,5,7,9„的一个通项公式是 A.an= n 2n+1 B.an= n 2n-1
(
)
n C.an= 2n-3
n D.an= 2n+3
答案: B
返回
2.已知数列{an}的通项公式为an=n+1,则这个数列是 ( A.递增数列 C.常数列 答案: A B.递减数列 D.摆动数列 )
式的求法以及数列的性质.
2.题型多以选择、填空题为主,有时也作为解答题的一 问,难度不大.
返回
返回
一、数列的定义 按照 一定顺序 排列着的一列数称为数列,数列中
的每一个数叫做这个数列的 项 .排在第一位的数称为
这个数列的第1项(通常也叫做 首项 ).
返回
二、数列的分类 分类原则 按项数分 类 类型 有穷数列 满足条件 项数 有限
返回
[精析考题] [例 2] (2011· 四川高考)数列{an}的前 n 项和为 Sn,若 a1=1, ( )
an+1=3Sn(n≥1),则 a6= A.3×44 C.45 B.3×44+1 D.45+1
返回
[自主解答]
a1=1,a2=3S1=3,a3=3S2=12=3×41,a4=3S3=48
无穷数列
递增数列 递减数列 常数列 摆动数列

2.1.1数列的概念与简单表示法(一)

2.1.1数列的概念与简单表示法(一)
4、本节课的能力要求是: (1) 会由通项公式 求数列的任一项;
(2)会用观察法由数列的前几项 求数列的通项公式。
1.选择题
补充练习
(1)下面数列是有穷数列的是(
)
A.1,0,1,0, C.2,22,222,
B.1, 1 , 1 , 1 ; 234
D.0,0,0,0,
(2)以下四个数中是数列{n(n 1)}中的一项是(
子放2颗麦粒
?
64个格子
8 7
你认为国王有
6 能力满足上述
5 4
要求吗?
3
8 76
543
2
2 1 1
每个格子里的麦粒数都是 前 一个格子里麦粒数的 2倍 且共有 64 格子
210 21 22 23 263
18446744073709551615
传说古希腊毕达哥拉斯学派数学家研究的问题:
观察下列图形:
① ② ③ ④ ……
例如 : 1,2,22,23,263
1.数列的一般形式可以写成:
a1,a2,a3,,an , 简记为an
1.辨析数列的概念:
(1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同一个 数列吗?与“1, 3, 2, 4, 5”呢? (2) 数列中的数可以重复吗? (3) { 1, 2, 3, 4, 5 }是数列吗?若不是,那么 数列与集合有什么区别? (4) -3,-1,1,x,5,7,y,11是一个项数 为8的数列吗?
(2)
53 50
是这个数列的第几项?
(3)这个数列有多少个整数项?
(4)有否等于序号的
1 3
的项?如果有,求出
这些项;如果没有,试说明理由。
例5. 已知函数 f (x) x 1 ,设 an f (n), n N

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。

3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。

(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。

2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。

3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。

4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。

高中数学必修5高中数学必修5《2.1数列的概念与简单表示法(一)》教案

高中数学必修5高中数学必修5《2.1数列的概念与简单表示法(一)》教案

2.1数列的概念与简单表示法(一)一、教学要求:理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式.二、教学重点、教学难点:重点:数列及其有关概念,通项公式及其应用.难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.三、教学过程:导入新课“有人说,大自然是懂数学的”“树木的,。

”,(一)、复习准备:1. 在必修①课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即如果将初始量看成“1”,取其一半剩“12”,再取一半还剩“14”,、、、、、、,如此下去,即得到1,12,14,18,、、、、、、 2. 生活中的三角形数、正方形数. 阅读教材提问:这些数有什么规律?与它所表示的图形的序号有什么关系?(二)、讲授新课:1. 教学数列及其有关概念:(1)三角形数:1,3,6,10,···(2)正方形数:1,4,9,16,··· (2)1,2,3,4……的倒数排列成的一列数:(3)-1的1次幂,2次幂,3次幂,……排列成一列数:-1,1,-1,1,-1,。

(4)无穷多个1排列成的一列数:1,1,1,1,。

有什么共同特点? 1. 都是一列数;2. 都有一定的顺序① 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢? ----------数列的有序性(2)数列中的数可以重复吗?(3)数列与集合有什么区别?集合讲究:无序性、互异性、确定性,数列讲究:有序性、可重复性、确定性。

② 数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、、、、、、排在第n 位的数称为这个数列的第n 项.③ 数列的一般形式可以写成123,,,,,n a a a a ,简记为{}n a .④ 数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.⑤ 数列中的数与它的序号有怎样的关系?序号可以看作自变量,数列中的数可以看作随着变动的量。

高中数学必修五2.1.1 数列的概念与简单表示法(一)

高中数学必修五2.1.1 数列的概念与简单表示法(一)

2.1 数列的概念与简单表示法2.1.1 数列的概念与简单表示法(一)从容说课本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式. 教学重点 数列及其有关概念,通项公式及其应用.教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.教具准备 课件三维目标 一、知识与技能1.理解数列及其有关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式. 二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性. 三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程 导入新课师 课本图211中的正方形数分别是多少?生 1,3,6,10,….师 图212中正方形数呢?生 1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….推进新课[合作探究] 折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展] 师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n ),…. 师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析]1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1+n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+; (5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象. 生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关? 生 与我们学过的一次函数y=x+3的图象有关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象有关? 生 与我们学过的反比例函数x y 1=的图象有关. 师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点. 本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.课堂小结对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本第38页习题2.1 A 组第1题.板书设计数列的概念与简单表示法(一)定义1.数列 例12.项3.一般形式 例2 函数定义4.通项公式5.有穷数列6.无穷数列备课资料一、备用例题1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)515;414,313;2122222----; (3)211⨯-,321⨯- ,431⨯- ,541⨯-. 分析:(1)项:1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号: 1 2 3 4所以我们得到了a n =2n -1;(2)序号: 1 2 3 4↓ ↓ ↓ ↓项分母: 2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓项分子: 22-1=(1+1)2-1 32-1=(2+1)2-1 42-1=(3+1)2-1 52-1=(4+1)2-1所以我们得到了a n =1)1(2++n n 或1)2(+•+n n n ; (3)序号: 1 2 3 4↓ ↓ ↓ ↓211⨯- 321⨯- 431⨯- 541⨯- ↓ ↓ ↓ ↓)11(11+⨯- )12(21+⨯- )13(31+⨯- )14(41+⨯- 所以我们得到了a n =-)1(1+⨯n n . 2.写出下面数列的一个通项公式,使它的前n 项分别是下列各数:(1)1,0,1,0; 〔a n =2)1(11+-+n ,n ∈N *〕 (2)-32,83 ,154- ,245,356-; 〔a n =(-1)n ·1)1(12-++n n 〕 (3)7,77,777,7 777; 〔a n =97×(10n -1)〕 (4)-1,7,-13,19,-25,31; 〔a n =(-1)n (6n -5)〕(5)23,45 ,169 ,25617. 〔a n =12212-+n n 〕 点评:上述两题都是根据数列的前几项来写出这数列的通项公式,根据数列的前几项来写出这数列的通项公式时,常可联想奇数、偶数、平方数、指数等等.遇到分数的时候,常可根据需要把分子和分母同时扩大再来看看分子和分母中数的规律性,有时可直截了当地研究分子和分母之间的关系.3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( )A .30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .4.(链接探究题)假定有一张极薄的纸,厚度为2001cm 就是每200张叠起来刚好为1 cm ,现在把这张纸裁一为二,叠起来,它的厚度记为a 1;再裁一为二,叠起来,它的厚度记为a 2,又裁一为二,叠起来,它的厚度记为a 3,这样一裁一叠,每次叠起来所得的厚度依次排列,就得到一个数列:a 1,a 2,a 3,…,a k ,….你能求出这个数列的通项公式吗?你知道a 50,即裁了50次、叠了50次后的厚度是多少厘米吗?是否有10层楼高呢?答案:这个数列的通项公式为a n =2002n, 裁了50次、叠了50次后的厚度是5 629 499 534 213.12 cm >56 294 995 km ,大于地球到月球距离的146倍. 二、阅读材料无法实现的奖赏相传古印度舍罕王朝有一位宰相叫达依尔,据说是他发明了国际象棋,古印度的舍罕王学会了下国际象棋以后,非常激动,他要重赏他的宰相达依尔. 达依尔对他的国王说:陛下,我不要您的重赏,只要您按我下面的办法赏我一些麦粒就可以了:在我的棋盘上(它有64个格)第一格赏1粒,第二格赏2粒,第三格赏4粒,第四格赏8粒……依此类推每后一格的麦粒数都是前面一格的两倍.国王答应了达依尔的要求,但是几天以后他就发现事实上这是一个无法兑现的奖赏.请问国王为什么不能兑现他的奖赏呢? 2.1.2 数列的概念与简单表示法(二)从容说课这节课通过对数列通项公式的正确理解,让学生进一步了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;通过经历数列知识的感受及理解运用的过程,作好探究性教学.发挥学生的主体作用,提高学生的分析问题以及解决问题的能力.教学重点 根据数列的递推公式写出数列的前几项.教学难点 理解递推公式与通项公式的关系.教具准备 多媒体三维目标一、知识与技能1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.二、过程与方法1.经历数列知识的感受及理解运用的过程;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程导入新课师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列{a n }的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师 你能举例说明吗?生 如数列0,1,2,3,…的通项公式为a n =n -1(n ∈N *);1,1,1的通项公式为a n =1(n ∈N *,1≤n ≤3); 1,21 ,31 ,41 ,…的通项公式为a n =n1 (n ∈N *). [合作探究]数列的表示方法 师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列? 生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n 为横坐标,相应的项a n 为纵坐标,即以(n ,a n )为坐标在平面直角坐标系中作出点(以前面提到的数列1, 21,31,41,…为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 ……师 下面我们来介绍数列的另一种表示方法:递推公式法 知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型.生 模型一:自上而下第1层钢管数为4,即14=1+3;第2层钢管数为5,即25=2+3;第3层钢管数为6,即36=3+3;第4层钢管数为7,即47=4+3;第5层钢管数为8,即58=5+3;第6层钢管数为9,即69=6+3;第7层钢管数为10,即710=7+3.若用a n 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且a n =n +3(1≤n ≤7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a 1=4;a 2=5=4+1=a 1+1;a 3=6=5+1=a 2+1.依此类推:a n =a n -1+1(2≤n ≤7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推关系的式子叫做递推公式. 推进新课1.递推公式定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n -1(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a 1=3,a 2=5,a n =a n -1+a n -2(3≤n ≤8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法. [例题剖析]【例1】 设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项. 师 分析:题中已给出{a n }的第1项即a 1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:a n =1+11-n a 我们将如何应用呢? 生 这要将n 的值2和a 1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 请大家计算一下!生 解:据题意可知:a 1=1,a 2=1+11a =2,a 3=1+21a =32,a 4=1+31a =35,a 5=58师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a 1=2,a n +1=2a n ,写出前5项,并猜想a n .师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n 项.生 由a 1=2,a 2=2×2=22,a 3=2×22=23观察可得,我猜想a n =2n .师 很好!生 老师,本题若改为求a n 是否还可这样去解呢?师 不能.必须有求解的过程.生 老师,我由a n +1=2a n 变形可得a n =2a n -1,即21=-n n a a ,依次向下写,一直到第一项,然后将它们乘起来,就有⨯⨯⨯-----32211n n n n n n a a a a a a …×1122-=n aa ,所以a n =a 1·2n -1=2n .师 太妙了,真是求解的好方法.你所用的这种方法通常叫迭乘法,这种方法在已知递推公式求数列通项的问题中是比较常用的方法,对应的还有迭加法. [知识拓展]已知a 1=2,a n +1=a n -4,求a n .师 此题与前例2比较,递推式中的运算改为了减法,同学们想一想如何去求解呢? 生1 写出:a 1=2,a 2=-2,a 3=-6,a 4=-10,…观察可得:a n =2+(n -1)(n -4)=2-4(n -1).生2 他这种解法不行,因为不是猜出a n ,而是要求出a n .我这样解:由a n +1-a n =-4依次向下写,一直到第一项,然后将它们加起来,a n -a n -1=-4a n -1-a n -2=-4a n -2-a n -3=-4 …… )1(44a )112--=--=-+n a a a n ∴a n =2-4(n -1).师 好极了,真是触类旁通啊,这种方法也请同学们课后多体会.[教师精讲](1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列{a n }中的递推公式a n +1=2a n +1无法写出数列{a n }中的任何一项,若又知a 1=1,则可以依次地写出a 2=3,a 3=7,a 4=15,….(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.[学生活动]根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.(投影片)(1)a 1=0,a n +1=a n +(2n -1)(n ∈N );(2)a 1=1,a n +1=2+n n a a (n ∈N ); (3)a 1=3,a n +1=3a n -2(n ∈N ).(让学生思考一定时间后,请三位学生分别作答)解:(1)a 1=0,a 2=1,a 3=4,a 4=9,a 5=16,∴a n =(n -1)2.(2)a 1=1,a 2=32,a 3=21=42,a 4=52,a 5=31 =62,∴a n =12+n . (3)a 1=3=1+2×30,a 2=7=1+2×31,a 3=19=1+2×32,a 4=55=1+2×33,a 5=163=1+2×34,∴a n =1+2·3 n -1.注:不要求学生进行证明归纳出通项公式.[合作探究]一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多能上跃起三级,从地面上到最上一级,你知道这只猴子一共可以有多少种不同的爬跃方式吗?析:这题是一道应用题,这里难在爬梯子有多种形式,到底是爬一级还是上跃二级等情况要分类考虑周到.爬一级梯子的方法只有一种.爬一个二级梯子有两种,即一级一级爬是一种,还有一次爬二级,所以共有两种.若设爬一个n级梯子的不同爬法有a n种,则a n=a n-1+a n-2+a n-3(n≥4),则得到a1=1,a2=2,a3=4及a n=a n-1+a n-2+a n-3(n≥4),就可以求得a8=81.课堂小结师这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,要注意理解它与通项公式的区别,谁能说说?生通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.生对于通项公式,只要将公式中的n依次取1,2,3…,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求得其他的项.(让学生自己来总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.培养学生的概括能力和语言表达能力)布置作业课本第38页习题2.1A组第4、6题.预习内容:课本P41~P 44.数列的概念与简单表示法(二)一、定义二、例题讲解小结:7.递推公式:例1通项公式与例2 递推公式区别。

数列的概念与简单表示法(1)

数列的概念与简单表示法(1)

数列的表示方法
数列的一般形式可以写成:
a1,a2,a3,,an ,
a 简记为 an ,其中 n 叫做数列的第n 项。
第n项的n是该项的序号, 也叫做该项的项数
例如,三角形数构成的数列{an} :
1 , 3 , 6 , 10 , 15 ...
球队 马刺 雷霆 快船 火箭
胜场 62
59 57
项数有限的数列叫做有穷数列, 项数无限的数列叫做无穷数列。
实例分析
2010年到2014年我校高考升学人数构成一个数列: 1820 ,1960 , 2100 , 2330 ,2590
有穷数列
递增数列
正整数的倒数构成的数列 1, 1 , 1 , 1 , 1 ,
2345
递减数列
实例分析
高一年级6次数学测验中,某同学的数学成绩构成的数列: 112 , 108 , 110 , 118 , 99 , 102








数数




作业一:探究与思考 1、数列与集合有什么区别? 2、数列与数集有什么区别? 3、数列中的项与集合中的元素有什么区别? 4、数列4,7,10,13与数列13,10,7,4是相同的数列吗? 5、每一个数列都有通项公式吗? 6、同一个数列的通项公式的表达形式唯一吗?
作业二: 课本 31页第4题
摆动数列 我贷款买房子,月均等额还款数目构成数列: 2100 , 2100 , 2100 , … , 2100
常数列
我们可以按照数列的每一项随序号变化的情 况对数列进行分类
⑴从第2项起,每一项都不小于它的前一项的 数列叫做递增数列;
⑵从第2项起,每一项都不大于它的前一项的 数列叫做递减数列;

2.1数列的概念与简单表示法(1)

2.1数列的概念与简单表示法(1)
2.下列四个数中,哪个是数列 中的一项().
A. 380 B. 392 C. 321 D. 232
3.在横线上填上适当的数:
3,8,15,,35,48.
4.数列 的第4项是.
5.写出数列 , , , 的一个通项公式.
课堂反思
⑶数列与函数有关系吗?如果有关,是什么关系?
5.数列的分类:
1)根据数列项数的多少分数列和数列;
2)根据数列中项的大小变化情况分为数列,
数列,数列和数列.
3自学检测
(1)写出下面数列的一个通项公式,使它的前4项分别是下列各数:
⑴1,- , ,- ;
⑵1,0,1,0.
二.合作交流
1已知数列2, ,2,…的通项公式为 ,求这个数列的第四项和第五项.
反思:
⑴如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?
⑵同一个数在数列中可以重复出现吗?
3.数列的一般形式: ,或简记为 ,其中 是数列的第项.
4.数列的通项公式:如果数列 的第n项 与n之间的关系可以用来表示,那么就叫做这个数列的通项公式.
反思:
⑴所有数列都能写出其通项公式?
⑵一个数列的通项公式是唯一?
一.自主学习
1学习目标
1.理解数列及其有关概念,了解数列和函数之间的关系;
2.了解数列的通项公式,并会用通项公式写出数列的任意一项;
3.对于比较简单的数列,会根据其前
探究任务:数列的概念
⒈数列的定义:的一列数叫做数列.
⒉数列的项:数列中的都叫做这个数列的项.
年级:高二学科:数学
安阳县实验中学“四步教学法”导学案
Anyangxian shiyan zhongxue sibujiaoxuefa daoxuean
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的概念与简单表示法(A )
班级 姓名
1.将正整数的前5个数排成:①1,2,3,4,5;②5,4,3,2,1; ③2,1,5,3,4;④4,1,5,3,2,那么可以称为数列的有( )
A .①
B .①②
C .①②③
D .①②③④
2.在数列1,1,2,3,5,8,13,x ,34,55…中x 的值是( )
A .19
B .20
C .21
D .22
3.数列的通项公式为n a n 22-=,则-8是该数列的( )
A .第5项
B .第6项
C .第7项
D .非任何一项
4.已知数列的通项公式1
2+=n n a n ,那么这个数列的第5项是—————————— 5.设数列{}n a 满足),(12,211*+∈-==N n a a a n
n 那么=2a ————————————, =3a ———————————————,______________4=a
6.数列⎭⎬⎫⎩
⎨⎧+n og )21(122中的第10项为———————————————— 7.已知数列{}n a 中,)7,(,3≤∈+=*n N n n a n ,试用图象表示出这个数列。

8.已知数列{}n a ,p q pn a a a n (,9,531+===、q 为常数),*∈N n ,求8a
9.写出下列数列的一个通项公式,使它的前4项分别是下列各数:
(1)1,2,3,2
(2)1,0,1,0
(3)7,77,777,7777
(4)5
41,431,321,211⨯⨯⨯⨯
(5)17
16,109,54,21
(6)35
6,245,154,83,32---
数列的概念与简单表示法(B )
班级 姓名
1.下列结论:(1)数列就是数的集合;(2)任何数列都有首项和末项;
(3)项数无限的数列是无穷数列;(4)前若干项相同的两个数列必相同。

其中正确的序号是( )
A .(1)(3)
B .(3)(4)
C .(2)(4)
D .(3)
2.下列四个数中,是数列{})1(+n n 中的一项的是( )
A .380
B .39
C .32
D .23
3.若数列{}n a 的通项公式是11
)2(-+-=n a n
n ,则它的前三项是( ) A .21,35,21---
B .2
3,31,2--- C .0,1,37- D .3,3
1,2-- 4.n 个连续自然数按规律排成下表:
0 3→ 4 7→ 8 11→…
↓ ↑ ↓ ↑ ↓ ↑
1 →
2 5 →6 9 →10
根据规律,从2005到2007,箭头的方向依次为( )
A .↓→
B .↑→
C .→↑
D .→↓
5.若数列的前四项为2,0,2,0,则这个数列的通项公式不能是( ) A .1)1(1+-+=n n a
B .πn a n cos 1-=
C .2sin 22πn a n =
D .)2)(1()1(11--+-+=-n n a n n
6.已知数列{}n a 中,)1(1,111++
==+n n a a a n n ,则这个数列的前五项项为———— 7.已知数列{}n a 满足q pa a a a a n n +====+1421,15,3,1,求q p 和。

8.写出一个通项公式,使它的前4项分别是下列各数:
(1)1,6,11,16 (2),―1,7,―13,19 (3)2,22,222,2222
9.数列{}n a 中,已知)(3
12*∈-+=N n n n a n (1) 写出2,,110n n a a a + (2)79
3
2是否为数列中的项?若是,是第几项?
10.已知数列{}n a 的第1项是1,第2项是2,以后各项由)2(21 n a a a n n n --+=给出。

(1)写出这个数列的前5项。

(2)利用上面的数列{}n a ,通过公式n n n a a b 1+=
构成一个新的数列{}n a , 试写出数列{}n b 的前5项。

相关文档
最新文档