2016届海南省农垦中学高三考前押题文科数学试卷

合集下载

海南省农垦中学2016届高三数学第九次月考试题文PDF

海南省农垦中学2016届高三数学第九次月考试题文PDF

(2)若从 50 人中随机选出两人做代表,这两人分别来自第三组
和第四组的概率是多少?
18. 解:这 5 组的频率从左到右依序记做: a1, a2, a3, a4, a5
由频率的性质的: a1 a2
1 2
a3
0.5 ,, a1, a2
3, a
成等差数列,设公差为: d
所以:
a1
(a1
d
)
1 2
(a1
6
12
排除选项 A,选 C.
开始
7.阅读程序框图,输出的结果是 ( )
A
A.A
B.B
C.C D.D
B
7.解:根据平行与垂直的判断与性质知 p 是假命题, q 是真命题,所
以 p 是真命题,选 C.
C
D
结束
8.已知 2 8 1(x 0, y 0) ,则 2 x y 的最小值为( ) xy
A.18
记 bn an 1,bn1 an1 1,b1 a1 1 11 2
(1)式为: bn1 2bn ,{bn}为等比数列,公比 q 1,bn b1qn1 2 2n1 2n 所以: an bn 1 2n 1
(2)Tn a1 a2 a3 ... an1 an (21 1) (22 1) (23 1) ... (2n1 1) (2n 1)
10. 盒子中有 6 只灯泡,其中 4 只正品,2 只次品,有放回地从中任取两次,每次只取一只,则事件:取
到的两只都是正品的概率( )
A. 2 3
B. 4 9
C. 2 9
D. 1 9
10.解:从 6 只灯泡中又放回的任取两只,共有 6 6 36 种不同的取法。
取到的两只都是正品共有 4 4 16 种不同的取法。

2016年高考数学(文)押题精粹试题(全国卷,Word版,含答案)

2016年高考数学(文)押题精粹试题(全国卷,Word版,含答案)

2016年高考数学押题精粹试题 文(全国卷)本卷共48题,三种题型:选择题、填空题和解答题.选择题30小题,填空题4小题,解答题14小题.1.若集合}02|{2<--=x x x A ,{2,0,1},B =-则A B 等于( )A.{}2B.}1,0{C.{1,0}-D.{1,0,1}-1【答案】B【解析】{|12},A x x =-<<{0,1}A B ∴=.2.若复数z 满足i 1i +=⋅z (i 是虚数单位),则z 的共轭复数是( ) A .i 1-- B .i 1+ C .i 1+- D .i 1- 【答案】B 【解析】试题分析:11,1izi i z i i+=+∴==-,所以z 的共轭复数是1i + 3.已知集合}ln |{},2,1,0{x y x B A ==-=,则R AB ð=( )A.}2{B.}2,0{C.{1,0}-D.{1,0,2}- 【答案】C【解析】解:},0|{}ln |{>===x x x y x B {|0},{0,1}.R RB x x AB ∴=≤∴=-痧4.已知z 是复数,则“0z z +=”是“z 为纯虚数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 【答案】B【解析】当0z =时,满足0z z +=,此时z 为实数;而当z 为纯虚数时,0z z +=,所以“0z z +=”是“z 为纯虚数”的必要不充分条件,故选B . 5.下列有关命题的说法错误的是( )A .若“q p ∨”为假命题,则p 与q 均为假命题B .“1=x ”是“1≥x ”的充分不必要条件C .“21si n =x ”的必要不充分条件是“6π=x ” D .若命题0R 200≥∈∃x x p ,:,则命题0R 2<∈∀⌝x x p ,:【答案】C【解析】对于选项A ,由真值表可知,若“p∨q ”为假命题,则p ,q 均为假命题,即选项A 是正确的;对于选项B ,由逻辑连接词或可知,“1=x ”能推出“1≥x ”;反过来,“1≥x ”不能推出“1=x ”,即选项B 是正确的;对于选项C ,因为1πsin 26x x ==,,π1sin 62x x =⇒=,命题中所说的条件是π6x =,即π6x =是1sin 2x =的充分不必要条件,即选项C 是不正确的;对于选项D ,由特称命题的否定为全称命题可得,选项D 是正确的.1311511326-⨯⨯=6.下图为某几何体的三视图,图中四边形为边长为1的正方形,两条虚线互相垂直,则该几何体体积为( ) A.16B. 45C.15D. 56【答案】D 【解析】由三视图可知该几何体的直观图为棱长为1的正方体中挖空了一个正四棱锥,则该几何体体积为: 7.某几何体的三视图如图所示,若该几何体的体积为6416π+,则实数a 等于A.2B.4D.【答案】C【解析】由三视图可知该几何体是由一个三棱柱和一个圆柱的14的组合而成,圆柱的底面半径和高均为a .三棱柱的底面是一个底为2a ,高为a 的三角形,三棱柱的高为a ,故该几何体的体积23112(1)6416244V a a a a a a πππ=⨯⨯⨯+⨯⨯⨯=+=+,解得4a =.8.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤?”A.394 B.787 C.767 D.815【答案】B【解析】这是一个等差数列问题,不妨设从低到高的每个人所得的金为:1021,..,,a a a ,依题意有:7874243364431110984321=⇒⎩⎨⎧=+=+⇒⎩⎨⎧=++=+++d d a d a a a a a a a a . 9.执行如图所示的程序框图,如果输入1a =-,2b =-,则输出的a 的值为( )A.16B.8C.4D.2 【答案】B【解析】当1a =-,2b =-时, (1)(2)26a =-⨯-=<; 当2a =,2b =-时, 2(2)46a =⨯-=-<; 当4a =-,2b =-时, (4)(2)86a =-⨯-=>, 此时输出8a =,故选B.10.执行如下图所示的程序框图, 则输出的结果为( )A .7B .9C .10D .11 【答案】B【解析】11,lg lg31,3i S ===->-否;1313,lg +lg lg lg51,355i S ====->-否;1515,lg +lg lg lg 71,577i S ====->-否;1717,l gl799i S ====->-否; 1919,lg +lg lg lg111,91111i S ====-<-是,输出9,i =故选B .11.执行如图所示的程序框图,如果输入的t x ,均为2,则输出的M 等于A .21B .23C .25D .27 【答案】B【解析】 当2x =时,2=M ,11122x -=<;12x =,52M =,1112x-=-<;1x =-,32M =,1122x -=≥,输出3.2M =12.语文、数学、英语共三本课本放成一摞,语文课本与数学课本恰好相邻放置的概率是 ( )A .61 B .31 C .21 D .32【答案】D【解析】三本书放一摞的所有可能为(语,数,英),(语,英,数),(数,语,英),(数,英,语),(英,语,数),(英,数,语)共6种放法,其中有4种情况符合条件,故数学课本和语文课本放在一起的概率为4263P ==. 13.在区间[]0,π上随机地取一个数x ,则事件“1sin 2x ≤”发生的概率为( )A.34 B.23 C.12 D.13 【答案】D【解析】由正弦函数的图象与性质知,当π5π[0,][,π]66x ∈时,1sin 2x ≤,所以所求事件的概率为π5π(0)(π)166π3-+-=,故选D . 14.若点()ααsin ,cos P 在直线x y 2-=上,则sin 2α的值等于( )A.54-B.54C.53-D.53【答案】A 【解析】∵点(cos ,sin )P αα在直线2y x =-上,∴sin 2cos αα=-,∴tan 2α=-,222sin cos sin 2sin cos ααααα==+ 22tan 44tan 1415αα=-=-++. 15.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是( )33 21 18 34 29 78 64 56 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45 A .607 B .328 C .253 D .007 【答案】B【解析】根据题意依次读取数据,得到的样本编号为:253,313,457,860,736,253,007,328,,其中860,736大于700,舍去;253重复出现,所以第二个253舍去,所以得到的第5个样本编号为328,故选B . 16.已知函数()sin cos ()f x x x R λλ=+∈的图象关于4x π=-对称,则把函数()f x 的图象上每个点的横坐标扩大到原来的2倍,再向右平移3π,得到函数()g x 的图象,则函数()g x 的一条对称轴方程为( ) A.6x π=B.4x π=C.3x π=D.116x π=【答案】D【解析】(0)()2f f π=-,可得1λ=-,所以()sin cos )4f x x x x π=-=-, 横坐标扩大到原来的2倍,再向右平移3π,得到函数()g x 的图象,115()()])234212g x x x πππ=--=-,所以函数()g x 的对称轴的方程为1511,2,21226x k x k k Z πππππ-=+=+∈.当0k =时,对称轴的方程为116x π=. 17.已知向量AB 与AC 的夹角为120︒,且2AB =,3AC =,若AP AB AC λ=+,且AP BC ⊥,则实数λ的值为( )A.37 B.13 C.6 D.127 【答案】D 【解析】由向量AB 与AC 的夹角为120︒,且2AB =,3AC =, 可得6cos1203AB AC ⋅==-,又AP BC ⊥,所以()()22(1)AP BC AB AC AC AB AB AC AC AB λλλ⋅=+⋅-=-⋅+-=1270λ-=,所以127λ=,故选D. 18.设等比数列{}n a 前n 项和为n S ,若0841=+a a ,则43S S =( ) A.-53 B.157 C.56D.1514【答案】C 【解析】等比数列{}n a 中,因为0841=+a a ,所以21-=q .所以()()441433311115151216.96111821a q s q s a q q-⎛⎫-- ⎪-⎝⎭====-⎛⎫-- ⎪⎝⎭-19.已知实数,x y 满足1033000x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,则32z x y =+的最大值为( )A .2 B. 3 C.12 D. 15 【答案】C【解析】将32z x y =+变形为322zy x =-+,当目标函数322zy x =-+过点A 时,取最大值,10,2,3303,x y x x y y -+==⎧⎧⇒⎨⎨--==⎩⎩即(2,3)A , 代入可得max 322312.z =⨯+⨯=20.已知()2,21x xf x ax =++若(ln3)2,f =则1(ln )3f 等于( ) A.2- B.1- C.0 D. 1【答案】B【解析】因为()2,21xxf x ax =++,所以()()22 1.2121x x x x f x f x --+-=+=++ 111(ln )(ln 3),(ln )(ln 3)(ln 3)(ln 3)1,(ln ) 1.333f f f f f f f =-∴+=-+==-21.不等式组2503020x y x y x y +-⎧⎪-⎨⎪-⎩≤≥≤的解集记为D ,11y z x +=+,有下面四个命题:p 1:(,)x y D ∀∈,1z ≥ p 2:(,)x y D ∃∈,1z ≥ p 3:(,)x y D ∀∈,2z ≤ p 4:(,)x y D ∃∈,0z <其中的真命题是 ( ) A .p 1,p 2 B .p 1,p 3 C .p 1,p 4 D .p 2,p 3【答案】D【解析】可行域如图所示,OyxA 3x-y-3=0x-y+1=0A(1,3),B(2,1),所以所以,故p 2,p 3 正确,故答案为D. 22.若圆221:0C xy ax ++=与圆222:2tan 0C x y ax y θ+++=都关于直线210x y --=对称,则sin cos θθ=( )A .25 B. 25- C.637- D. 23- 【答案】B【解析】圆1C 与圆2C 都关于直线210x y --=对称,则两圆的圆心(,0)2a-、1(,tan )2a θ--都在直线210x y --=上,由此可得1a =-,tan 2θ=-,所以222sin cos tan 2sin cos sin cos tan 15θθθθθθθθ===-++.23.设21F F 、分别为椭圆22122:1(0)x y C a b a b +=>>与双曲线222112211:1(0,0)x y C a b a b -=>> 的公共焦点,它们在第一象限内交于点M ,︒=∠9021MF F ,若椭圆的离心率3=4e ,则双曲线2C 的离心率1e 的取值范围为( )A.92B.2C.32D.54【答案】B【解析】由椭圆与双曲线的定义,知122MF MF a +=,122MF MF a -=,所以11MF a a =+,21MF a a =-.因为1290F MF ∠=,所以222124MF MF c +=,即22212a a c +=,即221112e e ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,因为34e =,所以12e =.24.已知函数()⎩⎨⎧<+≥+=0,0,3x b ax x x x f 满足条件:对于R ∈∀1x ,∃唯一的R ∈2x ,使得()()21x f x f =.当()()b f a f 32=成立时,则实数=+b a ( )A.26 B.26- C.326+ D.326+- 【答案】D【解析】由题设条件对于R ∈∀1x ,存在唯一的R ∈2x ,使得()()21x f x f =知()x f 在()0,∞-和()+∞,0上单调,得3=b ,且0<a .由()()b f a f 32=有39322+=+a ,解之得26-=a ,故326+-=+b a ,选D.25. 已知抛物线x y 42=的焦点为F ,B A 、为抛物线上两点,若3=,O 为坐标原点,则AOB ∆的面积为( ) ABCD【答案】C【解析】如图所示,设BF m =,则3AD AF m ==,32mAG =,又 22AD AG OF -==,∴43m =,又CD BE 3==,AOB1OF CD 2S ∆∴=⨯⨯=26.如图,已知21F F 、为别双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,P 为第一象限内一点,且满足0)(,2211=⋅+=P F F F P F a ,线段2PF 与双曲线C 交于点Q ,若225F P F Q =,则双曲线C 的渐近线方程为( )A .12y x =± B.5yx =±C.5y x =±D.y x =± 【答案】A【解析】∵1122()0F P F F F P +⋅=,∴121||||2F F F P c ==,又∵225F P F Q =,∴21||5F Q a =, ∴1111||255F Q a a a =+=,在12F F Q ∆中,22221112142525cos 1225a c aQF F a c +-∠=⋅⋅,在12F F P ∆中,2222144cos 22a c c PF F a c +-∠=⋅⋅,∴22222211214442525,122225a c a a c c a c a c+-+-=⋅⋅⋅⋅22225,44c a a b ∴==,∴渐近线方程为12b y x x a =±=±. 27.如图,点P 在边长为1的正方形的边上运动,设M 是CD 的中点,则当P 沿着路径A B C M ---运动时,点P 经过的路程x 与APM ∆的面积y 的函数()y f x =的图象的形状大致是( )A .B .C .D .【答案】A【解析】根据题意得1,01231(),1244515,2422x x f x x x x x ⎧<<⎪⎪⎪=-≤<⎨⎪⎪-≤<⎪⎩,分段函数图象分段画即可.28.已知数列{}n a 中,()()*12212121,1,2kk k k k k aa a a a k N -+==+-=+∈,则{}n a 的前60项的和60S =( )A .312154-B .312124-C .32294-D .322124- 【答案】C【解析】由题意,得214365605910,1,1,,1a a a a a a a a =-==+=-=+,所以S S =奇偶.又121222k k k a a ---=+(2)k ≥,代入221(1)k kk a a -=+-,得12222(1)k k k k a a --=++-(2)k ≥,所以20a =,12422(1)a a =++-,23642(1)a a =++-,34862(1)a a =++-,…,12222(1)k k k k a a --=++-,将上式相加,得2123222(1)(1)(1)k k -++++-+-++-=111(1)3(1)22222k k k k ----+--+=-,所以S 偶=2329301(22222)(152154)2+++++-⨯+⨯=()3021-2-451-2=31247-,所以()31602247S =-=32294-.29.在平面直角坐标系xOy 中,已知2111ln 0x x y --=,2220x y --=,则221212()()x x y y -+-的最小值为( )A .1B .2C .3D .5 【答案】B【解析】根据题意,原问题等价于曲线2ln y x x =-上一点到直线20x y --=的距离的最小值的平方.因为1'2y x x =-,令121x x-=,得1x =,可得与直线20x y --=平行且与曲线2ln y x x =-相切的切点为()1,1,所以可得切线方程为0x y -=,所以直线0x y -=与直线20x y --=之间的距离为=,即曲线2ln y x x =-上的点到直线20x y --=的距离的最小值为,所以曲线2ln y x x =-上的点到直线20x y --=的距离的最小值的平方为2;所以221212()()x x y y -+-的最小值为2,故选B.30.若过点(),P a a 与曲线()ln f x x x =相切的直线有两条,则实数a 的取值范围是( ) A.(,)e -∞ B.(,)e +∞ C.1(0,)eD.(1,)+∞ 【答案】B【解析】设切点为(),ln Q t t t ,则切线斜率()k f t '==1ln t +,所以切线方程为()()ln 1ln y t t t x t -=+-,把(),P a a 代入得()()ln 1ln a t t t a t -=+-,整理得ln a t t =,显然0a ≠,所以1ln t a t =,设()ln t g t t =,则问题转化为直线1y a=与函数()g t 图象有两个不同交点,由()21ln tg t t -'= ,可得()g t 在()0,e 递增,()e,+∞递减,在e x =处取得极大值1e ,结合()g t 图象,可得110e ea a <<⇒> ,故选B. 31.已知向量(1,1),(2,2),t t =+=+m n 若()()+⊥-m n m n ,则t = . 【答案】3- 【解析】(23,3),(1,1),t +=+-=--m n m n ()(),(23)30,t +⊥-∴-+-=m n m n 解得3t =-.32.某单位为了了解用电量y 度与气温x C 之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表由表中数据得回归直线方程ˆˆy bx a =+中ˆ2b ≈-,预测当气温为4-C 时,用电量约为___________度. 【答案】68【解析】回归直线过()y x ,,根据题意()1041101318=-+++=x ,40464383424=+++=y ,代入a =()6010240=⨯--,所以4-=x 时,()()686042=+-⨯-=y ,所以用电量约为68度.33. 正项等比数列{}n a 中,1a ,4031a 是函数()3214633f x x x x =-+-的极值点,则2016a = .【答案】1【解析】()286f x x x '=-+,∵1a ,4031a 是函数()3214633f x x x x =-+-的极值点,∴140316a a ⋅=,又∵正项等比数列{}n a ,∴22016140316a a a =⋅=,∴20161a ==.34.如图,在ABC ∆中,点D 在边BC 上,,4π=∠CAD 27=AC ,102cos -=∠ADB .若ABD ∆的面积为7,则=AB .【解析】因为102cos -=∠ADB ,所以1027sin =∠ADB .又因为,4π=∠CA D 所以,4π-∠=∠A DB C 所以4sin cos 4cos sin )4sin(sin πππADB ADB ADB C ∠-∠=-∠=∠5422102221027=⋅+⋅.在ADC ∆中,由正弦定理得ADCACC AD ∠=∠sin sin , 故2210275427sin sin )sin(sin sin sin =⨯=∠∠⋅=∠-∠⋅=∠∠⋅=ADB C AC ADB C AC ADC C AC AD π. 又,710272221sin 21=⋅⋅⋅=∠⋅⋅⋅=∆BD ADB AB AD S ABD 解得5=BD . 在ADB ∆中,由余弦定理得.37)102(5222258cos 2222=-⨯⨯⨯-+=∠⋅⋅-+=ADB BD AD BD AD AB35.已知公差不为0的等差数列{}n a 中,12a =,且2481,1,1a a a +++成等比数列. (1)求数列{}n a 通项公式; (2)设数列{n b }满足3n n b a =,求适合方程1223145 (32)n n b b b b b b ++++=的正整数n 的值. 【答案】(1)31n a n =-;(2)10.【解析】:(1)设等差数列{}n a 的公差为d ,由2481,1,1a a a +++,得2(33)(3)(37),d d d +=++解得3d =或0d =(舍),故1(1)23(1)3 1.n a a n d n n =+-=+-=- .......6分 (2)由(1)知331n b n =-,19113().(31)(32)3132n n b b n n n n +==--+-+ 12231111111119...3(++)3(),2558313223264n n nb b b b b b n n n n ++++=---=-=-+++依题有9456432n n =+解得10.n = .......12分 36.在ABC ∆中,内角A 、B 、C 对应的边长分别为a 、b 、c ,已知221(cos )2c a B b a b -=-. (1)求角A ;(2)求sin sin B C +的最大值.【答案】(1)π3;(2).【解析】:(1)∵221(cos )2c a B b a b -=-,由余弦定理 得2222222a c b bc a b +--=-,222a b c bc =+-. ∵2222cos a b c bc A =+-,∴1cos 2A =. ∵()0,πA ∈,∴π3A =. (2)()sin sin sin sin sin sin cos cos sin B C B A B B A B A B +=++=++3sin )226B B B π=+=+. ∵20,3B π⎛⎫∈ ⎪⎝⎭,∴5,666B πππ⎛⎫+∈ ⎪⎝⎭,1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦.∴sin sin B C +37.ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知点),(b a 在直线C c B y B A x sin sin )sin (sin =+-上.(1)求角C 的大小;(2)若ABC ∆为锐角三角形且满足BA C m tan 1tan 1tan +=,求实数m 的最小值. 【答案】(1)π3;(2)2. 【解答】:(1)由条件可知(sin sin )sin sin a A B b B c C -+=,根据正弦定理得222a b c ab +-=,又由余弦定理知2221cos 22a b c C ab +-==, .3,0ππ=∴<<C C(2)11sin cos cos tan ()()tan tan cos sin sin C A Bm C A B C A B=+=+ 2222sin cos sin cos sin 2sin 22()cos sin sin sin sin C A B B A C c a b ab C A B A B ab ab++-=⨯=== 2(1)2(21)2a bb a=+-≥⨯-=,当且仅当a b =即ABC ∆为正三角形时,实数m 的最小值为2.38.已知数列{},{}n n a b 满足1,211==b a ,12n n a a =+,).(113121*1321N n b b nb b b n n ∈-=+++++(1)求n a 与n b ;(2)记数列{n a n b }的前n 项和为n T ,求n T .【答案】(1)n b a n n n ==-,212;(2).2282-+-=n n n T 【解答】:(1)n n a a a ==+112,2得,2121221--=⋅=n n n a 由题意知:当1=n 时,121-=b b ,故,22=b 当2≥n 时,,11n n n b b b n-=+得,11nbn b n n =++所以n b n =.(2)由(1)知 22-=n n n n b a .,22221201--+++=∴n n n T ,2222121110-+++=n n nT 两式相减得 ,2211)211(222121212121112101-------=-++++=n n n n n n n T.2282-+-=∴n n n T 39.据统计,2015年“双11”天猫总成交金额突破912亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)女性消费情况:男性消费情况: (1)计算,x y 的值;在抽出的100名且消费金额在[]800,1000(单位:元)的网购者 中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率; (2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右边22⨯列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”附:(22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++)【答案】(1),3,3==y x 53;(2)能. 【解答】:(1)依题意,女性应抽取80名,男性应抽取20名,80(5101547)3x ∴=-+++=,20(23102)3y =-+++=.设抽出的100名且消费金额在[]800,1000(单位:元)的网购者中有三位女性记为,,A B C ;两位男性记为,a b ,从5人中任选2人的基本事件有:(,),(,),(,),(,)A B A C A a A b ,(,),(,),(,)B C B a B b ,(,),(,)C a C b ,(,)a b 共10个.设“选出的两名网购者恰好是一男一女”为事件M ,事件M 包含的基本事件有:(,),(,),(,),(,),(,),(,)A a A b B a B b C a C b 共6件63().105P M ∴== (2)22⨯列联表如下表所示则22()()()()()n ad bc k a b c d a c b d -=++++2100(5015305)80205545⨯-⨯=⨯⨯⨯9.091≈,因为9.091 6.635>,所以能在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’”与性别有关.40.某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A 、B 两所学校各60名学生的成绩,得到样本数据如下:(1)计算两校样本数据的均值和方差,并根据所得数据进行比较.(2)从A 校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.【答案】(1) 1.5,A B x x ==2 1.5,A S =2 1.8;B S =(2)()0.02P C =.【解析】:(1)从A 校样本数据的条形图可知:成绩分别为4分、5分、6分、7分、8分、9分的学生分别有:6人、15人、21人、12人、3人、3人. A 校样本的平均成绩为465156217128393660A x ⨯+⨯+⨯+⨯+⨯+⨯==(分),A 校样本的方差为22216(46)3(96) 1.560A S ⎡⎤=⨯-++⨯-=⎣⎦.从B 校样本数据统计表可知: B 校样本的平均成绩为49512621798693660B x ⨯+⨯+⨯+⨯+⨯+⨯==(分),B 校样本的方差为22219(46)3(96) 1.860B S ⎡⎤=⨯-++⨯-=⎣⎦.因为,A B x x =所以两校学生的计算机成绩平均分相同,又因为22A B S S <,所以A 校的学生的计算机成绩比较稳定,总体得分情况比B 校好.(2) 依题意,A 校成绩为7分的学生应抽取的人数为:61241233⨯=++人,设为,,,a b c d ; 成绩为8分的学生应抽取的人数为:6311233⨯=++人,设为e ;成绩为9分的学生应抽取的人数为:6311233⨯=++人,设为f ;所以,所有基本事件有:,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef 共15个, 其中,满足条件的基本事件有:,,,,,,,,ae af be bf ce cf de df ef 共9个, 所以从抽取的6人中任选2人参加更高一级的比赛,这2人成绩之和大于或等于15的概率为93155P ==. 41.在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,2,11==AA AB ,D 为1AA 的中点,BD 与1AB 交于点O ,CO ⊥侧面11A ABB .(1)求证:1AB BC ⊥;(2)若OA OC =,求三棱锥ABC B -1的体积.【答案】(1)证明见解析;(2 【解析】(1)112,2AD AB DAE ABB AB AA ==∴∆∆, 1.BB A ABD ∴∠=∠11190,90,ABD DBB BB A DBB ∠+∠=∴∠+∠=故1,AB BD ⊥11111CO ABB A BD ABB A CO AB ⊥⊂∴⊥平面,平面,,11,.BD CO O AB CBD AB CB=∴⊥⊥平面,(2)211cos ,.OA AB AB OAB OA OC AB AB AB∠==∴====1111132B ABC C ABB V V --==⨯⨯=42.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是菱形,60BAD ∠=,2AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若E 是PB 中点,求点B 平面EDC 的距离.【答案】(1)证明见解析;(2)7证明:(1)PD ⊥平面ABCD , AC ⊂平面ABCD ,AC PD ∴⊥. 四边形ABCD 是菱形,AC BD ∴⊥,又PD BD D =,AC ⊥平面PBD . 而AC ⊂平面EAC ,∴平面EAC ⊥平面PBD . (2)E 是PB 中点,连结EO ,则PD EO //,EO ⊥平面ABCD ,且1=EO .,2,2,3,1==∴==EC DE OC OD.27214221=⨯⨯=∴∆CDE S 12B EDC E BDC P BDC V V V ---==1123BDC SPD =⨯⨯⨯△1122623=⨯⨯=,设点B 平面EDC 的距离为d ,1337B EDC CDE CDE V S d d S -∆∆=⨯⨯=∴===43.如图,已知O 为原点,圆C 与y 轴相切于点()0,2T ,与x 轴正半轴相交于两点,M N (点M 在点N 的右侧),且3MN =.椭圆()2222:10x y D a ba b+=>>过点,且焦距PA BCD EO等于2ON .(1)求圆C 和椭圆D 的方程; (2)若过点M 斜率不为零的直线l 与椭圆D 交于A 、B 两点,求证:直线NA 与直线NB 的倾角互补.【答案】(1)()22525224x y ⎛⎫-+-= ⎪⎝⎭;22143x y +=(2)见试题解析. 【解析】(1)设圆的半径为r ,由题意,圆心为(),2r ,∵3MN =,∴222325224r ⎛⎫=+= ⎪⎝⎭,52r =.故圆的方程为()22525224x y ⎛⎫-+-= ⎪⎝⎭.令0y =,解得1x =或4x =,所以()()1,0,4,0N M .由222222222,1,,c ab a bc =⎧⎪⎪⎪⎪⎝⎭+=⎨⎪⎪=+⎪⎪⎩得221,4,3c a b ===. ∴椭圆D 的方程为22143x y +=. (2)设直线l 的方程为()4y k x =-,由()221434x y y k x ⎧+=⎪⎨⎪=-⎩,得 ()2222343264120k xk x k +-+-=, ①设()()1122,,,A x y B x y ,则22121222326412,3434k k x x x x k k -+==++. 因为121211AN BN y yk k x x +=+--()()()()()()()()12122112124441411111k x k x x x x x k x x x x ----+--=+=⋅---- ()()()12121225811kx x x x x x =⋅-++⎡⎤⎣⎦--()()()2222122641216080113434k kk x x k k ⎡⎤-⎢⎥=⋅-+=--++⎢⎥⎣⎦, 所以AN BN k k =-.当11x =或21x =时,12k =±,此时方程①,0∆=,不合题意.∴直线AN 与直线BN 的倾斜角互补.44.已知点(5,4)G ,圆221:(1)(4)25,C x y -+-=过点G 的动直线l 与圆1C 相交于E F 、两点,线段EF 的中点为C . (1)求点C 的轨迹2C 的方程;(2)若过点(1,0)A 的直线1l 与2C 相交于P Q 、两点,线段PQ 的中点为M ,又1l 与2:220l x y ++=的交点为N ,求证:AM AN ⋅为定值.解:(1)圆1C 的圆心为1(1,4)C ,半径为5,设(,)C x y ,则1(1,4)C C x y =--,(5,4)CG x y =--, 由题设知10C C CG ⋅=,所以(1)(5)(4)(4)0x x y y --+--=, 即22(3)(4)4x y -+-=.(2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为0kx y k --=,由0220kx y k x y --=⎧⎨++=⎩得223(,)2121k k N k k --++,又直线2C M 与1l 垂直,由14(3)y kx ky x k =-⎧⎪⎨-=--⎪⎩得22224342(,)11k k k k M k k +++++,222161k AM AN AM AN k +⋅=⋅==+(定值).45.已知函数()()ln f x ax x x a R =+∈.(1)若函数()f x 在区间[),e +∞上为增函数,求a 的取值范围;(2)当1a =且k Z ∈时,不等式()()1k x f x -<在()1,x ∈+∞上恒成立,求k 的最大值. 【答案】(1)2a ≥-;(2)3, 【解析】:(1)()ln 1f x a x '=++, 即由题意知()0f x '≥在[),e +∞上恒成立.即ln 10x a ++≥在[),e +∞上恒成立,即()ln 1a x ≥-+在[),e +∞上恒成立, 而()()maxln 1ln 12x e -+=-+=-⎡⎤⎣⎦,所以2a ≥-.(2)()()ln ,1f x f x x x x k x =+<-,即ln 1x x xk x +<-对任意1x >恒成立. 令()ln 1x x xg x x +=-,则()()2ln 21x x g x x --'=-. 令()()ln 21h x x x x =-->, 则()()1110x h x h x x x-'=-=>⇒在()1,+∞上单调递增. ∵()()31ln 30,422ln 20h h =-<=->,∴存在()03,4x ∈使()00h x =. 即当01x x <<时,()0,h x <即()0g x '<;0x x >时,()0,h x >即()0g x '>.∴()g x 在()01,x 上单调递减,在()0,x +∞上单调递增. 令()000ln 20h x x x =--=,即00ln 2x x =-.()()()()()000000min001ln 123,411x x x x g x g x x x x ++-====∈--,∴()0min k g x x <=且k Z ∈,即max 3k =.46. 已知函数x x a x f ln )21()(2+-=,ax x f x g 2)()(-=(R a ∈). (1)当0=a 时,求)(x f 在区间1,e e⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)若对x ∀∈(1,)+∞,()0g x <恒成立,求a 的取值范围.【解答】:(1)函数x x a x f ln )21()(2+-=的定义域为(0,)+∞当0=a 时,x x x f ln 21)(2+-=,xx x x x x x x f )1)(1(11)(2-+-=+-=+-=';当)1,1[ex ∈,有0)(>'x f ;当],1(e x ∈,有0)(<'x f ,∴)(x f 在区间 [e1,1]上是增函数,在 [1,e]上为减函数, 又2211)1(ee f --=,21)(2e e f -=,1(1),2f =-∴21)()(2min e e f x f -==,max 1()(1)2f x f ==-.(2)x ax x a ax x f x g ln 2)21(2)()(2+--=-=,则)(x g 的定义域为),0(+∞.21(21)21(1)[(21)1]()(21)2a x ax x a x g x a x a x x x--+---'=--+==.①若21>a ,令0)(='x g ,得极值点11=x ,1212-=a x , 当112=>x x ,即121<<a 时,在)1,0(上有0)(>'x g ,在),1(2x 上有0)(<'x g ,在),(2+∞x 上有0)(>'x g ,此时)(x g 在区间),(2+∞x 上是增函数, 并且在该区间上有),),(()(2+∞∈x g x g 不合题意;当112=≤x x ,即1≥a 时,同理可知,)(x g 在区间),1(+∞上, 有),),1(()(+∞∈g x g 也不合题意; ② 若21≤a ,则有012≤-a ,此时在区间),1(+∞上恒有0)(<'x g , 从而)(x g 在区间),1(+∞上是减函数;要使0)(<x g 在此区间上恒成立,只须满足021)1(≤--=a g 21-≥⇒a , 由此求得a 的范围是11[,]22-.综合①②可知,当11[,22a ∈-时,对x ∀∈(1,)+∞,()0g x <恒成立. 47从下列三题中选做一题(一).选修4-1:几何证明选讲如图所示,两个圆相内切于点T ,公切线为TN ,外圆的弦TC ,TD 分别交内圆于A 、B 两点,并且外圆的弦CD 恰切内圆于点M . (1)证明://AB CD ;(2)证明:AC MD BD CM ⋅=⋅.【解答】:(1)由弦切角定理可知,NTB TAB ∠=∠, 同理,NTB TCD ∠=∠,所以TCD TAB ∠=∠,所以//AB CD .(2)连接TM 、AM,因为CD 是切内圆于点M , 所以由弦切角定理知,CMA ATM ∠=∠, 又由(1)知//AB CD ,所以,CMA MAB ∠=∠,又MTD MAB ∠=∠, 所以MTD ATM ∠=∠.在MTD ∆中,由正弦定理知, sin sin MD TDDTM TMD =∠∠, 在MTC ∆中,由正弦定理知, sin sin MC TCATM TMC=∠∠, 因TMC TMD π∠=-∠,所以MD TD MC TC =,由//AB CD 知TD BD TC AC =, 所以MD BD MC AC=,即, AC MD BD CM ⋅=⋅.(二)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 为参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A 、B 两点,且AB =求直线l 的倾斜角α的值. 【答案】(1)()2224x y -+=;(2)4πα=或34π. 【解析】:(1)由4cos ρθ=得24cos ρρθ=. ∵222x y ρ+=,cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为2240x y x +-=,即()2224x y -+=.(2)将1cos ,sin x t y t αα=+⎧⎨=⎩代入圆的方程得()()22cos 1sin 4t t αα-+=,化简得22cos 30t t α--=.设,A B 两点对应的参数分别为1t 、2t ,则12122cos ,3.t t t t α+=⎧⎨=-⎩∴12AB t t =-===∴24cos 2α=,cos α=,4πα=或34π. (三)选修4-5:不等式选讲设函数()121f x x x =--+的最大值为m . (1)求m ;(2)若()222,,0,,2a b c a b c m ∈+∞++=,求ab bc +的最大值.【答案】(1)2m =;(2)1.【解析】:(1)当1x ≤-时,()32f x x =+≤; 当11x -<<时,()132f x x =--<; 当1x ≥时,()34f x x =--≤-, 故当1x =-时,()f x 取得最大值2m =.(2)因为()()()22222222222a b c a b b c ab bc ab bc ++=+++≥+=+,当且仅当2a b c ===时取等号,此时ab bc +取得最大值1. 48.从下列三题中选做一题(一).选修4-1:几何证明选讲在△ABC 中,AB=AC ,过点A 的直线与其外接圆交于点P ,交BC 延长线于点D . (1)求证:PC PD =AC BD; (2)若AC=3,求AP •AD 的值.【解析】:(1)∵∠CPD=∠ABC ,∠D=∠D ,∴△DPC~△DBA, ∴PC PD =AB BD ,又∵AB=AC,∴PC PD =AC BD.(2)∵∠ACD=∠APC ,∠CAP=∠CAP ,∴△APC∽△ACD. ∴AP AC =AC AD,∴.92=⋅=AD AP AC(二)选修4-4:坐标系与参数方程在以直角坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C . (1)求曲线2C 的极坐标方程;(2)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T .求TM TN ⋅的取值范围. 【解答】:(1)依题,因222x y ρ=+,所以曲线1C 的直角坐标下的方程为221x y +=,所以曲线2C 的直角坐标下的方程为22(1)1x y +-=, 又sin y ρθ=,所以22sin 0ρρθ-=,即曲线2C 的极坐标方程为2sin ρθ=.(2)由题令00(,)T x y ,0(0,1]y ∈,切线MN 的倾斜角为θ,所以切线MN 的参数方程为:00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数). 联立2C 的直角坐标方程得,20002(cos sin sin )120t x y t y θθθ++-+-= , 即由直线参数方程中,t 的几何意义可知,012TM TN y ⋅=-,因为012[1,1)y -∈-所以TM TN ⋅[0,1]∈.(解法二)设点()ααsin ,cos T ,则由题意可知当()πα 0∈时,切线与曲线2C 相交, 由对称性可知,当⎥⎦⎤ ⎝⎛∈2,0πα 时斜线的倾斜角为2πα+,则切线MN 的参数方程为:⎪⎪⎩⎪⎪⎨⎧+=⎪⎭⎫ ⎝⎛++=-=⎪⎭⎫ ⎝⎛++=ααπααααπααcos sin 2sin sin sin cos 2cos cos t t y t t x (t 为参数),与C 2的直角坐标联立方程,得0sin 21cos 22=-+-ααt t , 则αsin 2121-==t t TN TM ,因为⎥⎦⎤⎝⎛∈2,0πα ,所以[]1,0∈TN TM .(三)选修4-5:不等式选讲已知函数()|2|,f x m x m R =--∈,且(2)1f x +≥的解集A 满足[]1,1A -⊆. (1)求实数m 的取值范围B ;(2)若(),,0,a b c ∈+∞,0m 为B 中的最小元素且011123m a b c++=, 求证:9232a b c ++≥. 【解析】:(1)因为()|2|,f x m x =--所以(2)1f x +≥等价于1x m ≤-,由[]1,1A -⊆知A 是非空集合,所以 11m x m -≤≤-,结合[]1,1A -⊆可得112m m -≥⇒≥,即实数m的取值范围是[)2,.B =+∞(2)由(1)知02m =,所以1112,23a b c++= ()11112323223a b c a b c a b c ⎛⎫∴++=++++ ⎪⎝⎭21922≥=.。

海南省海南中学高考数学模拟试卷(文科)(九).docx

海南省海南中学高考数学模拟试卷(文科)(九).docx

高中数学学习材料马鸣风萧萧*整理制作2016年海南省海南中学高考数学模拟试卷(文科)(九)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={小于7的正整数},,则A∩(C U B)=()A.{1}B.{2}C.{1,2}D.{1,2,5}2.i是虚数单位,复数z满足=2﹣i,则复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为()A.33人,34人,33人B.25人,56人,19人C.30人,40人,30人D.30人,50人,30人4.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是()A.B.C.D.5.已知函数f(x)=4+2a x﹣1的图象恒过定点P,则点P的坐标是()A.(1,6)B.(1,5)C.(0,5)D.(5,0)6.若下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是()A.k=9 B.k≤8 C.k<8 D.k>87.已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不可能是()A. B.πC.2πD.8.已知的等差数列{a n}的前n项和为S n,且满足2S3﹣3S2=12,则数列{a n}的公差是()A.1 B.2 C.3 D.49.已知椭圆+=1(a>b>0)在左焦点为F1(﹣c,0),有顶点为A,上顶点为B,现过A点作直线F1B的垂线,垂足为T,若直线OT(O为坐标原点)的斜率为﹣,则该椭圆的离心率的值为()A.B.C.D.10.如图,RT△ABC中,AB=AC,BC=4,O为BC的中点,以O为圆心,1为半径的半圆与BC交于点D,P为半圆上任意一点,则•的最小值为()A.2+B.C.2 D.2﹣11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()A.2B.4 C.2D.212.已知函数f(x)=(e为自然对数的底数),函数g(x)满足g′(x)=f′(x)+2f(x),其中f′(x),g′(x)分别为函数f(x)和g(x)的导函数,若函数g(x)在[﹣1,1]上是单调函数,则实数a的取值范围为()A.a≤1 B.﹣≤a≤1 C.a>1 D.a≥﹣二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设正项数列{a n}是等比数列,前n项和为S n,若S3=7a3,则公比q为.14.已知函数f(x)=,则函数f(x)的值域为.15.在平面直角坐标系xOy 中,若双曲线的离心率为,则m 的值为 .16.已知正项数列{a n }满足2a 1+3a 2+a 3=1,则与的等差中项最小为 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3acosC=2ccosA ,且b=2,c=3. (1)求a 的值; (2)求sin (B+)的值.18.正方体ABCD ﹣A 1B 1C 1D 1中,点F 为A 1D 的中点. (1)求证:A 1B ∥平面AFC ;(2)求证:平面A 1B 1CD ⊥平面AFC .19.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标为k ,当k ≥85时,产品为一级品;当75≤k <85时,产品为二级品;当70≤k <75时,产品为三级品.现用两种新配方(分别称为A 配方和B 配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(以下均视频率为概率) A 配方的频数分布表 B 配方的频数分布表指标值分组[75,80) [80,85) [85,90) [90,95) 指标值分组 [75,80) [80,85) [85,90) [90,95) [75,80) 频数10 30 40 20 频数5 10 15 40 30 (1)若从B 配方产品中有放回地随机抽取3件,记“抽出的B 配方产品中至少1件二级品”为事件C ,求事件C 的概率P (C );(2)若两种新产品的利润率与质量指标值k 满足如下关系:y=(其中<t <),从长期来看,投资哪种配方的产品平均利润率较大?20.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=3上,圆弧C1的圆心是坐标原点O,半径为5,圆弧C2过点A(﹣1,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由.21.已知函数f(x)=.(1)求f(x)的单调区间;(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,求k 的取值范围.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,已知AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线AD交⊙O于D,过点D作DE⊥AC交AC的延长线于点E,OE交AD于点F.若=,求的值.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是(t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.选修4-5:不等式选讲24.已知关于x的不等式|ax﹣1|+|ax﹣a|≥2(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围.2016年海南省海南中学高考数学模拟试卷(文科)(九)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={小于7的正整数},,则A∩(C U B)=()A.{1}B.{2}C.{1,2}D.{1,2,5}【考点】补集及其运算;交集及其运算.【分析】先用列举法写出U,B,根据交集、补集的意义直接求解即可.【解答】解:U={1,2,3,4,5,6},对于B,解+1≤0可得2<x≤5,又由x∈N,则B={3,4,5}C U B={1,2,6},A={1,2,5}则A∩(C U B)={1,2},故选C.2.i是虚数单位,复数z满足=2﹣i,则复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算性质、几何意义即可得出.【解答】解:由题知,z=(1+i)(2﹣i)=3+i,所以复数z对应的点为(3,1),其点位于第一象限.故选:A.3.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为()A.33人,34人,33人B.25人,56人,19人C.30人,40人,30人D.30人,50人,30人【考点】分层抽样方法.【分析】求出100名员工所占员工总数的比例,然后直接用各段的员工人数乘以该比例数,即可得到每段所抽取的员工数.【解答】解:要从500名员工中抽取100名员工,则抽取的比例为=,所以,从该公司不到35岁的有125人的员工中抽取的人数是125×=25人,从35~49岁的有280人员工中抽取的人数是280×=56人,从50岁以上的有95人员工中抽取的人数是95×=17.所以,各年龄段人数分别为25、56、17.故选:B.4.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,先列举出所有不同的送法,再从中找到甲、乙将贺年卡送给同一人的送法.由此能求出甲、乙将贺年卡送给同一人的概率.【解答】解:甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,不同的送法有四种:甲送丙,乙送丙;甲送丙,乙送丁;甲送丁,乙送丙;甲送丁,乙送丁.甲、乙将贺年卡送给同一人的送法有两种:甲送丙,乙送丙;甲送丁,乙送丁.∴甲、乙将贺年卡送给同一人的概率p=.故选A.5.已知函数f(x)=4+2a x﹣1的图象恒过定点P,则点P的坐标是()A.(1,6)B.(1,5)C.(0,5)D.(5,0)【考点】指数函数的图象变换.【分析】根据函数y=a x的图象过定点(0,1),可得函数f(x)=4+2a x﹣1的图象经过的定点P的坐标.【解答】解:由于函数y=a x的图象过定点(0,1),当x=1时,f(x)=4+2=6,故函数f(x)=4+2a x﹣1的图象恒过定点P(1,6),故选A6.若下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是()A.k=9 B.k≤8 C.k<8 D.k>8【考点】程序框图.【分析】按照程序框图的流程写出前几次循环的结果,由结果中的s的值,判断是否需要输出;得到k取什么值满足条件,取什么值不满足条件;得到判断框中的条件.【解答】解:k=10,s=1,不输出,k的值满足判断框中的条件经过一次循环得到s=11,k=9,此时不输出,k的值满足判断框中的条件再经过一次循环得到s=20,k=8输出,k的值满足判断框中的条件即k=10,k=9满足判断框中的条件;而k=8不满足判断框中的条件所以判断框中的条件是k>8故选D7.已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不可能是()A. B.πC.2πD.【考点】三角函数的最值.【分析】结合三角函数R上的值域[﹣2,2],当定义域为[a,b],值域为[﹣2,1],可知[a,b]小于一个周期,从而可得.【解答】解:函数y=2sinx在R上有﹣2≤y≤2函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C8.已知的等差数列{a n}的前n项和为S n,且满足2S3﹣3S2=12,则数列{a n}的公差是()A.1 B.2 C.3 D.4【考点】等差数列的通项公式.【分析】设数列{a n}的公差是d,由2S3﹣3S2=12,可得2(a1+a2+a3)﹣3(a1+a2)=12,再利用等差数列的通项公式即可得出.【解答】解:设数列{a n}的公差是d,∵2S3﹣3S2=12,∴2(a1+a2+a3)﹣3(a1+a2)=12,∴3d=12,解得d=4.故选:D.9.已知椭圆+=1(a>b>0)在左焦点为F1(﹣c,0),有顶点为A,上顶点为B,现过A点作直线F1B的垂线,垂足为T,若直线OT(O为坐标原点)的斜率为﹣,则该椭圆的离心率的值为()A.B.C.D.【考点】椭圆的简单性质.【分析】由直线BF1方程和直线OT方程联立求得T点坐标,求得直线AT的斜率,AT⊥BF1得:直线的斜率的乘积为﹣1,即可解得e的值.【解答】解:椭圆+=1(a>b>0),A、B和F1点坐标为:(a,0)、(b,0),(﹣c,0),∴直线BF1的方程是,OT 的方程为,联立解得T 点坐标为,直线AT 的斜率为,由AT ⊥BF 1得,∵a 2=b 2+c 2,e=,解得.故答案选:C .10.如图,RT △ABC 中,AB=AC ,BC=4,O 为BC 的中点,以O 为圆心,1为半径的半圆与BC 交于点D ,P 为半圆上任意一点,则•的最小值为( )A .2+B .C .2D .2﹣【考点】平面向量数量积的运算.【分析】建立空间直角坐标系,利用向量数量积的定义结合三角函数的性质进行求解即可.【解答】解:以O 为坐标原点,BC 所在直线为x 轴建立直角坐标系, 所以B (﹣2,0),D (1,0),A (0,2), 设P (x ,y )(y ≥0)且x 2+y 2=1,所以,令x=cos α,y=sin α,α∈[0,π],则,其中tan ϕ=2.所以当α=π﹣ϕ时有最小值.故选:D11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()A.2B.4 C.2D.2【考点】简单空间图形的三视图.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD;四面体S﹣ABD的四个面中SBD面的面积最大,三角形SBD是边长为2的等边三角形,即可求出四面体的四个面中面积最大的面积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD;四面体S﹣ABD的四个面中SBD面的面积最大,三角形SBD是边长为2的等边三角形,所以此四面体的四个面中面积最大的为=2.故选:C.12.已知函数f(x)=(e为自然对数的底数),函数g(x)满足g′(x)=f′(x)+2f(x),其中f′(x),g′(x)分别为函数f(x)和g(x)的导函数,若函数g(x)在[﹣1,1]上是单调函数,则实数a的取值范围为()A.a≤1 B.﹣≤a≤1 C.a>1 D.a≥﹣【考点】利用导数研究函数的单调性.【分析】求出f(x)的导数,从而求出g(x)的导数,构造ϕ(x)=ax2+2ax+1,通过讨论a的范围结合函数的单调性求出a的具体范围即可.【解答】解:∵f(x)=,∴,∴,∵g(x)在[﹣1,1]上是单调函数,则当﹣1≤x≤1时,g'(x)≥0恒成立或g'(x)≤0恒成立,又∵g'(0)=1>0,所以当﹣1≤x≤1时,g'(x)≤0恒成立必定无解,∴必有当﹣1≤x≤1时,g'(x)≥0恒成立,设ϕ(x)=ax2+2ax+1,当a=0时,ϕ(x)=1成立;当a>0时,由于ϕ(x)在[﹣1,1]上是单调递增,所以ϕ(﹣1)≥0得a≤1;当a<0时,由于ϕ(x)在在[﹣1,1]上是单调递减,所以ϕ(1)≥0得,综上:.故选:B二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设正项数列{a n}是等比数列,前n项和为S n,若S3=7a3,则公比q为.【考点】等比数列的通项公式.【分析】由已知得到关于首项和公比的方程,求解方程得答案.【解答】解:由S3=7a3,得,解得或,又q>0,∴.故答案为:.14.已知函数f(x)=,则函数f(x)的值域为(﹣1,+∞).【考点】函数的值域.【分析】根据分段函数,求出每段函数的值域,再求出并集即可.【解答】解:当x≤1时,由﹣1<f(x)=2x﹣1≤1;当x>1时,由f(x)=1+log2x>1,所以函数f(x)的值域为(﹣1,+∞).故答案为:(﹣1,+∞)15.在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2.【考点】双曲线的简单性质.【分析】由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.【解答】解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:216.已知正项数列{a n}满足2a1+3a2+a3=1,则与的等差中项最小为.【考点】等差数列的通项公式.【分析】令a=a1+a2,b=a2+a3,由2a1+3a2+a3=1知,2a+b=1,且a,b>0,可得: +=(2a+b),展开利用基本不等式的性质即可得出.【解答】解:令a=a1+a2,b=a2+a3,由2a1+3a2+a3=1知,2a+b=1,且a,b>0,∴+=(2a+b)=3+≥3+2,当且仅当=,即a=,b=﹣1时,取“=”号,∴等差中项最小为.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.△ABC的内角A,B,C的对边分别为a,b,c,已知3acosC=2ccosA,且b=2,c=3.(1)求a的值;(2)求sin(B+)的值.【考点】正弦定理;两角和与差的正弦函数;余弦定理.【分析】(1)使用余弦定理将角化边,得出a,b,c的关系,解出a;(2)利用余弦定理求出cosB,计算sinB,利用和角余弦公式计算.【解答】解:(1)∵3acosC=2ccosA,∴3a×=2c×.∴5a2﹣5c2+b2=0.∵b=2,c=3,∴a=.(2)由余弦定理得cosB==﹣.∴sinB=.∴sin(B+)=sinBcos+cosBsin==.18.正方体ABCD﹣A1B1C1D1中,点F为A1D的中点.(1)求证:A1B∥平面AFC;(2)求证:平面A1B1CD⊥平面AFC.【考点】平面与平面垂直的判定;平面与平面平行的判定.【分析】(1)连接BD交AC于点O,连接FO,要证A1B∥平面AFC,只需证明直线A1B 平行平面AFC内的直线FO即可;(2)要证平面A1B1CD⊥平面AFC,只需证明平面A1B1CD内的直线B1D垂直平面AFC 即可.【解答】证明:(1)连接BD交AC于点O,连接FO,则点O是BD的中点.∵点F为A1D的中点,∴A1B∥FO.又A1B∉平面AFC,FO⊂平面AFC,∴A1B∥平面AFC.(2)在正方体ABCD﹣A1B1C1D1中,连接B1D.∵AC⊥BD,AC⊥BB1,∴AC⊥平面B1BD,AC⊥B1D.又∵CD ⊥平面A 1ADD 1,AF ⊂平面A 1ADD 1,∴CD ⊥AF .又∵AF ⊥A 1D ,∴AF ⊥平面A 1B 1CD .∵AC ⊥B 1D ,∴B 1D ⊥平面AFC .而B 1D ⊂平面A 1B 1CD ,∴平面A 1B 1CD ⊥平面AFC .19.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标为k ,当k ≥85时,产品为一级品;当75≤k <85时,产品为二级品;当70≤k <75时,产品为三级品.现用两种新配方(分别称为A 配方和B 配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(以下均视频率为概率) A 配方的频数分布表 B 配方的频数分布表指标值分组 [75,80) [80,85)[85,90) [90,95) 指标值分组[75,80) [80,85) [85,90)[90,95) [75,80)频数10 30 40 20 频数 5 10 15 40 30 (1)若从B 配方产品中有放回地随机抽取3件,记“抽出的B 配方产品中至少1件二级品”为事件C ,求事件C 的概率P (C );(2)若两种新产品的利润率与质量指标值k 满足如下关系:y=(其中<t <),从长期来看,投资哪种配方的产品平均利润率较大?【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(1)先求出P (抽中二级品)=,由此能求出事件C 的概率P (C ).(2)分别求出A 的分布列,E (A )和B 的分布列E (B ),由此能求出从长期来看,投资哪种配方的产品平均利润率较大.【解答】解:(1)P (抽中二级品)=,P (没抽中二级品)=,P (C )=1﹣()3=.(3)A的分布列为:y t 5t2P 0.6 0.4∴E(A)=0.6t+2t2B的分布列为:y t 5t2t2P 0.7 0.25 0.05∴E(B)=0.7t+1.3t2∵<t<,∴E(A)﹣E(B)=t(t﹣)>0,∴E(A)较大,投资A.20.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=3上,圆弧C1的圆心是坐标原点O,半径为5,圆弧C2过点A(﹣1,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由.【考点】直线与圆的位置关系.【分析】(1)由圆弧C1所在圆的方程求出M、N的坐标,求出直线AM的中垂线方程与直线MN中垂线方程,再求出圆弧C2所在圆的圆心和半径,即可求出圆弧C2所在圆的方程;(2)先假设存在这样的点P(x,y),根据条件和两点的距离公式列出方程化简,求出点P 的轨迹方程,分别与圆弧C1的方程、圆弧C2的方程联立后求出P的坐标即可得到答案.【解答】解:(1)圆弧C1所在圆的方程为x2+y2=25,令x=3,解得M(3,4),N(3,﹣4),∵圆弧C2过点A(﹣1,0),∴直线AM的中垂线方程为y﹣2=﹣(x﹣1),∵直线MN的中垂线方程y=0上,∴令y=0,得圆弧C2所在圆的圆心为O2(3,0),∴圆弧C2所在圆的半径为r2=|O2A|=4,∴圆弧C2的方程为(x﹣3)2+y2=16(﹣1≤x≤3);(2)假设存在这样的点P(x,y),由得,,化简得,x2+y2+4x+2=0,∴点P的轨迹方程是x2+y2+4x+2=0,由,解得(舍去),由,解得,综上知的,这样的点P存在2个.21.已知函数f(x)=.(1)求f(x)的单调区间;(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,求k 的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)根据已知原函数的解析式求导,分析定义域内各区间上导函数的符号,进而可得f(x)的单调区间;(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,即存在x1,x2∈(1,+∞)且x1≠x2,使f(x2)+klnx2≥f(x1)+klnx1成立.令h(x)=f(x)+klnx,利用导数法求其最值,可得答案.【解答】解:(1)∵函数f(x)=.∴,令f′(x)=0得x=1,x∈(0,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减;综上,f(x)单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不妨设x1>x2>1,由(1)知x∈(1,+∞)时,f(x)单调递减.|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|等价于f(x2)﹣f(x1)≥k(lnx1﹣lnx2),即f(x2)+klnx2≥f(x1)+klnx1,存在x1,x2∈(1,+∞)且x1≠x2,使f(x2)+klnx2≥f(x1)+klnx1成立.令h(x)=f(x)+klnx,h(x)在(1,+∞)上存在减区间.有解,即有解,即.令,,时,f'(x)>0,f(x)单调递增,时,f'(x)<0,f(x)单调递减,∴,∴.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,已知AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线AD交⊙O于D,过点D作DE⊥AC交AC的延长线于点E,OE交AD于点F.若=,求的值.【考点】与圆有关的比例线段.【分析】连接OD,BC,设BC交OD于点M,则∠OAD=∠ODA,从而∠ODA=∠DAE,OD∥AE,又AC⊥BC,且DE⊥AC,从而BC∥DE.进而四边形CMDE为平行四边形,由此能求出.【解答】本小题满分解:连接OD,BC,设BC交OD于点M.∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,又∵AC⊥BC,且DE⊥AC,∴BC∥DE.∴四边形CMDE为平行四边形,∴CE=MD由,设AC=3x,AB=5x,则OM=,又OD=,∴MD=﹣=x,∴AE=AC+CE=4x,∵OD∥AE,∴=.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是(t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.【考点】简单曲线的极坐标方程.【分析】利用x2+y2=ρ2,x=ρcosθ,y=ρsinθ,可把曲线C的极坐标方程化为直角坐标方程.将直线l的参数方程消去t化为直角坐标方程:,令y=0,可得M点的坐标为(2,0).利用|MN|≤|MC|+r即可得出.【解答】解:曲线C的极坐标方程可化为ρ2=2ρsinθ.又x2+y2=ρ2,x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为x2+y2﹣2y=0.将直线l的参数方程消去t化为直角坐标方程:,令y=0,得x=2,即M点的坐标为(2,0).又曲线C的圆心坐标为(0,1),半径r=1,则,∴.选修4-5:不等式选讲24.已知关于x的不等式|ax﹣1|+|ax﹣a|≥2(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)当a=1时,可得|x﹣1|≥1,去掉绝对值,可得不等式的解集.(2)根据|ax﹣1|+|ax﹣a|≥2,原不等式解集为R等价于|a﹣1|≥2,再结合a>0,求出实数a的取值范围.【解答】解:(1)当a=1时,不等式为|x﹣1|≥1,∴x≥2或x≤0,∴不等式解集为{x|x≤0或x≥2}.(2)不等式的解集为R,即|ax﹣1|+|ax﹣a|≥2(a>0)恒成立,∵,∴,∵a>0,∴a≥3,∴实数a的取值范围为[3,+∞).2016年10月16日。

海南省海南中学2016届高三第5次月考数学(文科)试题

海南省海南中学2016届高三第5次月考数学(文科)试题

海南中学2016届高三第5次月考文科数学 试题本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题两部分)。

考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,4}A =,集合{|,,}B x x a b a A b A ==+∈∈,则集合B 中元素的个数是 (A )4 (B )5 (C )6 (D )7(2)复数1ii -2(i 为虚数单位)的共轭复数为(A )2155i -+ (B )2155i -- (C )2155i - (D )2155i +(3)已知向量(1,1)a =,),2(x =,若+与-平行,则实数x 的值是 (A )2 (B )0 (C )1 (D )-2(4)已知⎪⎩⎪⎨⎧≥-+≤--≥-,02,063,0y x y x y x 则y x +2的最小值是(A )2 (B )3 (C )4 (D )9(5)关于空间两条直线a 、b 和平面α,下列命题正确的是(A )若//a b ,b α⊂,则//a α (B )若//a α,b α⊂,则//a b (C )若//a α,//b α,则//a b (D )若a α⊥,b α⊥,则//a b(6)在等差数列{}n a 中,n S 为其前n 项和,若3a =8,则5S =(A )16 (B )24 (C )32 (D )40(7)已知α为第四象限角,33cos sin =+αα,则α2cos =(A )35 (B )95 (C )35- (D )95-(8)已知P 为△ABC 所在平面外一点,且PA,PB,PC 两两垂直,则下列结论:①PA ⊥BC; ②PB ⊥AC;③PC ⊥AB;④AB ⊥BC.其中正确的是(A )①②③ B.①②④ (C )②③④ (D )①②③④(9)已知sin αα为锐角,tan β=-3且β为钝角,则角α+β的值为(A )4π (B )3π (C )23π (D )34π(10)如图所示,将正方形ABCD 沿对角线BD 折成直二面角A-BD-C,有如下四个结论:①AC ⊥BD.②△ACD 是等边三角形.③AB 与平面BCD 成60°的角. ④AB 与CD 所成的角是60°. 其中正确结论的个数是(A )1 (B )2 (C )3 (D )4(11)正方体1111ABCD A B C D -的棱长为6,1O 为正方形1111A B C D 的中心,则四棱锥1O ABCD-的外接球的表面积为 (A )9π (B )324π (C )81π (D )2432π(12)如果函数()y f x =图像上的任一点的坐标(,)x y ,都满足方程lg()lg lg x y x y +=+那么正确的选项是(A )()y f x =是区间(0,)+∞上的减函数,且4x y +≤ (B )()y f x =是区间(1,)+∞上的减函数,且4x y +≥ (C )()y f x =是区间(1,)+∞上的增函数,且4x y +≥ (D )()y f x =是区间(1,)+∞上的减函数,且4x y +≤第Ⅱ卷本卷包括必考题和选考题两部分。

2016年海南省高考文科数学试题及答案

2016年海南省高考文科数学试题及答案

欢迎下载,祝您学习进步,成绩提升(D) y=2sin(2x+;)(4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为(A)12n(B)(C)8ti(D)4ti3k⑶设F为抛物线C:y2=4x的焦点,曲线y=-(k>0)与C交于点P,PF_Lx轴,则k=X(A)-(B)1(C)-(D)222(6)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-l=O的距离为1,则a=(A)(B)(C)-^3(D)234(7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20n(B)24兀(C)28n(D)32n(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路I1遇到红灯,则至少需要等待15秒才出现绿灯的概率为学.科网7533(A)—(B)-(C)-(D)—108810(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的$=(A)7(B)12(C)17(D)34(10)下列函数中,其定义域和值域分别与函数y=10'^的定义域和值域相同的是(A)y=x(B)y=lgx(C)y=2x(D)y=~j=/输入x,n/ j“0,s=0|广/输N/ /输户/一欢迎下载,祝您学习进步,成绩提升一(11)函数f(x)=cos2x+6cos(y-x)的最大值为(A)4(B) 5 (C)6(D) 7(12)己知函数f(x)(x《R)满足/(x)=f(2-x),若函数y=\x2-2x-3\与y=f(x)图像的交点为(xi,yi)»•…’m(Xm,Wn),则£耳=r=l(A)0(B)m(C)2m(D)4m二.填空题:共4小题,每小题5分.(13)己知向量a=(m,4),b=(3,-2),且a〃b,则m=.”x-y+120(14)若x,y满足约束条件<x+y-320,则z=x-2y的最小值为x-3<045(15)AAB C的内角A,B, C的对边分别为a,b,c,若COSA=-,cosC=—,a=l,贝lj b=.513(16)有三张卡片,分别写有1和2,1和3,2和3.学.科网甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)等差数列{%}中,角+Q4=4,%+。

2016届海南省海南中学高三考前高考模拟(七)数学(文)试卷(word)

2016届海南省海南中学高三考前高考模拟(七)数学(文)试卷(word)

2016届海南省海南中学高三考前高考模拟(七)数学(文)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}062≤--=x x x A ,{}02>-=x x B ,则=)(B A C R ( ) A .{}32>≤x x x 或 B .{}32>-≤x x x 或C .{}32≥<x x x 或D .{}32≥-<x x x 或2.设复数21,z z 在复平面内的点关于实轴对称,i z +=11,则=21z z ( ) A .i - B .i C .1- D .13.已知在平面直角坐标系xOy 中,角α的终边在直线x y 2=位于第一象限的部分,则=+)6sin(πα( ) A .6323- B .6233- C .6323+ D .6233+- 4.命题“有些相互垂直的两直线不相交”的否定是( )A .有些相互垂直的两直线相交B .有些不相互垂直的两直线不相交C .任意相互垂直的两直线相交D .任意相互垂直的两直线不相交5.某几何体的三视图如图所示,其则该几何体的体积是( )A .π332+B .π34+C .π3334+ D .π334+7.某程序框图如图所示,若该程序运行后输出的值是1,则正整数n 的值是( )A .3B .4C .5D .68.在平面直角坐标系xOy 中,已知点)0,2(A ,直线05:=-+y x l ,点),(y x B 是圆012:22=-++y x x C 上的动点,,,l BE l AD ⊥⊥垂足分别为E D ,,则线段DE 的最大值是() A .2 B .223 C .22 D .2259.已知函数)(x f 在定义域]3,3[-上是偶函数,在]3,0[上单调递增,并且)22()1(22-+->--m m f m f ,则m 的取值范围是( )A .]2,21(-B .]2,21[-C .]2,21[D .]2,21(10.已知函数)1(x f y -=的图象如下,则)2(+=x f y 的图象是( )11.在平面直角坐标系xOy 中有不共线三点),(11b a P ,),(22b a A ,),(33b a B .实数μλ,满足0≠=+λμμλ,则以P 为起点的向量μλ,的终点连线一定过点( )A .),(132132b b b a a a -+-+B .),(132132a a a b b b -+-+C .)2,2(132132b b b a a a -+-+D .)2,2(132132a a a b b b -+-+12.已知公差不为零的等差数列{})3(≥n a n 的最大项为正数.若将数列{}n a 中的项重新排列得到公比为q 的等比数列{}n b .则下列说法正确的是( )A .0>q 时,数列{}n b 中的项都是正数B .数列{}n a 中一定存在的为负数的项C .数列{}n a 中至少有三项是正数D .以上说法都不对第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知1>x ,则x x 27log 9log +的最小值是_______.14.在某次测量中得到某样本数据如下:90,90,x,94,93.若该样本数据的平均值为92,则该样本数据的方差为______.15.使得x x x 214log 2<<-成立的x 的范围是_______. 16.已知方程01322=-+x x 的一非零实根是1x ,)0(0132≠=-+a x ax 的一非零实根是2x .函数32331)(23+-+=x x x x f 在),(21x x 有且仅有一个极值点,则a 的取值范围是______. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分) 已知函数R x x x x x f ∈-+=,3cos 32cos sin 2)(2.(1)求函数)(x f 的最小正周期和单调增区间;(2)已知c b a ,,分别是ABC ∆三个内角C B A ,,的对边,2=a 且3)322(=+πA f ,求ABC ∆面积的最大值.18.(本小题满分12分)如图,棱柱1111D C B A ABCD -的底面是菱形.侧棱长为5,平面⊥ABCD 平面11ACC A ,33=AB ,︒=∠60BAD ,点E 是ABD ∆的重心,且41=E A .(1)求证:平面∥11DC A 平面C AB 1;(2)求棱柱1111D C B A ABCD -的体积.19.(本小题满分12分)有两位环保专家从C B A ,,三个城市中每人随机选取一个城市完成一项雾霾天气调查报告,两位专家选取的城市可以相同,也可以不同.(1)求两位环保专家选取的城市各不相同的概率;(2)求两位环保专家中至少有一名专家选择A 城市的概率.20.(本小题满分12分) 如图,已知椭圆)0(12222>>=+b a b y a x ,椭圆的长轴长为8,离心率为47. (1)求椭圆方程;(2)椭圆内接四边形ABCD 的对角线交于原点,且0)()(=-⋅+,求四边形ABCD 周长的最大值与最小值.21.(本小题满分12分) 已知函数)0)(2()2()2(41)(24≠-+-+-=a x a x x a x f ,函数)(x f 与函数)(x g 的图象关于直线1=x 对称.(1)求函数)(x g ;(2)2≥a 时,求证:函数)(x g 在区间)1,1(+a a 不单调. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆内接四边形ABCD 中,BC AB =,AD 的延长线与BC 的延长线交于点P .(1)求证:DPDC BP BC =; (2)求证: 9021=∠+∠PDC BDC.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是0sin 2cos 2=+-θθρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+=t y t x 222221(t 为参数). (1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)若直线l 与曲线C 交于B A ,两点,求AB 的值.24.(本小题满分10分)选修4-5:不等式选讲已知实数n m ,满足32=-n m .(1)若93≥++n m ,求实数m 的取值范围;(2)求n m n m 32313135-+-的最小值.新课标模拟卷数学试题(七)参考答案3.C 取点)2,1(P ,则3==OP r ,所以3632sin ==α,3331cos ==α,所以6323213323366sin cos 6cos sin )6sin(+=⨯+⨯=+=+παπαπα. 4.C5.D 由三视图可知该几何体由长方体和圆锥构成,所以体积ππ33433122+=+⨯⨯=V . 6.A 如图,区域1Ω的面积是9,区域2Ω的面积是18,所以所求概率为P=21189=.7.C1)2(lg )2lg (lg )2(lg lg 2lg 2)(lg )2(lg 4lg lg )2(lg 4log )(lg 2222222==+=++=+=+m m m m m m m m m 所以12lg -=m 或12lg =m ,所以201=m 或5=m ,因为m 是整数,所以5=m ,所以5=n . 8.D 圆012:22=-++y x x C ,即2)1(22=++y x .如图,过点B 作直线AD 的垂线,交AD 于点F ,则BF DE =,所以此问题转化为求圆上的点B 到直线AD 的距离的最大值,即圆心到直线02=--y x 的距离加半径.易知直线AD 的方程是02=--y x ,点)0,1(-C 到直线02=--y x 的距离是223221=--,所以DE 的最大值是223+2=225.9.D 因为函数)(x f 在]0,3[-上单调递减,由)22()1(22-+->--m m f m f ,即)22()1(22-+->--m m f m f ,所以函数)(x f 在]0,3[-上单调递减,而01)1(22,01222<---=-+-<--m m m m ,所以由)22()1(22-+->--m m f m f 得, ⎪⎩⎪⎨⎧-+-<--≤-+-≤-≤--≤-22102230132222m m m m m m ,解得221≤<m . 10.A 把函数)]1([)1(--=-=x f x f y 的图象沿着x 轴向左平移1个单位得)(x f y -=的图象,再关于y 轴对称得)(x f y =的图象,再沿着x 轴向左平移2个单位得)2(+=x f y 的图象,再把)2(+=x f y 的图象在x 轴下方的部分关于x 轴对称上去.11.C 由0≠=+λμμλ,所以111=+μλ.设点Q 在向量μλ,的中点连线上,则=+=+=)(1)(1μμλλ=--+--),(),(13131212b b a a b b a a )2,2(132132b b b a a a -+-+,所以一点过点)2,2(132132b b b a a a -+-+.12.B 不放设等差数列{}n a 中的每一项如下:n a a a a <⋅⋅⋅<<<321,其中0>n a .如果数列{}n a 中至少有三项式正数,比如n n n a a a <<<--120,这时,n n n a a a ,,12--即是等差数列又是等比数列,即n n n a a a ==--12,矛盾.说明数列{}n a 中至多有两项是正数. 13.362 3623lg 3lg lg 3lg 223lg 3lg lg 3lg 2log 9log 27=⋅≥+=+x x x x x x (当且仅当3lg 3lg lg 3lg 2x x =,即63=x 取等号)14.514 由92)93949090(51=++++⨯x ,所以93=x .所以该样本数据的方差为514])9293()9294()9293()9290()9290[(51222222=-+-+-+-+-=S . 15.164<<x 如图,可知164<<x .16.)1,0()0,49[ - 13)(2-+='x x x f 在),(21x x 有且仅有一解,0)1()33)(323()13)(13()()(222122222212112122212121≤--=--+--+=-+-+=''x x a x ax x x x x x x x x x x x f x f ,所以01≥-a ,所以1≤a ,又049≥+=∆a ,所以49-≥a ,所以149≤≤-a . 17.解:(1)3)2cos 1(32sin 3cos 32cos sin 2)(2-++=-+=x x x x x x f)32sin(2)2cos 232sin 21(22cos 32sin π+=+=+=x x x x x , 所以)(x f 的最小正周期ππ==22T . 由R k k x k ∈+≤+≤+-,223222πππππ,所以R k k x k ∈+≤≤+-,12125ππππ. 所以)(x f 的单调增区间是)](12,125[R k k k ∈++-ππππ. (2)3)32sin(2)35sin(2]3)322(2sin[2)322(=+-=+=++=+πππππA A A A f , 所以23)32sin(-=+πA ,因为π<∠<A 0,所以353232πππ<+∠<A , 所以3432ππ=+∠A ,所以32π=∠A ,又bc bc c b bc c b 332cos 242222≥++=-+=π, 所以34≤bc ,当且仅当c b =时等号成立,所以3343sin 21≤==∆bc A bc S ABC . 18.证明:(1)因为1AA 平行等于1CC ,所以四边形1ACC A 1是平行四边形,所以AC C A ∥11. 又因为AD 平行等于11C B ,所以四边形11B ADC 是平行四边形,所以11DC AB ∥.因为⊄1,AB AC 平面11DC A ,⊆111,DC C A 平面11DC A ,所以∥AC 平面11DC A ,∥1AB 平面11DC A ,又因为A AB AC =1 ,⊆1,AB AC 平面C AB 1, 所以平面∥11DC A 平面C AB 1.(2)解:设O BD AC = ,由题意可知ABD ∆是等边三角形. 因为33=AB ,所以2930cos 33cos ==∠= BAC AB OA , 所以332==OA AE ,所以22121AE E A AA +=,所以AC E A ⊥1, 又因为平面ABCD ⊥平面11ACC A ,平面ABCD 平面AC ACC A =11,⊆E A 1平面11ACC A ,所以⊥E A 1平面ABCD .所以E A 1是棱柱1111D C B A ABCD -的高,由于菱形面积2327)60sin 21(2=⋅= AD AB S , 所以棱柱1111D C B A ABCD -的体积3541=⋅=E A S V .19.解:(1)记两位专家分别为b a ,,则两位环保专家从C B A ,,三个城市中每人随机抽取一个城市的基本事件数共有9种:bB aC bA aC bC aB bA aB bC aA bB aA bC aC bB aB bA aA ,;,;,;,;,;,;,;,;,. 记事件D 表示“两位环保专家选取的城市各不向同伴”,则3296)(==D P . (2)记事件E 表示“恰有1位环保专家选择A 城市”,事件F 表示“恰有2位环保专家选择A 城市”,则事件F E +表示“两位环保专家中至少有一名专家选择A 城市”.959194)()()(=+=+=+F P E P F E P . 20.解:(1)由题意可知47,82==a c a ,所以7,4==c a . 又因为222b a c -=,所以92=b ,所以椭圆方程是191622=+y x . (2)由题意可设),(),,(2211y x B y x A ,则),(),,(2211y x D y x C ----, 因为),,(1212y y x x AB --=),,(1212y y x x DC --=所以DC AB =,所以四边形ABCD 是平行四边形.因为0)()()()(22=-=-⋅+=-⋅+=, 所以四边形ABCD 是菱形.设直线AC 的方程是0=-my x ,则直线BD 的方程是0=+y mx ,并且由椭圆的对称性不妨设0≥m ,由⎪⎩⎪⎨⎧=+=-1916022y x m y x ,得222144)169(m x m =+,所以169144,16914422222+=+=m y m m x , 所以),16912,16912(22++m m m A ),16912,16912(22+-+-m m m C由⎪⎩⎪⎨⎧=+=+1916022y x y m x ,得144)169(22=+x m ,所以169144,16914422222+=+=m m y m x , 所以),16912,16912(22++-m m m B ),16912,16912(22+-+m m m D 所以)16911691)(1(144)1691216912()1691216912(2222222222m m m m mm m m m AB ++++=+-+++++=, 所以49)1(49)1(144)1(60)169)(169()1(60)16911691)(1(144222222222222-++++=+++=++++=m m m m m m m m m AB 令12+=m t ,则1444949160494914460222++-=-+=tt t t t AB ,令4625)211(491444949)(22+--=++-=t t t t u ,因为110≤<t , 所以211=t ,即1,212===+m t m 时,524,4625)(min min ==AB t u .11=t,即0,112===+m t m 时,5,144)(min min ==AB t u . 所以四边形ABCD 周长的最大值是20,最小值是596.21.解:(1)设点),(00y x M 是函数)(x f 图象上任意一点,点),(y x P 是函数)(x g 图象上与M 关于直线1=x 对称的点.因为y y x x ==+00,2,)2()2()2(41020400-+-+-=x a x x a y . 所以ax x ax y -+=2441,即)0(41)(24≠-+=a ax x ax x g .(2)a x ax x g -+='2)(3,]112)111[(12)1()1(33-+++-=-+++=+'a a a a a a a a a a a g , 令11+=a t ,由2≥a ,所以310≤<t ,则]12)1[()1(3-+-=+'t t a a ag , 令310,312)1()(233≤<-+-=-+-=t t t t t t t h ,163)(2-+-='t t t h ,由0)(>'t h ,所以31361<<-t ,由0)(<'t h ,所以3610-<<t , 所以)(t h 在)31,361(-单调递增,在)361,0(-单调递减. 所以0271)31()(,0)0()(<-=<=<h t h h t h ,即0)(<t h ,0)()1(<=+'t ah a a g , 又02)1(>='g ,所以函数)(x g 在区间)1,1(+a a不单调. 22.证明:(1)因为CPD APB PBA PDC ∠=∠∠=∠,,所以CDP ABP ∆∆~,所以DPBPCD AB =. 又BC AB =,所以DPDCBP BC =. (2)连接AC BD ,,因为BC AB =,所以BCA BAC ∠=∠,又B D CBA C ∠=∠,BDA BCA ∠=∠,所以BDA BDC ∠=∠,所以BDC ADC ∠=∠2.因为180=∠+∠ADC PDC ,所以 9021=∠+∠PDC BDC . 23.解:(1)因为0sin 2cos 2=+-θθρ,所以0sin 2cos 22=+-θρθρρ,所以曲线C 的直角坐标方程是02222=+-+y x y x ,即2)1()1(22=++-y x .由⎪⎪⎩⎪⎪⎨⎧=+=t y t x 222221(t 为参数),消去参数t ,所以直线l 的普通方程是0122=--y x . (2)圆心)1,1(-到直线0122=--y x 的距离42344122=+-+=d , 圆的半径2=r ,所以214222=-=d r AB . 24.解:因为32=-n m ,所以32+=n m .(1)9323≥=+=++m m m n m ,所以3≥m ,所以3-≤m 或3≥m .(2)321)32(3231)32(313532313135≥-++=--+--=-+-m m m m m m n m n m , 当且仅当21≤≤-m (或15≤≤-n )时等号成立, 所以n m n m 32313135-+-的最小值是3.。

海南省届高三数学模拟试题文

海南省届高三数学模拟试题文

2016届高三文科数学模拟试卷(一)第I 卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1A x x =≤,集合B Z =,则AB =( )A.{}0B.{}11A x x =-≤≤C.{}1,0,1-D.∅ 1.解:集合{}{}111A x x x x =≤=-≤≤,所以{}1,0,1A B =-,选C.2.设i 是虚数单位,复数111iz i-=++在复平面上所表示的点为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.解:复数121111i z i i i-=+==-++.所对应的点为(1,1)-,在第四象限,选D. 3.已知向量(,2)a m =-,(4,2)b m =-,条件p ://a b ,条件q :2m =,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.解:因为2//2802a b m m ⇔-+=⇔=±,所以p 是q 的必要不充分条件,选B.4.函数1()cos23sin cos 2f x x x x =+的一个对称中心是( )A.(,0)3πB.(,0)6π C.(,0)6π-D.(,0)12π-4.解:函数113()cos23sin cos cos2sin 2sin(2)226f x x x x x x x π=+=+=+的对称中心的横坐标满足2,6x k k Z ππ+=∈,即,212k x k Z ππ=-∈,所以(,0)12π-是它的一个对称中心,选D.5.定义运算“*”为:(0)2(0)a b ab a a b a +<⎧*=⎨≥⎩,若函数()(1)f x x x =+*,则该函数的图象大致是( )5.解:21(1)(1)()(1)2(1)x x x x f x x x x ++<-⎧=+*=⎨≥-⎩,选D.第8题图6.某几何体的三视图如图所示,则该几何体的体积是( ) A.3(2)2π+ B.3(4)3π+ C.3(2)6π+ D.3(2)3π+ 6.解:由三视图可知该几何体是组合体,上方是底面圆半径为1、高为3的半个圆锥,下 方是底面圆半径为1、高为2的圆柱,且圆柱的上底面与半圆锥的底面重合,所以该几何体的体积是11332(2)326πππ⨯⨯+=+,选C.7.执行如图所示的程序框图,则输出的结果是( ) A.6 B.8 C.10 D.157.解:该程序框图运行3次,各次S 的值依次是3,6,10,所以输出的结果是10,选C. 8.如图所示,为了测量某湖泊两侧,A B 间的距离,李宁同学首先选定了与,A B 不共线的一点C ,然后给出了三种测量方案:(ABC ∆的角,,A B C 所对的边分别记为,,a b c ): ① 测量,,A C b ② 测量,,a b C ③测量,,A B a 则一定能确定,A B 间距离的所有方案的个数为( ) A.3 B.2 C.1 D.08.解:根据图形可知,,a b 可以测得,角,,A B C 也可以测得,利用测量的数据,求解,A B 两点间的距离唯一即可.对于①③可以利用正弦定理确定唯一的,A B 两点间的距离;对于②直接利用余弦定理即可确定,A B 两点间的距离,选A.9.已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为32,则a =( ) A.14 B.12C.1D.2 9.解:如图,平移直线2y x =-经过直线1x =与(3)y a x =-的交点(1,2)A a -时,目标函数2z x y =+取得最小值,则321(2)2a ⨯+-=,解得14a =,选A.10.已知点(,)n n A n a (n N +∈)都在函数()log a f x x =(0a >且1a ≠)的图象上,则210a a +与62a 的大小关系为( )A.21062a a a +>B.21062a a a +<C.21062a a a +=D.210a a +与62a 的大小与a 有关 10.解:由条件知log n a a n =,所以210log 2log 10log 20a a a a a +=+=,622log 6log 36a a a ==,所以210a a +与62a 的大小与a 有关,选D.11.若函数32()236f x x mx x =-+在(2,)+∞上为增函数,则实数m 的取值范围是( ) A.(,2)-∞ B.(,2]-∞ C.5(,)2-∞ D.5(,]2-∞11.解:因为2()666f x x mx '=-+,令26660x mx -+≥,则1m x x ≤+,又因为1y x x=+ 在(2,)+∞上为增函数,故当(2,)x ∈+∞时,152x x +>,故52m ≤,选D. 12.点P 为双曲线221916x y -=的右支上一点,,M N 分别是圆22(5)4x y ++=和圆 22(5)1x y -+=上的点,则PM PN -的最大值为( )A.8B.9C.10D.712.解:易知两圆圆心分别为双曲线的左、右焦点12(5,0),(5,0)F F -,点P 是双曲线右支上一点,由双曲线定义可得1226PF PF a -==,当1,,P M F且2,,P N F 共线时, PM PN -有最大值,1122()()6219PM PN PF r PF r -≤+--=++=,即PM PN -的最大值为 9,选B.第II 卷本卷包括必考题和选考题两部分。

高考专题高三文科数学模拟卷(二)试卷.docx

高考专题高三文科数学模拟卷(二)试卷.docx

高中数学学习材料鼎尚图文*整理制作海南海口二中2016届高考数学(文)模拟卷(二)(命题人:)考场:___________座位号:___________本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

满分150分,考试时间120分钟.第I 卷(选择题共60分)选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}---2、21i=+( ) (A )22 (B )2 (C )2 (D )13、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 4、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )232+ (B )31+ (C )232- (D )31-5、设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A )36 (B )13 (C )12(D )33 6、已知2sin 23α=,则2cos ()4πα+=( ) (A )16 (B )13 (C )12 (D )237、执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 8、设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >>9、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A.323 B.643C.32D.1610、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届海南省农垦中学高三考前押题文科数学试卷学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 已知集合,,则()A.B.C.D.
2. 若复数为虚数单位)是纯虚数,则实数的值为()A.B.C.D.
3. “”是“”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
4. (题文)已知实数成等比数列,则圆锥曲线的离心率为
()
A.B.
C.或D.或
5. 曲线在点处的切线的斜率为()A.B.C.D.
6. 若某几何体的三视图如图所示,则此几何体的体积等于()
A.B.C.D.
7. 在区间内随机取两个数分别记为,则使得函数
有零点的概率为()
A.B.C.D.
8. 已知函数若数列满足,且
是递增数列,则实数的取值范围是()
A.B.
C.D.
9. 已知不等式组构成平面区域(其中x,y是变量).若目标函数
的最小值为,则实数的值为()
A.B.C.
D.
10. 阅读下列程序框图,运行相应程序,则输出的值为()
A.B.C.D.
11. 在中,,,是边上的一点,,
的面积为,则的长为()
A.B.
C.D.
12. 设函数,对任意,不等式
恒成立,则正数的取值范围是()
A.B.C.D.
二、填空题
13. 设变量满足不等式组则目标函数的最小值是
______.
14. 在中,,则的最小值为_______.
15. 在新华中学进行的演讲比赛中,共有位选手参加,其中位女生、位男生.如果这位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的的排法种数为______.
16. 在三棱锥中,侧棱两两垂直,
的面积分别为,则三棱锥的外接球的体积为_______. 三、解答题
17. 如图,在中,点在边上,
.
(Ⅰ)求的值;
(Ⅱ)若,求的面积.
18. 已知数列是等差数列,为的前项和,且,数列
对任意,总有成立.
(Ⅰ)求数列和的通项公式;
(Ⅱ)记,求数列的前项和.
19. 长时间用手机上网严重影响着学生的身体健康,某中学为了解两班学生手机上网的时长,分别从这两个班中随机抽取名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;
(Ⅱ)从班的样本数据中各随机抽取一个不超过的数据分别记为,求的概率.
20. 已知四棱锥,其中面
,,为的中点.
(Ⅰ)求证:面;
(Ⅱ)求证:面面;
(Ⅲ)求四棱锥的体积.
21. 设椭圆,定义椭圆的“相关圆”方程为
.若抛物线的焦点与椭圆的一个焦点重合,且椭圆
短轴一个端点和其两个焦点构成直角三角形.
(Ⅰ)求椭圆的方程和“相关圆”的方程;
(Ⅱ)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.
22. 设函数.已知曲线在点
处的切线与直线垂直.
(Ⅰ)求的值;
(Ⅱ)求函数的极值点;
(Ⅲ)若对于任意,总存在,使得
成立,求实数的取值范围.
23. 某校三个兴趣小组的学生人数分布如下表(每名学生只参加一个小组,单
篮球组书画组乐器组
高一45 30 a
高二15 10 20
学校要对这三个小组的活动效果进行抽样调查,用分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,求a的值.
四、填空题
24. 设某程序框图如图所示,该程序运行后输出的k的值是_____.
25. 已知正数满足,则的最小值为______.
26. 一个几何体的三视图如图所示,则该几何体外接球的表面积为_____.。

相关文档
最新文档