运动控制系统 复习知识点总结教学文案

合集下载

《运动控制系统》教案

《运动控制系统》教案

《运动控制系统》教案一、教学目标1. 理解运动控制系统的概念和组成2. 掌握运动控制系统的分类和原理3. 了解运动控制系统在实际应用中的重要性二、教学内容1. 运动控制系统的概念和组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类和原理2.1 模拟运动控制系统2.2 数字运动控制系统2.3 位置控制、速度控制和加速度控制3. 运动控制系统在实际应用中的重要性3.1 运动控制系统在工业生产中的应用3.2 运动控制系统在技术中的应用3.3 运动控制系统在自动驾驶技术中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。

2. 案例分析法:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。

3. 讨论法:组织学生探讨运动控制系统的发展趋势和挑战,培养学生的创新思维和问题解决能力。

四、教学资源1. 教材:《运动控制系统》2. 多媒体课件:PPT、动画、视频等3. 网络资源:相关论文、案例、新闻报道等五、教学评价1. 课堂参与度:评估学生在课堂讨论、提问等方面的积极性。

2. 课后作业:布置相关练习题,评估学生对运动控制系统知识的理解和掌握程度。

3. 小组项目:组织学生团队合作完成一个运动控制系统的应用案例,评估学生的实践能力和问题解决能力。

六、教学安排1. 课时:共计32课时,每课时45分钟2. 教学计划:第1-4课时:运动控制系统的概念和组成第5-8课时:运动控制系统的分类和原理第9-12课时:运动控制系统在实际应用中的重要性第13-16课时:运动控制系统的的发展趋势和挑战七、教学步骤1. 引入:通过一个实际应用案例,引出运动控制系统的重要性,激发学生的学习兴趣。

2. 讲解:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。

3. 案例分析:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。

运动控制系统 复习知识点总结

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。

(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。

因此,转矩控制是运动控制的根本问题。

第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。

(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。

晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。

晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。

在交流侧会产生较大的谐波电流,引起电网电压的畸变。

需要在电网中增设无功补偿装置和谐波滤波装置。

3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。

5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。

(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。

运动控制(一)复习

运动控制(一)复习

运动控制系统(一)复习大纲第一章 绪论1、熟悉运动控制系统的基本组成;2、掌握运动控制系统的转矩控制规律及各种典型负载特性。

第二章 转速反馈控制的直流调速系统1、 直流电动机的调速方法(三种)、直流调速系统用的可控直流电源。

2、 可控直流电源及其特点:(1)晶闸管—电动机系统(V-M 系统):相位控制、电流脉动、电流连续时的电机机械特性、晶闸管触发电路和整流装置的数学模型。

(2)直流脉宽调制PWM 调速系统:电路形式和波形分析、电压关系、机械特性、数学模型。

3、 转速控制要求和稳态调速性能指标(调速范围和静差率)。

4、 掌握调速范围、静差率和额定速降之间的关系:)s 1(n sn D N N -=∆5、 转速单闭环调速系统的组成、原理及静特性(会画静态结构图及推导静特性)、闭环控制规律及开环调速系统的机械特性与闭环调速系统的静特性的关系。

正确理解为什么闭环系统静特性会变硬?6、 反馈控制规律(比例控制有静差、服从给定抵制扰动、系统精度取决于给定电源和反馈检测的精度)及闭环系统的抗扰作用。

7、 开环系统机械特性和比例控制闭环系统静特性的关系:负载相同情况下:K1n n opcl +=∆∆;理想空载转速相同情况下:K1s s op cl +=在相同的静差率约束下,闭环系统的调速范围为开环系统的(1+K )倍:op cl D )K 1(D +=8、 闭环直流调速系统的稳态参数计算。

(作业)9、 电流截止负反馈的作用及其系统组成原理(原理图、静态结构图)。

10、 带电流截止负反馈转速闭环控制系统的静态结构图及有关计算。

11、 转速反馈控制直流调速系统的数学模型及闭环系统稳定性分析。

12、 比例积分控制规律以及无静差调速系统的理解和稳态参数计算。

13、 数字控制系统的主要特点(离散化和数字化);14、 数字测速方法(M ,T, M/T )原理示意图、计算表达式及适应场合。

15、 模拟PI 调节器的数字化,差分方程,两种实现方法(位置式、增量式)及限幅。

运动控制系统 复习知识点总结讲课稿

运动控制系统 复习知识点总结讲课稿

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。

(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。

因此,转矩控制是运动控制的根本问题。

第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。

(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。

晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。

晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。

在交流侧会产生较大的谐波电流,引起电网电压的畸变。

需要在电网中增设无功补偿装置和谐波滤波装置。

3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。

5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。

(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。

老师期末复习运动控制讲课要点

老师期末复习运动控制讲课要点

运动控制技术一、什么是运动控制系统,它由什么组成?运动控制系统(Motion Control System)也可称作电力拖动控制系统(Control Systems of Electric Drive)。

它是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。

现代运动控制已成为电机学、电力电子技术、微电子技术、计算机控制技术、控制理论、信号检测与处理技术等多门学科相互交叉的综合性学科二、什么是机床的数字控制以数字指令方式控制机床各部件的相对运动和动作。

将数字代码输入机床的数字控制装置(即控制机床的专用计算机)中去,经过计算机的计算处理、伺服控制、驱动机床各部件运动,完成上述空间直线段的加工。

用这种控制技术控制的机床就称为“数控机床”或“NC机床”。

(Numerically Controlled Machine Tool)轮廓加工控制:不仅对坐标的移动量进行控制,而且对各坐标的速度及它们之间比率都要行严格控制,以便加工出给定的轨迹。

在允许的误差范围内,从微观上看,用沿直线(精确地说沿逼近函数)的各轴最小单位移动量合成的分段运动来代替曲线运动,从而加工出轮廓。

基本名词术语:1.点位控制:控制点到点的距离;2.轮廓控制:控制轮廓加工,实时控制位移和速度;3. 分辨率:闭环数控机床的最小监测单位,也叫设定单位。

它代表了数控系统和数控机床的精度。

4、脉冲当量:数控系统中,一个指令脉冲代表的位移量(开环);5、插补:数据密化,用已知线型(已有插补轨迹)代替未知线型。

6、直线插补:数控机床加工时,刀具运动轨迹是直线的,称为直线插补。

7、圆弧插补:数控机床加工时,刀具运动轨迹是圆弧的,称为圆弧插补;三、什么是开放式数控系统?及开放式数控系统的特点是什么?IEEE(国际电气电子工程师协会)是这样定义开放式数控系统的:“符合系统规范的应用系统可以运行在多个销售商的不同平台上,可以与其它系统的应用进行互操作,并且具有一致风格的用户交互界面。

运动控制系统教学教案

运动控制系统教学教案

运动控制系统教学教案一、教学目标1. 让学生了解运动控制系统的概念、组成和作用。

2. 使学生掌握运动控制系统的常见类型及特点。

3. 培养学生运用运动控制系统知识解决实际问题的能力。

二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的常见类型及特点2.1 开环运动控制系统2.2 闭环运动控制系统2.3 混合运动控制系统3. 运动控制系统的应用实例3.1 运动控制系统3.2 数控机床运动控制系统3.3 电动汽车运动控制系统三、教学方法1. 讲授法:讲解运动控制系统的概念、组成、类型及应用。

2. 案例分析法:分析具体运动控制系统的实例,让学生深入了解原理及应用。

3. 讨论法:组织学生讨论运动控制系统在不同领域的应用及优缺点。

四、教学准备1. 教案、课件及教学素材。

2. 相关领域的实际案例资料。

3. 讨论话题及问题。

五、教学过程1. 引入:介绍运动控制系统在现代工业及日常生活中的应用,激发学生的兴趣。

2. 讲解:详细讲解运动控制系统的概念、组成、类型及应用。

3. 案例分析:分析具体运动控制系统的实例,让学生深入了解原理及应用。

4. 讨论:组织学生讨论运动控制系统在不同领域的应用及优缺点。

5. 总结:对本节课内容进行总结,强调运动控制系统的重要性和应用价值。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评估1. 课堂问答:通过提问方式检查学生对运动控制系统基本概念的理解。

3. 小组讨论:评估学生在小组讨论中的参与程度和问题解决能力。

七、教学拓展1. 介绍运动控制系统在最新的技术发展中的应用,如、智能制造等。

2. 探讨运动控制系统在未来的发展趋势和挑战。

八、教学反思1. 评估学生对运动控制系统知识的掌握程度,反思教学效果。

2. 根据学生反馈调整教学方法和内容,提高教学质量。

九、教学资源1. 推荐学生阅读关于运动控制系统的书籍、学术论文和在线资源。

运动控制系统-复习知识点总结教学文案

运动控制系统-复习知识点总结教学文案

运动控制系统复习知识点总结1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。

(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。

因此,转矩控制是运动控制的根本问题。

第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。

(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。

晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。

晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。

在交流侧会产生较大的谐波电流,引起电网电压的畸变。

需要在电网中增设无功补偿装置和谐波滤波装置。

3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。

5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。

(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。

《运动控制系统》教案

《运动控制系统》教案

《运动控制系统》教案第一章:运动控制系统概述1.1 运动控制系统的定义1.2 运动控制系统的作用1.3 运动控制系统的发展历程1.4 运动控制系统的应用领域第二章:运动控制系统的组成2.1 控制器2.2 执行器2.3 传感器2.4 驱动器2.5 运动控制器与执行器的接口第三章:运动控制算法3.1 PID控制算法3.2 模糊控制算法3.3 神经网络控制算法3.4 自适应控制算法3.5 预测控制算法第四章:运动控制系统的性能评估4.1 动态性能评估4.2 静态性能评估4.3 稳态性能评估4.4 鲁棒性评估4.5 节能性能评估第五章:运动控制系统的应用案例5.1 运动控制5.2 数控机床运动控制5.3 电动汽车运动控制5.4 无人机运动控制5.5 生物医学运动控制第六章:运动控制系统的建模与仿真6.1 运动控制系统的数学建模6.2 运动控制系统的计算机仿真6.3 仿真软件的选择与应用6.4 系统建模与仿真的实际案例6.5 建模与仿真在运动控制系统设计中的应用第七章:运动控制系统的故障诊断与容错控制7.1 运动控制系统的常见故障及诊断方法7.2 故障诊断算法及其在运动控制系统中的应用7.3 容错控制策略及其在运动控制系统中的应用7.4 故障诊断与容错控制在提高运动控制系统可靠性方面的作用7.5 故障诊断与容错控制的实际案例分析第八章:运动控制系统的优化与调整8.1 运动控制系统的性能优化方法8.2 控制器参数的整定方法8.3 系统调整过程中的注意事项8.4 优化与调整在提高运动控制系统性能方面的作用8.5 运动控制系统优化与调整的实际案例第九章:运动控制系统在工业中的应用9.1 运动控制系统在制造业中的应用9.2 运动控制系统在自动化生产线中的应用9.3 运动控制系统在技术中的应用9.4 运动控制系统在电动汽车技术中的应用9.5 运动控制系统在其他工业领域中的应用第十章:运动控制系统的发展趋势与展望10.1 运动控制系统技术的发展趋势10.2 运动控制系统在未来的应用前景10.3 我国运动控制系统产业的发展现状与展望10.4 运动控制系统领域的研究热点与挑战10.5 面向未来的运动控制系统教育与人才培养重点和难点解析重点一:运动控制系统的作用和应用领域运动控制系统在现代工业和科技领域中起着至关重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动控制系统复习知识点总结1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。

(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。

因此,转矩控制是运动控制的根本问题。

第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。

(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。

晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。

晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。

在交流侧会产生较大的谐波电流,引起电网电压的畸变。

需要在电网中增设无功补偿装置和谐波滤波装置。

3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。

5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。

(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。

D与s的相互约束关系对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。

当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。

第二章闭环控制的直流调速系统内容提要⏹转速单闭环直流调速系统⏹转速、电流双闭环直流调速系统调节器的设计方法1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。

.异步电动机按调速性能分类第一类基于稳态模型,动态性能要求不高,例如转速开环的变压变频调速系统和转速闭环的转差频率控制系统。

而另一类则基于动态模型,动态性能要求高,例如矢量控制系统和直接转矩控制系统。

同步电动机的调速:同步电动机的转差率恒为零,从定子传入的电磁功率全部变为机械轴上输出的机械功率,只能是转差功率不变型的调速系统。

同步电动机的调速只能通过改变同步转速来实现,由于同步电动机极对数是固定的,只能采用变压变频调速。

2.反馈控制的基本思想3.开环与闭环调速系统的区别:1差率约束下,闭环系统的调速范围为开环系统的(1+K)倍4.反馈控制规律5..电流截止负反馈。

6.积分控制规律和比例控制规律的区别在于:。

7.在阶跃输入作用之下,比例调节器的输出可以立即响应,而积分调节器的输出只能逐渐地变化,调速系统一般应具有快与准的性能,即系统既是静态无差又具有快速响应的性能。

实现的方法是把比例和积分两种控制结合起来,组成比例积分调节器(PI)。

8..对于经常正、反转运行的调速系统,应尽量缩短起、制动过程的时间,完成时间最优控制。

即在过渡过程中始终保持转矩为允许的最大值,使直流电动机以最大的加速度加、减速。

到达给定转速时,立即让电磁转矩与负载转矩相平衡,从而转入稳态运行。

9.(1)双闭环直流调速系统起动过程的转速和电流波(2)双闭环系统在起、制动过程中,电流闭环起作用,保持电流恒定,缩小系统的过渡过程时间。

一旦到达给定转速,系统自动进入转速控制方式,转速闭环起主导作用,而电流内环则起跟随作用,使实际电流快速跟随给定值(转速调节器的输出),以保持转速恒定。

(3)系统的静特性当转速调节器不饱和时表现出来的静特性是转速双闭环系统的静特性,表现为转速无静差;转速调节器饱和时表现出来的静特性是电流单闭环系统的静特性,表现为电流无静差,电流给定值是转速调节器的限幅值。

(4)转速调节器的作用归纳为电流调节器的作用归纳为10 香农(Shannon)采样定理规定:如果随时间变化的模拟信号的最高频率为fmax ,只要按照 f>2fmax采样频率进行采样,则取出的样品序列就可以代表(或恢复)模拟信号11.常用的阶跃响应跟随性能指标有上升时间、超调量和调节时间,12.为了使系统对阶跃给定无稳态误差,不能使用0型系统,至少是Ⅰ型系统;当给定是斜坡输入时,则要求是Ⅱ型系统才能实现无稳态误差。

两种系统的比较⏹典型I型系统和典型Ⅱ型系统在稳态误差上有区别。

⏹典型I型系统在跟随性能上可以做到超调小,但抗扰性能稍差。

⏹典型Ⅱ型系统的超调量相对较大,抗扰性能却比较好。

⏹这些是设计时选择典型系统的重要依据。

电流调节器的设计(采用 I 型系统)设计分为以下几个步骤:1.电流环结构图的简化简化内容⏹忽略反电动势的动态影响⏹等效成单位负反馈系统⏹小惯性环节近似处理2.电流调节器结构的选择3.电流调节器的参数计算4.电流调节器的实现设计举例:1.电流环的设计①确定时间常数整流装置滞后时间常数T s电流滤波时间常数T oi电流环小时间常数之和T i②选择电流调节器结构⏹要保证稳态电流无差,可按典型I型系统设计电流调节器。

⏹电流环控制对象是双惯性型的,用PI型电流调节器。

③计算电流调节器参数电流调节器超前时间常数电流环开环增益K IACR的比例系数Ki④校验近似条件电流环截止频率满足晶闸管整流装置传递函数的近似条件:满足忽略反电动势变化对电流环动态影响的条件:满足电流环小时间常数近似处理条件12. 异步电动机T型等效电路异步电动机简化等效电路27(A)异步电动机的机械特性28.变压变频调速是改变同步转速的一种调速方法,同步转速随频率而变化基频以下调速原理:恒压频比控制:基频以上调速28基频以下电流补偿控制:基频以下运行时,采用恒压频比的控制方法具有控制简便的优点,但负载的变化将导致磁通的改变,因此采用定子电流补偿控制,根据定子电流的大小改变定子电压,可保持磁通恒定。

小结:A.恒压频比控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,低速时需适当提高定子电压,以近似补偿定子阻抗压降B.恒定子磁通、恒气隙磁通和恒转子磁通的控制方式均需要定子电流补偿,控制要复杂一些。

C.恒定子磁通和恒气隙磁通的控制方式虽然改善了低速性能。

但机械特性还是非线性的,产生转矩的能力仍受到限制。

D.恒转子磁通的控制方式,可以得到和直流他励电动机一样的线性机械特性,性能最佳。

eTs1n1emTms29.异步电动机变频调速需要电压与频率均可调的交流电源,常用的交流可调电源是由电力电子器件构成的静止式功率变换器,一般称为变频器。

间接变频:先将恒压恒频的交流电整成直流电,再将直流电逆变成电压与频率均可调的交流,直接变频;将恒压恒频的交流电直接变换为电压与频率均可调的交流电,无需中间直流环节30.交-直-交变频器主回路结构图30.PWM 基本思想:控制逆变器中电力电子器件的开通或关断,输出电压为高度相等 、宽度按一定规律变化的脉冲序列,用这样的高频脉冲序列代替期望的输出电压31.以频率与期望的输出电压波相同的正弦波作为调制波(Modulation wave ),以频率比期望波高得多的等腰三角波作为载波(Carrier wave ),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得高度相等、宽度按正弦规律变化的脉冲序列,这种调制方法称作正弦波脉宽调制(Sinusoidal pulse Width Modulation ,简称SPWM )32.三相PWM 逆变器双极性SPWM 波形 ~34 电流跟踪PWM (CFPWM ,Current Follow PWM )的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波形,这就能比电压控制的SPWM 获得更好的性能。

它是以正弦波电流为控制目标的4-13电流滞环跟踪控制的A 相原理-12d+2dU --*A i A i h 21VD 4VD 1VT 4VT HBC图4-14 电流滞环跟踪控制时的三相电流波形与相电压PWM 波形电流跟踪控制的精度与滞环的宽度有关,同时还受到功率开关器件允许开关频率的制约。

当环宽选得较大时,开关频率低,但电流波形失真较多,谐波分量高;如果环宽小,电流跟踪性能好,但开关频率却增大了。

实际使用中,应在器件开关频率允许的前提下,尽可能选择小的环宽35.把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,这种控制方法称作“磁链跟踪控制”,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的,所以又称“电压空间矢量PWM (SVPWM ,Space Vector PWM )控制”。

图4-17 旋转磁场与电压空间矢量的运动轨迹图4-18 电压矢量圆轨迹(2)零矢量的插入有效地解决了定子磁链矢量幅值与旋转速度的矛盾。

(3).按空间矢量的平行四边形合成法则,用相邻的两个有效工作矢量合成期望的输出矢量,这就是电压空间矢量PWM(SVPWM)的基本思想。

所谓等效是指在一个开关周期内,产生的定子磁链的增量近似相等。

通常以开关损耗较小和谐波分量较小为原则,安排基本矢量和零矢量的作用顺序,一般在减少开关次数的同时,尽量使PWM输出波型对称,以减少谐波分量。

(4)零矢量集中的实现方法按照对称原则,将两个基本电压矢量的作用时间、平分为二后,安放在开关周期的首端和末端,把零矢量的作用时间放在开关周期的中间,并按开关次数最少的原则选择零矢量。

(5)零矢量分布的实现方法将零矢量平均分为4份,在开关周期的首、尾各放1份,在中间放两份,将两个基本电压矢量的作用时间、平分为二后,插在零矢量间。

按开关损耗较小的原则,选取零矢量(6)会根据要求判别期望定子磁链的轨迹P161(8)SVPWM的实现(7)SVPWM控制模式的特点36.转差频率控制的基本思想若能够保持气隙磁通不变,且在s值较小的稳态运行范围内,异步电动机的转矩就近似与转差角频率成正比。

也就是说,在保持气隙磁通不变的前提下,可以通过转差角频率来控制转矩,这就是转差频率控制的基本思想。

第5章内容提要⏹异步电动机动态数学模型⏹异步电动机按转子磁链定向的矢量控制系统⏹异步电动机按定子磁链控制的直接转矩控制系统⏹直接转矩控制系统与矢量控制系统的比较1.异步电动机是一个高阶、非线性、强耦合的多变量系统。

相关文档
最新文档